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We describe a multimodal dataset acquired in a controlled experiment on a driving simulator. The set

includes data for n= 68 volunteers that drove the same highway under four different conditions: No

distraction, cognitive distraction, emotional distraction, and sensorimotor distraction. The experiment

closed with a special driving session, where all subjects experienced a startle stimulus in the form of

unintended acceleration—half of them under a mixed distraction, and the other half in the absence of a

distraction. During the experimental drives key response variables and several explanatory variables were

continuously recorded. The response variables included speed, acceleration, brake force, steering, and lane

position signals, while the explanatory variables included perinasal electrodermal activity (EDA), palm EDA,

heart rate, breathing rate, and facial expression signals; biographical and psychometric covariates as well as

eye tracking data were also obtained. This dataset enables research into driving behaviors under neatly

abstracted distracting stressors, which account for many car crashes. The set can also be used in

physiological channel benchmarking and multispectral face recognition.

Design Type(s) cross over design • parallel group design

Measurement Type(s) imaging assay • physiological assay
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Background & Summary
Cars are iconic products of modern civilization, providing mobility that has transformed business and
lifestyles. As a result, car driving has been engrained into people’s routines. It is an empowering activity,
but also a dangerous one, as attested by the thousands of traffic crashes that take place every day.

From surveys reporting the causes of traffic crashes1,2, one could identify three major factors:
cognitive, emotional, and sensorimotor stressors that overtax the driver’s physiological resources, thus
opening the car-driver feedback loop. In fact, it has been documented that even when these stressors do
not result in a crash, they degrade traffic efficiency3.

Among the three possible stressor types, sensorimotor stressors have been studied more
extensively, because their presence and effects can be readily identified4. Texting, the most well-
known sensorimotor stressor, has become public enemy number one. Because in texting the driver
takes away her/his eyes from driving to interact with her/his cell phone, eye trackers proved to be
useful sensing elements in gauging driving behaviors5. Eye tracking, however, is inadequate for
more esoteric stressors, such as cognitive and emotional ones, where the driver may appear to maintain
attention to the road, but her/his mind is intensely somewhere else. To address this issue, investigators
resorted to the use of electroencephalography (EEG)6—a powerful, but somewhat obtrusive sensing
modality.

Another crash causing factor that has gained attention in recent years, is startle. Startling events are
often the result of car malfunction, such as the case of unintended acceleration. It has been postulated
that the ability of the driver to handle such events is compromised by the presence of stressors.

Here, we describe two experiments, known as SIMULATOR STUDY 1, designed to provide some
answers regarding stress and startle related crashes. The experiments were conducted in a driving
simulator using the same subject pool:

EXPERIMENT I focused on the effect of cognitive/emotional/sensorimotor stressors on driving
behaviors under typical conditions.

EXPERIMENT II focused on the effect of stress on reactivity to a startling event while driving; this
startling event was unintended acceleration.

EXPERIMENT I followed a crossover design where all subjects underwent all treatments, including a
control treatment (i.e., stress-free driving), on the same segment of highway and in similar traffic/weather
conditions. The treatment order was randomized to ameliorate the practice effect. This design provides
the opportunity to account for intra-individual differences.

EXPERIMENT II followed a parallel group design, with nearly half of the subjects assigned to the
Nonloaded Group, while the other half to the Loaded Group; both groups followed the same itinerary
under similar traffic/weather conditions. The Nonloaded Group had a stressor-free drive throughout the
itinerary, towards the end of which they experienced the startling event. The Loaded Group had a
stressor-free drive only in the first portion of the itinerary; in the second portion of the itinerary, the
Loaded Group subjects were experiencing a strong stressor of mixed nature. As in the case of the
Nonloaded Group, the startling event took place towards the end of the itinerary and while this time the
mixed stressor was in effect. A crossover design would be inadvisable for EXPERIMENT II, as multiple
applications of the startle would have incurred a level of habituation.

To the best of our knowledge, this is the first study that tackles all three types of distracting stressors
under typical conditions as well as their interaction with startling events. Moreover, a unique aspect of the
study is its comprehensive measurement set. This measurement set includes multiple physiological and
observational variables that track sympathetic state, multiple indicators of driving performance, and a
host of biographic and psychometric covariates. All of the physiological and observational variables have
been extracted unobtrusively, using either thermal and visual cameras or wearable sensors. This ensured
that the drivers exhibited natural behaviors, undisturbed by the mechanics of the experiments.

The presented dataset provides a rich resource for the scientific community to perform exploratory
and hypothesis-driven investigations regarding the effect of various types of stressors on the internal and
apparent state of drivers, as well as their driving performance. Analyzing a subset of this data, we reported
in ref. 7 the existence of an autonomic mechanism that successfully counter-balances erroneous motor
reactions in the presence of cognitive and emotional stressors, but breaks down when sensorimotor
stressors are introduced. That work gives a small flavor of the dataset’s potential for consequential
behavioral research.

Due to physiological channel redundancy, the dataset also offers the opportunity for realistic
comparative studies of affective measurement methods, such as perinasal EDA versus palm EDA8, or
benchmarking heart rate extracted from visual facial video9 versus heart rate extracted from thermal
facial video10. Last but not least, thanks to the use of both thermal and visual imaging modalities for the
subjects’ faces, the dataset can be used in multispectral face recognition research11. In this respect, a
unique feature of the dataset is the abundance of facial expressions and thermophysiological changes due
to bouts of stress.

Methods
Ethics statement
The experimental procedures were approved by the Institutional Review Boards (IRB) of the University
of Houston (protocol #15028-01) and the Texas A&M University (study #IRB2014-0532). The authors
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performed these procedures in accordance with the approved guidelines, obtaining informed consent
from each subject before conducting the experiments. In the consent form, the subjects were given two
explicit data release options, for which a separate signature was required:

OPTION A. Subjects that selected this option consented to the research use of all their experimental
data, but did not consent to the public release of identifying experimental data. Hence, this excluded from
the public version of the dataset all their video data (i.e., facial visual video, facial thermal video, perinasal
region of interest video, and operational theater video).

OPTION B. Subjects that selected this option consented both to the research use and public
release of all their experimental data, including video data bearing identifying information.
Only two subjects selected OPTION A (Subject T046 & Subject T074). All other subjects selected
OPTION B.

Subjects
We recruited subjects from the Bryan and College Station, TX communities (population about 250,000)
through email solicitations and flyer postings. Subjects had a valid driving license and had normal or
corrected to normal vision. We restricted admission to individuals with at least one and a half years of
driving experience who were between 18 and 27 years of age (Young cohort) or above 60 years of age
(Old cohort). We excluded subjects on medications affecting their ability to drive safely. A total of n= 78
subjects conforming to the inclusion-exclusion criteria volunteered for the study. One subject quit the
experiment because of motion sickness; and, raw data for n= 9 subjects were not recorded properly due
to technical issues. Hence, raw data for n= 68 subjects (35 male/33 female) were nearly complete,
comprising our working set. For this working set, we could not reliably extract perinasal perspiration
signals from n= 9 male subjects, because they had facial hair. All other variables in the working set were
acquired without significant problems.

