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1. Introduction
Considerable emphasis has been devoted to materials undergoing reversible phase trans-
formations [1]. Less emphasis has been devoted to materials that show reversibility 
associated with slip deformation. The reversible deformation can lead to pseudoelastic 
(or superelastic) behaviour if forward and reverse slip can occur with small hysteresis. 
Pseudoelasticity refers to the recovery of the residual plastic strains upon unloading, 
and is attributed to the thermoelastic martensitic transformation in most of the shape 
memory alloys (SMAs). However, the Fe3Al and Fe3Ga with D03 structure are found to 
exhibit pseudoelasticity in the absence of martensitic transformation, and strains of few 
per cent can be recovered [2–4]. The advantage of these alloys compared to the SMAs 
is the potentially large pseudoelastic temperature range. Reversible slip is due to the to 
and fro motion of the a/4〈1 1  1〉 superpartials associated with the antiphase boundary 
(APB) energy [5–7], and is commonly referred to as ‘APB pseudoelasticity’. The APB 
energy arises on a plane where atoms are arranged in an opposite order compared to 
the perfect lattice. During loading, the independently moving a/4〈1 1 1〉 superpartial 
leaves behind itself an APB, which then pulls back the superpartial upon unloading.
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Since strain recovery is a result of the reversible motion of dislocations, it can occur under a 
wide temperature range. On the contrary, the pseudoelasticity in SMAs, for example, NiTi, 
occurs by the martensitic transformation and is limited to the tempera-ture above the 
austenite finish temperature (Af ) over a narrow temperature range.

Pseudoelasticity in D03 crystals has been of recent interest [2,3,7–12]. All works have 
been experimental; however, theoretical derivations and atomistic/continuum treat-ments to 
explain the stress magnitudes have been missing. In the current paper, we compare the 
modelling efforts with the experimental observations and investigate the parameters 
governing pseudoelasticity in Fe3Al. Utilizing novel digital image correla-tion (DIC) 
techniques, single crystal orientations and composition, we precisely pinpoint the stress 
required to initiate slip in Fe3Al unlike the general methodology where slip stress is 
assumed to be at 0.2% strain offset of the macroscopic stress–strain curve. Concurrently, 
we calculate the energy barriers (generalized stacking fault energy, GSFE) associated with 
the {1 1 0}〈1 1  1〉 and {1 1 2}〈1 1  1〉 slips from density functional theory (DFT) 
calculations at an atomic scale and incorporate it into the modified Peierls–Nabarro (PN) 
formalism based on anisotropic calculations to predict the slip stress and the recovery stress. 
We consider the forward and the reverse slip nucleation stresses on {1 1 2}〈1 1 1〉 system 
both for twinning and antitwinning senses noting the asymmetry of the energy barriers in 
these two cases. We note that the correct assessment of lattice parameter and elastic 
constants is required to obtain the stress quantities accurately. We, therefore, undertake 
these calculations using first principles, and for the first time, incorporate the high 
anisotropy of Fe3Al in the stress calculations. The theoretically obtained slip stress 
magnitudes are then compared to the experimental values showing excellent agreement.

Figure 1(a) and (b) show the atomic arrangement in D03 Fe3Al. The D03 structure 
consists of eight cubic sublattices. Four sublattices are B2-like structures, while the 
remaining are of pure bcc types. Each subcell consists of Fe atoms in the corners. Four of 
the subcells consist of Fe atoms in the centre, while the remaining four subcells have Al 
atoms in the centre. Figure 1(a) and (b) also show the possible slip systems, {1 1 0}〈1 1 1〉 
and {1 1 2}〈1 1 1〉, where a/4〈1 1 1〉 dissociated partials form an APB energy. Three 
distinct a〈1 1 1〉 dislocation configurations (modes) have been observed using in situ TEM 
experiments, as schematically shown in Figure 1(c)–(e) [8,13]. Figure 1(c) shows the mode 
I dislocation configuration where an uncoupled superpartial leaves behind the nearest-
neighbour antiphase boundary (NNAPB) upon loading. In mode II (Figure 1(d)), coupled 
a/4〈1 1 1〉 superpartial dislocations move in pair dragging behind the next-nearest-
neighbour antiphase boundary (NNNAPB) energy, while in mode III (Figure 1(e)), four 
superpartials move in group leaving behind NNAPB and NNNAPB.