Experimental setup
We conducted the experiment in a driving simulator manufactured by Realtime Technologies, Inc, Royal
Oak, MI. During the experimental sessions, we continuously imaged the subject’s face with a thermal
camera as well as a visual camera (Fig. 1). Specifically:

Thermal facial camera. We used a Tau 640 long-wave infrared (LWIR) camera (FLIR Commercial
Systems, Goleta, CA); it features a small size (44 × 44 × 30 mm) and adequate thermal (o50 mK)
and spatial resolution (640 × 512 pixels). The Tau 640 camera was outfitted with a LWIR 35 mm
lens f/1.2. Thermal data was collected at a frame rate of 7.5 fps. We used these thermal facial videos to
extract perinasal perspiratory signals, known to commensurate with electrodermal (EDA) activity in the

Figure 1. Experimental setup.
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palm8. For this reason we call the thermally extracted perinasal perspiration signals, perinasal EDA
signals.

Visual facial camera. We used a FireWire CCD monochrome zoom camera (The Imaging Source,
Charlotte, NC) with spatial resolution 1,024 × 768 pixels. Visual data was collected at a frame rate of
15 fps. We used these facial visual videos to extract emotional signals, based on the analysis of facial
expressions. The visual camera was placed next to the thermal camera to facilitate spatial co-registration
(Fig. 1).

The facial cameras were at a distance of approximately 1.2 m from the subject. This distance in
combination with the camera optics ensured that a typical face covered a significant portion of each
thermal and visual frame, providing maximum spatial resolution for image analysis (see Supplementary
Fig. 1b in ref. 7).

A second visual camera, termed operational theater camera, was placed behind the driver, aiming at the
simulator’s central screen, in order to record the subject’s unfolding drive (Fig. 1). This was an HD Pro
Webcam C920 (Logitech, Newark, CA) with spatial resolution 1,920 × 1,080 pixels, collecting data at a
frame rate of 30 fps.

We collected additional physiological data via two wearable sensors. Specifically:

Palm EDA sensor. We used the Shimmer3 GSR sensor (Shimmer, Dublin, Ireland) to collect palm
EDA data (Fig. 1). The sensor is powered with a rechargeable Li-ion battery and its measurement range is
10–4,700 kΩ; it wirelessly transmits data to the host computer via a Bluetooth connection. The palm EDA
signal collected via the Shimmer device and the perinasal perspiration signal extracted from the thermal
facial imagery, are indicators of cholinergic control.

Adrenergic sensor. We used the Zephyr BioHarness 3.0 (Zephyr Technology, Annapolis, MD) sensor
to measure the subject’s heart rate and breathing rate—two standard indicators of adrenergic control. The
sensor connects to a chest strap that is worn underneath the subject’s clothing (Fig. 1). It is powered by a
rechargeable lithium polymer battery (up to 26 h per charge), and is capable of detecting a heart rate
range of 25–240 bpm and a breathing rate range of 4–70 bpm.

We collected eye tracking data with faceLAB (Seeing Machines, Canberra, Australia). The faceLAB eye
tracking system uses dashboard-mounted cameras (Fig. 1), and a small pod illuminating the subject’s face
with infrared light. The amount of light used is well within the safe limits of exposure and is almost
indiscernible. The faceLAB’s software displays the subject’s point of gaze vectors; the footprint of these
gaze vectors on the central simulator screen is a moving green dot.

Importantly, we programmed the simulator to save a record of the evolving driving parameters. These
parameters included speed, acceleration, brake force, steering angle, and lane position.

Experimental design
Following a randomized block design, we assigned subjects to two groups: Nonloaded Group (y= o,
n= 35) and Loaded Group (y= L, n= 33). This group categorization related to the two arms of
EXPERIMENT II. All sessions in EXPERIMENT I were the same for both groups. Upon signing the
consent form, the subjects completed three questionnaires:

Biographic questionnaire. It identified key facts about the subject, such as gender, age, and driving
record.

(State-) Trait anxiety inventory. Long-standing stress might have an effect on sympathetic responses
and thus, scoring trait anxiety is of potential interest to research relevant to this dataset12.

Personality type A/B. This was a modified version of the Jenkins Activity Survey13. Some studies have
shown association between type A personalities and specific driving behaviors14; thus, scoring of type A/B
personalities is also of potential interest to research relevant to this dataset.

Next, the subjects went through Tsession= 8 experimental sessions. The first seven sessions constituted
EXPERIMENT I, and were crossovered. The eighth session had two arms and the subjects were parallel
grouped (EXPERIMENT II).

EXPERIMENT I
The first session of EXPERIMENT I was a baseline session (1: B) where the subjects sat quietly in a dimly
lit room, listening to soothing music for 5 min. Following this baseline session, the subjects went through
six driving sessions on the simulator. In order of execution, the drives were as follows:

2: Practice drive (PD). The subjects familiarized themselves with the driving simulator by driving on a
8 km straight section of a four-lane highway at posted speeds; two lanes were dedicated to traffic in each
direction, with the subject’s car traveling in the right lane (R); the speed limits changed every couple of
kilometers (80 km/h→ 50 km/h→ 100 km/h)—see Supplementary Fig. 2 in ref. 7.
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3: Relaxing drive (RD). The subjects had to drive on a 10.9 km straight section of a four-lane highway
with posted speed limit of 70 km h; two lanes were dedicated to traffic in each direction, with the subject’s
car traveling in the right lane (R); there was light traffic on the oncoming lanes (~3 vehicles per km).
The subjects were forced to change lane (R to L) after 5.2 km into the drive. They had to stay in the left
lane (L) for 1.2 km, before they had the opportunity to drive back to the right lane (R), if they
wished—see Supplementary Fig. 3 in ref. 7. The rationale for this lane change was to reduce the
monotony of the drive.

4–7: Loaded drives. We randomized the order of four special driving sessions, called ‘loaded’ drives,
featuring the same challenging driving conditions (construction zones—see Supplementary Fig. 4
in ref. 7). Each loaded drive was uniquely characterized by an additional stressor or absence thereof. This
stressor assumed the form of a secondary activity that was forced in two phases during the course of the
drive. All loaded drives were on the same 10.9 km section of a four-lane highway with posted speed limit
of 70 kph; two lanes were dedicated to traffic in each direction, with the subject’s car traveling in the right
lane (R). The drives featured heavy traffic on the oncoming lanes (>12 vehicles per km), construction on
the left lane (L), and traffic delineator posts on both sides of the right lane (R). The subjects were forced to
change lane (R to L) after 4.4 km into the drive. They stayed in the left lane (L) for 1.2 km, before they
were directed back to the right lane (R). During the detour, construction cones appeared on the right side
of the lane. In more detail, the loaded drives were as follows:

● Loaded Drive: (LDØ≡ND) Driving with no secondary activity (no additional stressor); it is also
known as Normal drive.

● Cognitive Drive: (LDC≡ CD) Driving under a cognitive stressor. The cognitive stressor was
mathematical questions (see in ref. 7, Supplement: Cognitive Stressor—Mathematical Questions)
in one phase of the drive and analytical questions (see in ref. 7, Supplement: Cognitive
Stressor—Analytical Questions) in another phase of the drive, posed orally by the experimenter.
The experimenter started posing these questions from the beginning of the relevant list, stopping only
when the phase was over. The subjects had to answer the questions to the best of their abilities. The
mathematical versus analytical phase order was randomized.

● Emotional Drive: (LDE≡ ED) Driving under an emotional stressor. The emotional stressor
was emotionally stirring questions posed orally by the experimenter in two phases. There were
two sets of questions: a set with less pointed questions (see in ref. 7, Supplement: Emotional
Stressor—Basic Questions) and a set with more pointed questions (see in ref. 7, Supplement:
Emotional Stressor—Pointed Questions). In the first stressful phase, the experimenter was asking
basic questions for 20 s, starting from the beginning of the relevant list. In the remaining time of
the first stressful phase, the experimenter was asking pointed questions, starting from the beginning
of the corresponding list. In the second stressful phase, the experimenter continued for 30 s with
basic questions, starting form the point s/he left in the first stressful phase. In the remaining time
of the second stressful phase, the experimenter was asking pointed questions, starting from the point s/
he left in the first stressful phase. The subjects had to answer all these questions to the best of their
abilities.

● Sensorimotor Drive: (LDM≡MD) Driving under a sensorimotor stressor. The sensorimotor stressor
was texting back words, sent one by one to the subject’s smartphone; this texting exchange took place
in two phases.

The phase layout within each stressful LDj drive (j∈ [C,E,M]) was as follows:

● Phase P1LDj
: Driving without distractions for ~80 s.

● Phase P2LDj
: Driving while engaging in a secondary activity j for ~160 s.

● Phase P3LDj
: Driving without distractions for ~240 s (coincided with the detour).

● Phase P4LDj
: Driving while engaging in a secondary activity j for ~160 s.

● Phase P5LDj
: Driving without distractions for ~120 s.

EXPERIMENT II
8: Failure drive (FD). Subjects had to drive a 3.2 km highway section identical to the last 3.2 km
segment of the loaded drives. Subjects belonging to the y= o group did not engage in any secondary
activity (see Supplementary Fig. 5 in ref. 7). Subjects belonging to the y= L group, however, drove under
mixed stressors the last 2 km of the drive (see Supplementary Fig. 6 in ref. 7). Initially, y= L subjects had
to text back a sentence that appeared in their smartphone; then, they had to respond to an alternating
series of mathematical/analytical and emotional questions posed orally by the experimenter while they
kept texting. Towards the end of the drive, all subjects had to wait on a red light at an intersection. Prior
to the green signal a vehicle malfunction resulted into an unintended acceleration incident, propelling the
car forward and putting it on a collision course with another car that had entered the intersection.
The subject had 5 s to react before a collision. Hence, the FD drive had three phases PiFDy

(i∈ [1, 2, 3],
y∈ [o, L]):

www.nature.com/sdata/

SCIENTIFIC DATA | 4:170110 | DOI: 10.1038/sdata.2017.110 5



● Phase P1FDy
: First portion of drive—no distractions.

● Phase P2FDy
: Second portion of drive—y= o no distractions; y= L mixed distractions.

● Phase P3FDy
: Experiencing an unintended acceleration incident for ~11 s.

There was a 2 min break between drives. Starting with the Relaxing drive (RD), during each break
subjects were completing the NASA Task Load Index (TLX) for the preceding drive. NASA-TLX is a
subjective workload assessment tool that complements the objective assessment of task-induced
sympathetic arousal, captured via physiological sensing. NASA-TLX features a multi-dimensional rating
procedure that derives an overall workload score based on a weighted average of ratings on six sub-scales.
These sub-scales include Mental Demand, Physical Demand, Temporal Demand, Own Performance,
Effort, and Frustration15.

Computation
Algorithmic processing of the thermal imagery yielded a signal that quantified perinasal perspiration. The
algorithm included a virtual tissue tracker that kept track of the region of interest, despite the subject’s
small motions. This ensured that the thermophysiological signal extractor operated on consistent and
valid sets of data over the clip’s timeline.

Thermal imaging—tissue tracking
We used the tissue tracker reported by Zhou et al.16. On the initial frame, the user initiates the tracking
algorithm by selecting the upper orbicularis oris portion of the perinasal region. The tracker estimates
the best matching block in every next frame of the thermal clip via spatio-temporal smoothing
(see Supplementary Fig. 7 in ref. 7). A morphology-based algorithm is applied on the evolving region of
interest to compute the perspiration signal.

Thermal imaging—perinasal eda signal extraction
In ref. 7, Supplementary Fig. 7 shows the thermal signature of perspiration spots on the perinasal
area of a subject in moments of low and high excitation. In facial thermal imagery, activated
perspiration pores appear as small ‘cold’ (dark) spots, amidst substantial background clutter. The
latter is the thermophysiological manifestation of the metabolic processes in the surrounding
tissue. We quantified this spatial frequency pattern by extracting an energy signal E(k, j, i),
indicative of perspiration activity in the perinasal area of subject k, for session j, and phase i.
We computed this signal by applying the clinically validated morphological method reported by
Shastri et al.8. Any high-frequency noise in this signal was suppressed by a Fast Fourier Transformation
(FFT) filter.

Code availability
We used the S-Interface (formerly OTACS) software to extract the perinasal EDA signals. The S-Interface
is a modular software system that reads radiometric (i.e., raw thermal) files, applies certain operations on
them according to the software plug-ins in its current configuration, and outputs the result (ref. 17). In
this case, the S-Interface configuration included:

1. The tracker plug-in (an implementation in C# of ref. 16), which was following the perinasal region of
interest (ROI), nullifying the effect of head motion.

2. The perspiratory morphological signal extractor (an implementation in C# of ref. 8), which was
operating upon the orthorectified perinasal ROI, yielding a signal commensurate to the extend of
activated perspiration pores.

We extracted signals of basic emotions by processing the facial videos via the Computer Expression
Recognition Toolbox (CERT)18.

Data Records
The data is freely available on the Open Science Framework (Data Citation 1). The repository’s data is
organized per subject under three major directories: (1) Raw Thermal Data—1.54 TB in size. (2)
Structured Study Data—57.5 GB in size. (3) R-Friendly Study Data—40.1 MB in size. In these directories,
the subject folders are named Txxx, where xxx stands for the subject number.

At the repository’s root, a spreadsheet named ‘Dataset-Table-Index.xlsx’ gives an
exhaustive enumeration of the dataset’s files in the Raw Thermal Data and Structured Study
Data directories. Files expected to be present and are present indeed in these two directories, are
denoted by ‘1’; there are 4,905 such files. Files expected to be present, which are not present for technical
and other reasons, are denoted by ‘0’; there are 234 such cases. Files that are not supposed to be present
due to the experimental design are denoted by ‘NA’; there are 544 such cases. Files that have been
redacted due to IRB restrictions, are denoted by ‘IRB’; there are 40 such cases. Files associated with
derivative thermal variables, such as perinasal EDA, which could not be extracted due to the presence of
facial hair, are denoted by ‘N’; there are 144 such cases. Files that are present, but found during the
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technical validation process to be marred by noise, are denoted by ‘− 1’; there are 117 such files and we do
not recommend using their data.