The choice of dislocation configuration operating in Fe3Al depends on the composi-tion 
of the alloy and the deformation temperature [4]. Mode I dislocation configuration results in 
a high recovery ratio (r) exhibiting perfect pseudoelasticity when Al concen-tration is 
around 23 at.% [14]. The recovery ratio is a measure of pseudoelasticity of a material, and 
is defined as the ratio of difference of the maximum plastic strain and the residual strain to 
that of the maximum plastic strain. When Al concentration increases from 23 at.%, mode II 
and mode III dislocation configurations start to appear, thus reducing the recovery ratio. 
This is because NNNAPB energy bounding the coupled partials in mode II is low such that 
the partials are difficult to be pulled back during



unloading [4]. Similarly, in mode III, there is no APB left behind the superpartials, and 
the recovery ratio is well below 20%. The recovery ratio depends on the deformation 
temperature as well. For example, in Fe-24.4at.%Al, the recovery ratio is observed to 
be well above 80% in the temperature range 173–473 K and decreases rapidly to below 
20% in other temperature intervals [15].

In this work, the crystal orientation of the Fe3Al single crystals was selected in 
order to activate one primary slip system. We conducted uniaxial tensile and compres-
sive experiments using high resolution DIC strain measurements in order to pinpoint 
the critical stress required to initiate slip, sp and the recovery start stress, sr. As the slip 
is initially active at microscale, DIC strain measurements allow to precisely identify the

Figure 1. (colour online) D03 lattice structure of Fe3Al showing (a) {1 1 0}〈1 1 1〉 slip system
(b) {1 1 2}〈1 1 1〉 slip system. The length of the arrow gives the magnitude of the partial disloca-
tion with Burgers vector b = a/4〈1 1 1〉 (c) Mode I dislocation configuration, where uncoupled a/4
〈1 1 1〉 superpartials leave behind NNAPB (‘a’ is the lattice constant) (d) Mode II dislocation
configuration where paired superpartials leave behind NNNAPB (e) Mode III dislocation config-
uration where a〈1 1 1〉 superdislocation dissociates into four a/4〈1 1 1〉 dislocations.



local stress–strain behaviour of the alloy providing an accurate measure of the stress 
required to nucleate slip. In the research community, DIC has been extensively used to 
measure real-time (in situ) strain fields for different applications such as slip/twin nucle-
ation, fatigue damage initiation and crack closure measurements [16–19]. For these 
applications, the typical image resolution is approximately 1–2 μm/px. For other 
applications where higher image resolutions are required (for example, for studying twin/
slip and grain boundary/slip interactions), the images are captured ex situ (out of the load 
frame) under the optical microscope. In these experiments, the images have higher 
resolutions (up to 0.2 μm/px) with the drawback to measure only the residual strains. Since 
in Fe3Al, slip occurs at very small scales, it is necessary to adopt high image resolutions in 
order to precisely capture the slip activation and recovery. In the present work, we use a 
special SEMtester load frame for tensile experiments mounted under an optical microscope 
in order to measure real time strain field measurements at high resolution. These strain 
measurements are extremely important for materials exhibiting pseudoelasticity since no 
residual deformation can be detected in the unloaded condition even at high image 
resolution. Real-time strain fields are used to establish the critical stresses and to verify the 
activation of one primary slip system.

In the following sections, we discuss our atomistic/DFT approach to calculate the 
NNAPB and NNNAPB energy values associated with the moving superpartial disloca-
tions. We present the detailed mesoscale elastic calculations to establish the slip start 
stress and the recovery start stress in Fe3Al. We then compare our theoretically obtained 
stress values with the experimental observations in Fe3Al single crystals.

2. The current approach

2.1. Atomistic simulations

The first principles DFT calculations were carried out to calculate the systems total 
energy. We utilized the Vienna ab initio Simulations Package with the projector aug-
mented wave method and the generalized gradient approximation as implementations of 
DFT [20,21]. In our calculations, we used 9 × 9 × 9 Monkhorst Pack k-point meshes 
for the Brillouin-zone integration to ensure the convergence of results. Ionic relaxation 
was performed by a conjugate gradient algorithm. The energy cut-off of 360 eV was 
used for the plane-wave basis set. The total energy was converged to less than 10−5 eV 
per atom. For GSFE calculations, a full internal atoms relaxation including perpendicu-
lar and parallel directions to the fault plane was allowed for minimizing the short-range 
interaction between the misfitted layers in the vicinity of the fault plane. During the 
relaxation process, the total energy of the deformed crystal was minimized.

2.2. Lattice constant of D03 Fe3Al

We obtained the energy variation of the D03 crystal with respect to different lattice 
parameters in our simulations, as shown in Figure 2. The equilibrium lattice constant 
corresponding to the minimum structural energy was obtained as 5.782 Å. Table 1 
shows the lattice constant obtained through DFT calculations which are within 2% of 
the experimentally observed values. The Burgers vector of the dissociated superpartial 
based on the DFT lattice constant is also presented in Table 1.