The R-Friendly Study Data directory is a reformatting of the quantitative variables contained in the
Structured Study Data directory. It contains, however, one post-study curated variable that is not present
in the Structured Study Data directory. This variable is the eye tracking variable, and the ‘Dataset-Table-
Index.xlsx’ spreadsheet lists its present (426) and missing (118) data files in a specially highlighted
column.

(1) Raw thermal data directory
In the Raw Thermal Data directory, each subject’s folder contains the facial thermal sequences for all
experimental sessions. These binary files are named ‘Txxx-SESSION_CODE.dat’, where xxx stands
for the subject number and SESSION CODE holds the acronym of the experimental session, that is, B
for the Baseline, PD for the Practice Drive, RD for the Relaxing Drive, ND for the Normal Drive, CD for
the Cognitive Drive, ED for the Emotional Drive, MD for the Sensorimotor Drive, and FDL or
FDN for the Failure Drive. Each .dat file is accompanied by an .inf file in text format. The header of each
.inf file has three numbers: The first number denotes the number of thermal frames contained in
the corresponding .dat file; the second number denotes the width of each thermal frame; and, the
third number denotes the height of each thermal frame. The body of each .inf file contains the
timestamps of all thermal frames contained in the corresponding .dat file. The .dat files can be accessed
via the S-Interface17, which uses the information in the corresponding .inf files to properly open .dat files
and process them.

(2) Structured study data directory
In the Structured Study Data directory, each subject’s folder has three files containing biographic and
psychometric data; they are colocated with subfolders containing data corresponding to experimental
sessions, thus forming a hierarchical data sturcture reflective of the experimental design. Specifically:

Txxx.b: Biographic data—session independent. This Excel file contains Gender {Male, Female}
information; Age {Integer} information; and, Age Group {Old, Young} information.

Txxx.bar: Psychometric data—all sessions. This Excel file contains the NASA TLX scores the subject
provided after each experimental session, following the Relaxing Drive (RD). NASA TLX is a multi-
dimensional psychometric15, measuring perceived Mental Demand, Physical Demand, Temporal
Demand, Performance, Effort, and Frustration.

Txxx.tp: Trait psychometric data—session independent. This Excel file contains the (State-) Trait
Anxiety Inventory (STAI)12 score and the Type A/B Personality13 score.
The subfolders containing data pertaining to experimental sessions (treatments), are named

‘Y SESSION_CODE’, where Y stands for the order of the session in the experimental timeline
and SESSION_CODE holds the acronym of the session. The Baseline [B], Practice Drive [PD],
Relaxing Drive [RD], and Failure Drive—either Loaded [FDL] or Nonloaded [FDN], have constant
order across subjects: B→ 1, PD→ 2, RD→ 3, FDL or FDN→ 8. The loaded drives, that is, Normal Drive
[ND], Cognitive Drive [CD], Emotional Drive [ED], and Sensorimotor Drive [MD] have randomized
order, blocked by gender and age group; thus, their order, drawing from the set [4…7], differs from subject to
subject.
Each session folder contains up to nine files holding measurements from different modalities, and a stimulus

file, where needed, holding information about the stressors/events that applied/took place during the session.
Specifically, the stimulus file is named ‘Txxx-zzz.stm’, where xxx is the subject number and zzz is the session’s
order number. Each stressor/event is specified in a separate row that lists its: Start Time [in s], End Time [in s],
and Type [Other≡ 0, Analytical Questions≡ 1, Mathematical Questions≡ 2, Emotional Questions≡ 3,
Texting ≡ 4, Texting and Talking≡ 5, Failure Event≡ 6].
The multimodal measurements for each experimental session are held in files named Txxx-zzz.

MEASUREMENT_CODE, where xxx is the subject number, zzz is the session’s order number, and
MEASUREMENT_CODE refers to the measurement channel. Specifically:

Txxx-zzz.BR: Breathing rate signal. This Excel file contains three synced columns: Frame #; Time;
and, Breathing Rate signal. Hence, scanning each row from left to right we find the chronological rank
order of the instantaneous measurement, the time [in s] the measurement was taken with respect to the
beginning of the session, and the value of the breathing rate signal at that time [in bpm]. No breathing
rate measurements were recorded during the baseline (B) sessions.

Txxx-zzz.HR: Heart rate signal. This Excel file contains three synced columns: Frame #; Time; and
Heart Rate signal. Hence, scanning each row from left to right we find the chronological rank order of the
instantaneous measurement, the time [in s] the measurement was taken with respect to the beginning of
the session, and the value of the heart rate signal at that time [in bpm]. No heart rate measurements were
recorded during the Baseline (B) sessions.
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Txxx-zzz.peda: Palm EDA signal. This Excel file contains three synced columns: Frame #; Time; and,
Palm EDA signal. Hence, scanning each row from left to right we find the chronological rank order of the
instantaneous measurement, the time [in s] the measurement was taken with respect to the beginning of
the session, and the value of the palm EDA signal at that time [in kΩ]. No palm EDA measurements were
recorded during the Baseline (B) sessions.

Txxx-zzz.pp: Perinasal EDA signal. This Excel file contains four synced columns: Frame #; Time;
Perinasal EDA signal; and, Noise Reduction (NR) Perinasal EDA signal. Hence, scanning each row from
left to right we find the chronological rank order of the instantaneous measurement, the time [in s] the
measurement was extracted with respect to the beginning of the session, the value of the perinasal EDA
signal at that time [in °C2], and its smoothed over value [also in °C2]. Perinasal EDA measurements were
the only physiological measurements recorded during the Baseline (B) sessions.

Txxx-zzz.avi2: Perinasal region of interest thermal video. This avi file is the thermal video
recording of the perinasal region of interest (ROI) during session zzz. The S-Interface extracts this ROI
video out of the raw thermal facial imagery, thanks to the tracker reported in ref. 16. It is upon this
tracked ROI that the physiological signal extractor reported in ref. 8 operates, yielding the perinasal EDA
signal.

Txxx-zzz.res: Performance response variables. This Excel file contains 7 synced columns: Frame #;
Time; Speed signal; Acceleration signal; Brake Force signal; Steering signal; and, Lane Position signal.
Hence, scanning each row from left to right we find the chronological rank order of the instantaneous
measurement, the time [in s] the composite measurement was taken with respect to the beginning of the
session; and, the values at that time of speed [in km h−1], acceleration [in °], brake force [in N], steering
[in rad], and lane position [in m].

Txxx-zzz.avi3: Operational theater video. This avi file is the first-person video recording of what the
driver sees during the session zzz. The green dot identifies the direction of the driver’s gaze, superimposed
on the video by the eye tracker.

Txxx-zzz.FACS: FACS signals. This Excel file contains 10 synced columns: Frame #; Time; Anger
signal; Contempt signal; Disgust signal; Fear signal; Joy signal; Sad signal; Surprise signal; and, Neutral
signal. Hence, scanning each row from left to right we find the chronological rank order of the
instantaneous measurement, the time [in s] the composite measurement was taken with respect to the
beginning of the session; and, the normalized values of the composite FACS vector at that time, extracted
via the CERT software. These normalized values indicate levels of anger, contempt, disgust, fear, joy, sad,
surprise, and neutral feelings, respectively.

Txxx-zzz.avi1: Facial video. This avi file is the facial video recording during session zzz. It is upon this
video that the CERT software operates to extract the FACS signals.

(3) R-friendly study data directory
The R-Friendly Study Data directory has a copy of the physiological and performance signals in a flat
format, and features some additional data, too. In the flat format, all signals for a subject are arranged
column-wise in a single file (no session subdirectories). Each such subject file is enhanced by the addition
of columns bearing traveled distance [in m] and explicit eye tracking data (gaze x position, gaze y
position, left pupil diameter, right pupil diameter). Distance and explicit eye tracking data do not exist in
the original hierarchical data structure saved in the Structured Study Data directory; their curation was an
afterthought. The R-Friendly Study Data directory allows easy addition of such quantitative variables to
the dataset during post-study work.

Technical Validation
Our validation method comprised three steps: (1) Quality control of variables. (2) Quality control of
support media. (3) Experimental validation.

Quality control of variables
We performed quality control regarding the expected range and patterns for each of the variables
involved in the study. We will describe the quality control process and results per variable category:
(a) Biographic variables. (b) Psychometric variables. (c) Physiological variables. (d) Performance
variables. (e) Eye tracking variables. Figures 2–6 in this section are comprehensive, serving as quality
control devices rather than instruments of detail. We provide a typical detailed example from the dataset
in Supplementary Fig. 2, depicting some key variables for the Sensorimotor Drive (MD) of Subject T029.

The biographic and psychometric variables were collected in snapshots, in nominal and ordinal form,
respectively. The physiological and performance variables were collected continuously throughout the
experimental sessions in the form of signals. For the physiological variables, we extracted the relevant
signals as time functions. For the performance variables, we extracted the relevant signals as functions of
both time and distance travelled. The reason is that there were speed differences among subjects, and
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anchoring the performance signals to space provided a more consistent basis of comparison. The eye
tracking variables were collected in the form of scatterplots (x-coordinate, y-coordinate).

Biographic variables. The age ranges in the working set of 68 subjects were [18, 27] and [60, 86],
which were conforming to the inclusion ranges of [18, 27] and > 60. The working set was balanced with
respect to the blocking variables of gender (35 male/33 female) and age group (34 Old/34 Young), as well
as the two load conditions in the Failure Drive (35 Nonloaded/33 Loaded).

Psychometric variables. The score range in the (State-) Trait Anxiety Inventory (STAI) was [20, 52],
which is within the acceptable range of [20, 80] for this instrument. The score range in the Personality
Type A/B Inventory was [144, 282], which is within the acceptable range of [35, 380] for this instrument.
The (State-) Trait Anxiety and Personality Type A/B Inventories are important covariates. The recorded
score ranges for both STAI and A/B did not include extreme values, which suggests that the set of
volunteers were normal subjects, rendering unlikely any bias in experimental respones. Indeed, in ref. 7
we reported no significant correlation of STAI and A/B scores with mean perinasal EDA responses or
mean absolute steering or maximum right-side/left-side lane departures in any of the drives (P> 0.05 for
the correlation coefficients in all cases). This suggests that key personality traits that could have biased
sympathetic responses, driver reactions, and driver performance did not play any role, at least for the
n= 59 subjects for whom we had perinasal EDA signals.
For the sub-scales of the NASA-TLX index, the score ranges were as follows: Mental Demand: [1, 20];

Physical Demand: [1, 20]; Temporal Demand: [1, 20]; Performance: [1, 20]; Effort: [1, 20]; Frustration: [1, 20].
Hence, all the score ranges were within the acceptable range of [1, 20] for the sub-scales of this instrument.

Physiological variables. These variables include breathing rate, heart rate, palm EDA, and perinasal
EDA signals, aiming to track evolving stress states. They are the main explanatory variables, as the study
assumes that excessive stress induced by distractions likely affects aspects of the drivers’ performance.
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Figure 2. Breathing rate signals per drive, for all subjects, before and after quality control—raw and valid

signal sets, respectively.
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Breathing Rate Signals: Figure 2 shows the breathing rate signals per drive, for all subjects, before and after
quality control. The quality control process involved the removal of signals featuring at least one value outside
the range [4, 40] bpm. Values outside this range are possible but not likely for sitting subjects that are
occasionally under moderate stress. We found 0.003% of the breathing rate data to be below 4 bpm, suggesting
very loose sensor fitting. We did not find any data that exceeded 40 bpm. Breathing rate measurements with a
chest strap sensor, such as the Zephyr BioHarness 3.0, are more resilient to noise with respect to heart rate
measurements by the same sensor, due to the sensing mechanics for breathing; the breathing signal formation
tracks the expansion and contraction of the chest’s circumference, thus ameliorating the effect of relatively poor
fitting and posturing.
Heart Rate Signals: Figure 3 shows the heart rate signals per drive, for all subjects, before and after

quality control. The quality control process involved the removal of signals featuring at least one value
outside the range [40, 120] bpm. Values outside this range are possible but not likely for sitting subjects that
are occasionally under moderate stress. Importantly, signals with values outside the [40, 120] bpm range
tended to drift downwards or upwards, depending on the range limit that were exceeding, respectively.
Drifting downwards to very low values is an indication that the chest strap sensor has been loosing contact
with the subject’s skin due to posturing, while drifting upwards to very high values is an indication that the
chest strap sensor has been sliding against the subject’s skin due to poor fitting. We found 5.2% of the heart
rate data to be below 40 bpm, while 2.3% of the data to be above 120 bpm; all of drifting nature. Hence, these
problems were of small scale and consistent with wearability limitations for chest strap sensors reported in the
literature.
Palm EDA Signals: Figure 4 shows the palm EDA signals per drive, for all subjects, before and after quality

control. The quality control process involved the removal of signals featuring at least one value outside the
range [28, 628] kΩ. Values outside this range are possible but not likely, suggesting poor sensor fitting. We
found 0.01% of the palm EDA data to be below 28 kΩ, while 8.7% of the data to be above 628 kΩ. Taken into
account that the subjects’ hands were handling the steering wheel, the percentage of non-valid data was
consistent with the wearability constraints for this type of sensor.
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Figure 3. Heart rate signals per drive, for all subjects, before and after quality control—raw and valid

signal sets, respectively.
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Perinasal EDA Signals: Figure 5 shows the perinasal NR EDA signals per session, for all subjects. This is the
only physiological variable for which measurements were recorded not only in the experimental drives, but also
in the baseline (B) session. No further screening was necessary for the perinasal EDA channel, as quality
control in this case is assured by the algorithmic signal extraction process (see Methods section). In fact, NR
stands for Noise Reduction signal, and is the outcome of an FFT filter on the original perinasal EDA signal8.