2.3. Elastic constants calculations of D03 Fe3Al

In order to establish the elastic constants, we obtained the total energy variation of the
crystal as a function of the volume subjected to three different distortions (strain). The
deformation tensors given in Voigt notation and the corresponding energy densities are
given in Table 2. The strain parameter δ in Table 2 for each deformation was varied
from −0.03 to 0.03 in the present analysis to minimize the errors from higher order
terms. After obtaining the total energies E and Eo for the strained and the unstrained lat-
tice, respectively, the parameter E � Eoð Þ=Vo values were plotted as a function of strain
eð Þ, where Vo is the equilibrium volume. The elastic constants were then extracted from
the second-order coefficient fit of the following equation:

E V ; eð Þ ¼ E Vo; 0ð Þ þ Vo
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Figure 2. (colour online) Energy variation with lattice constant (a) for D03 Fe3Al obtained from
DFT calculations.

Table 1. Present DFT calculations and other experimental/DFT lattice parameters and Burgers
vector in D03 Fe3Al. The DFT value is marked with (*).

Structure

Lattice parameter (Å)

Slip system Burgers vector (Å)This study Experiments/DFT*

D03 5.782 5.79 [22], 5.76 [23]* {1 1 0}〈1 1 1〉, {1 1 2}〈1 1 1〉 2.49

Table 2. Distortion matrices and energy densities for elastic constant calculations of D03 Fe3Al.

Structure Distortion matrix DE=Vo

D03 e11 ¼ e22 ¼ d; e33 ¼ �2d 3 C11 � C12ð Þd2 þ O d4
� �

e11 ¼ e22 ¼ e33 ¼ d 3=2 C11 þ 2C12ð Þd2 þ O d4
� �

e12 ¼ e21 ¼ d=2 C44=2ð Þd2 þ O d4
� �



where Cij, ri, ei are the elastic constants, stress and strain respectively in Voigt notation. 
The results are graphically shown in Figure 3 and the modulus tensor is provided in 
Table 3. We note that the DFT results for elastic constants are within 10% of the 
experimental values.

2.4. Slip in D03 F3Al (GSFE)
The energy associated with the slip is characterized by the GSFE [25,26]. The GSFE for 
D03 Fe3Al is obtained by continuously shearing the {1 1 0} or {1 1 2} plane by a 
displacement of a/4〈1 1  1〉, where ‘a’ is the lattice constant. Figure 4 shows the {1 1 0} 
stacking sequence and Figure 5 shows the GSFE obtained in the present analysis for {1 1 
0}〈1 1 1〉 and {1 1 2}〈1 1 1〉 slip systems. Three energy terms are noted in Figure 5 – (i) the 
peak energy corresponding to u/b = 0.5 is cus defined as the unstable stacking fault energy 
and represents the energy barrier required to nucleate the first superpartial
dislocation, (ii) cNNAPB corresponding to u/b = 1 represents the stable energy which is 
left behind the dislocation, and (iii) cNNNAPB corresponding to u/b = 2 represents the 
stable energy value associated with the coupled superpartials. The values of cNNAPB and 
cNNNAPB are of prime interest as they generate stress to pull the dislocations back result-
ing in pseudoelasticity. It is worth emphasizing that {1 1 2}〈1 1 1〉 slip asymmetry is a 
common characteristic of bcc metals [27–31]. In Figure 5, we obtained the GSFE
(c-curve) for {1 1 2}〈1 1 1〉 slip system. We note that cus for antitwinning sense is higher 
than that in the twinning sense by 61 mJ m−2. If an applied shear stress causes the slip 
dislocations to move in the direction required to form a twin, we refer to this shear stress as 
the ‘twinning sense’ shear. The ‘antitwinning sense’ shear is the one that moves the 
dislocations opposite to the twinning shear. We point to the difference in the

Figure 3. (colour online) Three dimensional representation of elastic moduli (E) of D03 Fe3Al.
(a) The (1 0 0) plane is marked with a shaded rectangular surface, (b) cut through the (1 0 0) sur-
face through the centre of (a) as viewed along the [1 1 1] direction. Note that [0 1 0] and [0 0 1]
directions are equivalent for D03 crystal structure.



energy barriers between these two directions as the {1 1 2}〈1 1 1〉 slip asymmetry. For 
more details on twinning–antitwinning asymmetries in bcc metals, the reader is advised 
to see the Refs. [27–31]. We also note that the GSFE landscapes for {1 1 2}〈1 1 1〉 sys-
tem in twinning sense and {1 1 0}〈1 1 1〉 system are similar. This is in agreement with 
other bcc metals as well, for example, bcc Fe [32,33].

Table 3. Elastic constants for D03 Fe3Al established using first principles calculations and
compared with the experimental values. Note high anisotropy ratio (A) of 7.1.