Performance variables
These variables include the car’s speed, acceleration, brake force, steering, and lane position signals. They
are the response variables, as the key questions that motivated this study center around issues of driver
performance under distracting stressors. The matrix of panel graphs in Fig. 6 show the performance
signals for all subjects per variable and drive. These visualizations convey valuable quality control
information.

Speed Signals: Due to the sensitivity of the simulator around zero speed, we replaced all values
between −0.1 and 0.1 [kph] in the speed signals with zero (1.3% of all speed values). Speed values lower
than −0.1 [kph], we treated them as missing (0.03% of all speed values).

In the Relaxing Drive (RD) and in most Loaded drives (ND, CD, ED), we observe that between the
start and end points the speed signals remain largely around the posted speed limits. This makes sense, as
these drives were on a straight highway with free-flowing traffic. The Sensorimotor Drive (MD) tends to
depart from this pattern, due to the strong effect of the physical distraction, which is clearly visible in two
phases. Moreover, we observe that for all drives the speed signals start from 0 km h−1, as the car was at
full stop in the beginning. The picture is more nuanced at the end of the drives. Ideally, the Relaxing (RD)
and Loaded drives (ND, CD, ED, MD) were meant to end at a red traffic light, 10.9 km away from the
start location. The end was signified by the appearance of a stop sign in the middle of the simulator
screen, after which all recording automatically stopped. Due to small differences in the exact starting
point from drive to drive and from subject to subject, in some drives the itinerary ended mostly just
before the traffic light, while in some other drives the itinerary ended mostly just after the traffic light. In
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ND and ED, where the itinerary ended mostly before the traffic light, many subjects were caught driving
at a cruising speed. Only a few subjects caught at the red light, and we can observe a thin vertical drop
down to zero for the speed signal endings in ND and ED, due to this. In RD, CD, and MD, where the
itinerary ended mostly after the traffic light, many subjects were caught as they nearly reached cruising
speed again, at various distances from the traffic light. These partially overlapped ‘V’ shape endings
created a more spread out vertical ‘wall’ in the speed signal panels of RD, CD, and MD.

In the Practice Drive (PD), the speed is not uniformly maintained around the posted speed limit and
this is to be expected. The purpose of PD was to familiarize the subjects with the driving simulator, and
they were explicitly instructed to test acceleration, brake force, and maneuverability at will. In the Failure
Drive (FD), due to the unintended acceleration event at the end, the speed goes from 0 km h−1 back up to
a high value, and this pattern occasionally repeats once, as some drivers end up in the ditch and try to get
out of there. There is also notable undulation in the second half of FD, due to the strong effect of the
mixed stressor in the loaded cohort.

Acceleration Signals: In the simulator, the acceleration pedal is connected to a simulated throttle
valve that can move from a full close (0°) to a full open (90°) position. Due to the sensitivity of the
simulator’s acceleration pedal, when the driver releases it, the system may occasionally record negative
acceleration values, which are meaningless and have to be removed. In the curation process, we found
that 0.3% of the acceleration signal data had negative values, and we replaced them with missing values.

We observe that for all drives the acceleration signals are very intense in the beginning, as the cars
speed up to reach the posted speed limit. At the end of the drives, things differ a little bit depending on
the mix of instances. In some instances the itinerary ended just before the traffic light, while the subjects
were driving at a cruising speed and the acceleration signals were subdued. In some other instances the
itinerary ended just after the traffic light, while the subjects were speeding up, after waiting on a green
light, and thus the acceleration signals were nearly as intense as in the start of the drive.

In the Failure drive (FD), we observe zero acceleration extended for a short period towards the end.
This is when the unintended acceleration event took place. The strong acceleration associated with that
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Figure 5. Perinasal NR EDA signals per drive, for all subjects.
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event was the result of a simulated engine malfunction, not a pedal action. Consequently, it was not
captured by the acceleration sensor, which monitors the driver’s pedal only. The end effect of this
unintended acceleration, however, was captured by the speed sensor and manifests in the corresponding
speed signals as rapid speed increase. In the Practice Drive (PD), the acceleration signals are intense
throughout the drive, as drivers were braking and accelerating multiple times at will, testing the system.

Brake Force Signals: The maximum braking force is 300 [N]. In 0.004% of the signal data, however,
we found the braking force value to exceed 300 [N]. In these cases the driver was in the start position,
pressing the brake, and had simultaneously the hand brake on. To simplify things, we replaced all braking
force values found to be higher than 300 [N] with 300 [N].

We observe that for the Relaxing Drive (RD), braking is relatively sparse. This is to be expected for a
straight itinerary with no road construction and no stressors, rendering itself to a ‘cruise control’ type of
driving. In the Loaded drives (ND, CD, ED, MD) braking is more frequent due to the road construction
and stressor effects. The same is true for the Practice Drive (PD), but for a different reason—subjects were
honing their simulator driving skills.

Steering Signals: We observe that the steering signals feature small and symmetric fluctuations
around zero for the Relaxing Drive (RD), Normal Drive (ND), Cognitive Drive (CD), and Emotional
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Drive (ED). This is to be expected for mostly straight itineraries, where the drivers are not physically
distracted. In the Practice Drive (PD) there is relatively bigger steering undulation, due to
deliberate freewheeling. For example, a notable outlier in the beginning of PD is due to subject T073
steering sharply off the road. In the Sensorimotor Drive (MD), where there is physical distraction before
and after the detour, we observe that the intensity of the steering signals gets bigger and occasionally
asymmetric in those phases7. The same is true for the second portion of the Failure Drive (FD), where
about half of the drivers (loaded cohort) were distracted with a mixed stressor. It is also true for almost all
steering signals at the end of FD, as the drivers were trying to avoid collision due to unintended
acceleration.

Lane Position Signals: The lane position signals track the position of the center of the car from the
right edge of the rightmost lane, which is the driving lane used by the subjects in this study. The width of
each lane is 3.65 m and the car’s width is 1.85 m. Car positions to the left of the reference edge assume

Figure 7. Top Eight Panels: Eye tracking scatterplots per experimental session, for all subjects. Bottom Panel:

Bar plots indicating in red the percent of non-locking due to eyes off the screen (distraction) or eyes closed

(sleeping/blinking).
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positive values, while car positions to the right of the edge, assume negative values. Obviously, negative
values indicate dangerous lane deviations (off the paved road), while large positive values
(>(3.65–1.85/2)= 2.725 m) indicate incursions to neighboring lanes.

We observe orderly, middle of the lane trajectories in the Normal (ND), Cognitive (CD),
and Emotional (ED) drives, mirroring the shape of the highway with its characteristic detour
in the middle of the itinerary. This orderly picture disintegrates in the Sensorimotor Drive (MD),
where there are significant lane departures due to non-balanced handling of the steering wheel
at times of high undulation—a direct result of physical distractions7. The same is true for the
second half of the Failure Drive (FD). In the Practice Drive (PD) there is an almost uniformly
scattered picture, as the subjects were driving in a freewheeling manner. In the Relaxing Drive (RD)
several drivers did not return back to the rightmost lane after the detour but continued driving on
the leftmost lane; some drivers changed lanes even before the detour. This is because there were no
hard restrictions imposed by construction cones before and after the detour—RD was a relaxing drive
after all.

Eye tracking variables. The eye tracker recorded the x and y coordinates of the subject’s gaze
at each point in time during the drives as well as during the baseline session. The top eight panels in
Fig. 7 show the gaze scatterplots for all subjects per experimental session. In the drive panels PD, RD, CD,
ED, MD, and FD, most of the gaze points are concentrated on the projection of the car’s itinerary.
Gazing patterns are also notable at the bottom center of the simulator screen, where the speedometer
is located, as well as on either side of the rear-view mirror at the top center of the simulator screen.
In the baseline panel B, the scatterplot is more uniform, as the subjects were staring at a featureless
screen.
To get an appreciation of the eye tracking scatterplots in the context of the experimental setting, detailed

dimensions of the setup are given in Supplementary Fig. 1 of the manuscript’s Supplement. The origin and
orientation of the eye tracking coordinate system is shown in panel B of Fig. 7.
The bar plot in the bottom panel of Fig. 7 shows in red the percent of gaze points per drive for which

the eye tracker was unable to report values. This happened when the eye tracker could not lock on
the subjects’ eyes because the subject was looking outside the simulator screen (e.g., texting) or had her/his
eyes closed (e.g., sleeping or blinking). For the drives without any physical distractions, the missing
eye tracking points are around 20%. For the MD and FD drives that feature physical distractions,
the percentage of missing eye tracking points nearly doubles. Interestingly, the baseline session B
features the highest percentage of missing eye tracking points. An investigation of the relevant facial
videos reveals that many subjects fell asleep during the baseline session, and had their eyes closed for
significant periods of time. Please note that these percentages apply to valid measurement sessions
only (marked with ‘1’ in the ‘Dataset-Table-Index.xlsx’); they do not include missing measurement sessions
(marked with ‘0’ in the ‘Dataset-Table-Index.xlsx’), where eye locking was not possible throughout the
experimental session.

Quality control of support media. The clocks of all the imaging and wearable sensing devices were
synchronized at the beginning of each experimental day. Then, at the start of each experimental session,
the experimenter struck a clapboard in front of the subject’s face. We used these clapboard scenes as the
initial clipping points for the facial, thermal, and operational theater videos. All the frames in the
recorded video streams had imprinted timestamps. We used the timestamps imprinted in the clapboard
frames, to clip the corresponding physiological signals, synchronizing them to the start of the
experimental sessions.
The end of each experimental driving session was marked by a stop sign that appeared in the middle of the

simulator screen. We used the imprinted timestamps in the stop sign frames to clip the video streams and the
corresponding physiological signals, synchronizing them to the end of the experimental sessions.

Experimental validation. We used cognitive, emotional, and sensorimotor distractions to induce
excessive stress during two phases in the CD, ED, and MD drives, respectively. Furthermore, we used four
physiological variables—i.e., perinasal EDA, palm EDA, heart rate, breathing rate—to quantify peripheral
manifestations of stress. It is fundamental to the validity of our dataset that indeed excessive stress was
induced during the CD, ED, and MD drives, and that at least some of the chosen physiological variables
successfully tracked it.
Regarding the first point, we demonstrated in ref. 7 that the experiment’s stressful loaded drives were

perceived as such, by running a mixed effects model with dependent variables the NASA TLX sub-scales, fixed
effects the different types of stressful loaded drives, and keeping the loaded drive with no stressors (ND) as the
intercept.
Regarding the second point, we documented in ref. 7 that the perinasal EDA channel recorded significantly

elevated sympathetic responses during the stressful phases P2 and P4 of the loaded drives (LDC≡ CD, LDE≡

ED, LDM≡MD) with respect to the corresponding phases in the non-stressful loaded drive (LDØ≡ND), as
expected. Here, we briefly recite the perinasal EDA test results from7, for completeness. Then, we apply the
same tests to the other three physiological variables, presenting for them a more detailed analysis.
It is important to note that we did hypothesis testing against a two-tail alternative, setting levels of

significance at α= 0.0125 designated by **, or α= 0.001 designated by ***. The α= 0.0125 is Bonferroni-
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corrected for n= 4 comparisons, referring to the four variables we used to characterize the stress states of
drivers: perinasal EDA, palm EDA, heart rate, and breathing rate.

Perinasal EDA as a stress tracker. For the subset of n= 59 subjects for whom the extraction of the
perinasal EDA signal was feasible, we computed for each driving phase Pi the distributions of paired
differences between:

● Mean perinasal EDA in LDC and LDØ. This produced the first row of boxplots in Fig. 8, suggesting that
cognitive distraction of subjects in phases P2LDC

and P4LDC
had as a result significant elevation of their

mean perinasal EDA, with respect to phases P2LDØ
and P4LDØ

in the no-stressor drive (Po0.001,
paired t-tests in both cases).

● Mean perinasal EDA in LDE and LDØ. This produced the second row of boxplots in Fig. 8, suggesting
that emotional distraction of subjects in phases P2LDE

and P4LDE
had as a result significant elevation of

their mean perinasal EDA, with respect to phases P2LDØ
and P4LDØ

in the no-stressor drive (Po0.001,
paired t-tests in both cases).

● Mean perinasal EDA in LDM and LDØ. This produced the third row of boxplots in Fig. 8,
suggesting that sensorimotor distraction of subjects in phases P2LDM

and P4LDM
had as a result

significant elevation of their mean perinasal EDA, with respect to phases P2LDØ
and P4LDØ

in the no-
stressor drive (Po0.001 in P2LDM

and Po0.0125 in P4LDM
, paired t-tests in both cases).
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Figure 8. Validation of perinasal EDA channel. For more details see ref. 7.
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Hence, perinasal EDA appears to reliably track sympathetic changes produced by both esoteric and physical
stressors.

Palm EDA as a stress tracker. For the working set of n= 68 subjects, we computed for each driving
phase Pi the distributions of paired differences between:

● Mean palm EDA in LDC and LDØ (equation (1))

SðU;C;PiÞ ¼ SðU; LDC;PiÞ½kΩ� - SðU; LDO=;PiÞ½kΩ� ð1Þ

● Mean palm EDA in LDE and LDØ (equation (2))

SðU; E;PiÞ ¼ SðU; LDE;PiÞ½kΩ� - SðU; LDO=;PiÞ½kΩ� ð2Þ

● Mean palm EDA in LDM and LDØ (equation (3))

SðU;M;PiÞ ¼ SðU; LDM ;PiÞ½kΩ� - SðU; LDO=;PiÞ½kΩ� ð3Þ

Equation (1) produced the first row of boxplots in Fig. 9, suggesting that cognitive distraction of subjects in
phases P2LDC

and P4LDC
had no significant effect on their mean palm EDA, with respect to phases P2LDO=

and
P4LDO=

in the no-stressor drive (P> 0.05, paired t-tests in both cases).
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Figure 9. Validation of palm EDA channel.
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Equation (2) produced the second row of boxplots in Fig. 9, suggesting that emotional distraction of subjects
in phases P2LDE

and P4LDE
had no significant effect on their mean palm EDA, with respect to phases P2LDO=

and
P4LDO=

in the no-stressor drive (P>0.05, paired t-tests in both cases).
Equation (3) produced the third row of boxplots in Fig. 9, suggesting that sensorimotor distraction of

subjects in phases P2LDM
and P4LDM

had no significant effect on their mean palm EDA, with respect to phases
P2LD|

and P4LD|
in the no-stressor drive (P>0.05, paired t-tests in both cases).

Hence, the palm EDA channel appears to be non-informative regarding sympathetic changes produced by
either esoteric or physical stressors. In the context of the psychophysiological literature at large, this is
surprising, as the palm EDA channel is one of the most reliable peripheral tracker of stress responses19. In the
context of this application, however, such a disappointing performance is likely attributable to the constant
friction of the sensor, as it is squeezed between the subject’s palm and the steering wheel.

Breathing rate as a stress tracker. For the working set of n= 68 subjects, we computed for each
driving phase Pi the distributions of paired differences between:
Mean breathing rate in LDC and LDØ (equation (4))

BðU;C;PiÞ ¼ BðU; LDC ;PiÞ½bpm� -BðU; LDO=;PiÞ½bpm� ð4Þ

Mean breathing rate in LDE and LDØ (equation (5))

BðU; E;PiÞ ¼ BðU; LDE; PiÞ½bpm� -BðU; LDO=;PiÞ½bpm� ð5Þ
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Figure 10. Validation of breathing rate channel.
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Mean breathing rate in LDM and LDØ (equation (6))

BðU;M; PiÞ ¼ BðU; LDM ; PiÞ½bpm� -BðU; LDO=;PiÞ½bpm� ð6Þ

Equation (4) produced the first row of boxplots in Fig. 10, suggesting that cognitive distraction of subjects in
phases P2LDC

and P4LDC
had no significant effect on their mean breathing rate, with respect to phases P2LDO=

and P4LDO=
in the no-stressor drive (P> 0.05, paired t-tests in both cases).

Equation (5) produced the second row of boxplots in Fig. 10, suggesting that emotional distraction of
subjects in phases P2LDE

and P4LDE
had no significant effect on their mean breathing rate, with respect to

phases P2LDO=
and P4LDO=

in the no-stressor drive (P>0.05, paired t-tests in both cases).
Equation (6) produced the third row of boxplots in Fig. 10, suggesting that sensorimotor distraction of

subjects in phases P2LDM
and P4LDM

had as a result significant elevation of their mean breathing rate, with
respect to phases P2LDO=

and P4LDO=
in the no-stressor drive (Po0.001, paired t-tests in both cases).

Hence, the breathing rate channel reliably tracks sympathetic changes only in the case of physically
distracting stressors. The breathing rate channel is non-informative when it comes to sympathetic changes
precipitated by moderate esoteric stressors, such as the cognitive and emotional stressors used in this
experiment.

Heart rate as a stress tracker
For the working set of n= 68 subjects, we computed for each driving phase Pi the distributions of paired
differences between:
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Figure 11. Validation of heart rate channel.
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● Mean heart rate in LDC and LDØ (equation (7))

HðU;C;PiÞ ¼ HðU; LDC;PiÞ½bpm� -HðU; LDO=;PiÞ½bpm� ð7Þ

● Mean heart rate in LDE and LDØ (equation (8))

HðU; E; PiÞ ¼ HðU; LDE;PiÞ½bpm� -HðU; LDO=;PiÞ½bpm� ð8Þ

● Mean heart rate in LDM and LDØ (equation (9))

HðU;M;PiÞÞ ¼ HðU; LDM;PiÞ½bpm� -HðU; LDO=;PiÞ½bpm� ð9Þ

Equation (7) produced the first row of boxplots in Fig. 11, suggesting that cognitive distraction of
subjects in phases P2LDC

and P4LDC
had as a result significant elevation of their mean heart rate, with

respect to phases P2LDO=
and P4LDO=

in the no-stressor drive (Po0.001, paired t-tests in both cases).
Equation (8) produced the second row of boxplots in Fig. 11, suggesting that emotional distraction of

subjects in phase P2LDE
had as a result significant elevation of their mean heart rate, with respect to phase

P2LD|
in the no-stressor drive (Po0.001, paired t-test); by contrast, emotional distraction of subjects in

phase P4LDE
had no significant effect on their mean heart rate, with respect to phase P4LD|

in the no-
stressor drive (P>0.05, paired t-test).

Equation (9) produced the third row of boxplots in Fig. 11, suggesting that sensorimotor distraction of
subjects in phases P2LDM

and P4LDM
had as a result significant elevation of their mean heart rate, with

respect to phases P2LDO=
and P4LDO=

in the no-stressor drive (Po0.001, paired t-tests in both cases).
Hence, the heart rate channel appears to be almost as reliable a sympathetic tracker as the perinasal

EDA channel, and in practice, these two channels can be used interchangeably in driving contexts.
Investigators that plan to perform further research on this dataset are advised to use as primary
explanatory variables perinasal EDA and heart rate.

Usage Notes
The dataset includes both the thermal sequences (primary data), and the perinasal EDA signals that were
extracted from these sequences. If one is interested to extract the perinasal signals anew, s/he has to use
the S-Interface software17, selecting the region of interest (ROI) in the first frame of the radiometric
sequence (.dat file) for each experimental session. The perinasal ROI is bound at the top by the subject’s
nostrils, at the bottom by the subject’s lips, and on the left and right sides by the ends of the subject’s
mouth. Based on this initial selection, the tracker is capable of following up this tissue area for the
duration of the session, giving the chance to the physiological signal extractor to operate on a valid data
set. In rare instances, the tracker momentarily fails. This happens when, for example, the subject
performs a very abrupt head turn. The end result of such momentary failures are spikes in the perinasal
signal. These spikes are removed by applying a noise-reduction algorithm reported in ref. 20. This
algorithm is included in the S-Interface configuration. In even rarer instances, the tracker drifts away
from the original ROI. This typically happens when the subject has turned her/his head at an extreme
angle and stayed there for some time. The user can reposition the tracker by simply clicking the mouse in
the perinasal area. The tracker is restored and the signal extraction process resumes from that point
onward on the right footing.

The entire dataset can be visualized through Subject Book. Subject Book is a data management and
visualization tool [http://subjectbook.times.uh.edu], which can be used with any dataset
that follows its data structuring conventions. The Subject Book site for the current data set (SIMULATOR
STUDY 1) can be viewed at [Data Citation 2]. Subject Book features three levels of abstraction: (a) The
detailed level where all the data are visualized per subject, per session. (b) The subject level, where key
explanatory and response variables are summarized in a subject ID format. (c) The study level, where a
visual matrix conveys the results of the statistical tests on the study’s hypotheses.
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