D03 Fe3Al C11 (GPa) C12 (GPa) C44 (GPa) Anisotropy (A)

DFT (this study) 165 125 142 7.1
Experiment [24] 171 131 132 6.6

Figure 4. (colour online) Atomic arrangement of {1 1 0} plane of D03 Fe3Al. The largest spheres
represent atoms on plane, while smaller ones represent atoms out of the plane.

u / b

γ NNAPB

γ NNNAPB

{110}<111> 
{112}<111> twinning sense 
{112}<111> anti-twinning sense 

γ u s

Figure 5. (colour online) GSFE for D03 Fe3Al on {1 1 0}〈1 1 1〉 and {1 1 2}〈1 1 1〉 slip systems.



Figure 6(a) and (b) show schematics of the stresses acting on the independently 
moving a/4〈1 1 1〉 superpartial during loading and unloading, respectively, and 
Figure 6(c) shows the corresponding stress regions of interest on the experimental 
stress–strain curve. Four independent stresses, sp; sb; sr; so are shown. During loading 
(Figure 6(a)), the applied stress sp should overcome the frictional stress of the disloca-
tion, so and the back stress generated by the APB, sb. Upon unloading, the back stress 
(sb) generated by the a/4〈1 1  1〉 dislocation is balanced by the recovery start stress (sr) 
and the frictional stress (so). In summary, the equations governing pseudoelasticity in 
Fe3Al can be written as follows [4]:

sp ¼ sb þ so (1)

sr ¼ sb � so (2)

In the present analysis, we solve for the Peierls stress sp and lattice frictional stress so
from Equation (1) and use it in Equation (2) to calculate the recovery start stress
(sr). We present the results for {1 1 0}〈1 1 1〉 and {1 1 2}〈1 1 1〉 slips (both twinning
and antitwinning senses), and the details of the analysis will follow later.

(a) (b)

(C)

Figure 6. (colour online) Schematic representation of stresses acting on the uncoupled superpartial
dislocation during (a) loading and (b) unloading. (c) A typical stress strain curve showing sp and sr.



3. Experimental procedures and observations

Fe3Al single crystals were grown using the Bridgman technique in an inert atmosphere.
Tensile dog-bone shaped specimens (1.5 mm × 3 mm net section and 10-mm gauge
length) and compression specimens (4 mm × 4 mm × 10 mm) were cut using EDM.
The crystal was oriented with the [1 5 11] crystallographic orientation parallel to the
load direction where the primary slip system ½�1 1 1�ð1 0 1Þ has the maximum Schmid
factor (SF) of 0.5. The specimens were then solution treated at 800 °C for 1 h and suc-
cessively quenched in iced water. In order to obtain the D03 crystal structure, the speci-
mens were annealed at 400 °C for 10 h and cooled in the furnace at room temperature.
Following annealing, a virgin specimen was prepared for X-ray diffraction. The diffrac-
tion pattern and the pole figures were then obtained using a Philips Xpert 2 diffractome-
ter. The lattice parameter was measured as a = 5.785 Å resulting in a close agreement
with the one calculated with DFT. The crystal directions established with X-ray diffrac-
tion were [1 5 11] parallel to the load direction, [1 24 11] parallel to the normal of the
specimen plane and [11 0 1] parallel to the specimen plane and perpendicular to the load
direction.

Tensile and compression experiments were conducted at room temperature by means
of a servo hydraulic load frame. The experiments were conducted in displacement con-
trol at a strain rate of approximately 5 × 10−5 s−1. The average axial strains from DIC
strain fields were used to construct the stress–strain curves, while the local strain values
were used in order to precisely pinpoint the slip onset and recovery. An additional ten-
sile experiment was conducted with a SEMtester load frame under an optical micro-
scope for in situ high resolution strain measurements.

The specimens were initially polished using SiC paper (from P800 up to P1500).
The speckle pattern was applied to the specimen’s surface using black paint and an
Iwata Micron B airbrush which enabled to produce a fine pattern on the surface adapted
for both high and low DIC strain measurements. The images for in situ strain measure-
ments under the servo hydraulic load frame were captured using an IMI model IMB-
202 FT CCD camera (1600 × 1200 pixel) with a Navitar optical lens, providing an
average resolution of 2 μm/px. The real-time strain measurements were obtained on a
3 mm × 2.25 mm region for the tensile specimens and for a 4 mm × 3 mm for the com-
pression specimens. The images acquired during loading with the SEMtester load frame
were captured under an Olympus BX51M microscope (Olympus lens) providing an
average resolution of 0.44 μm/px. For this experimental set-up, the strain measurements
were obtained for a region of 700 μm × 525 μm. For both set-ups, the first image is
captured at zero load on the undeformed specimen’s surface (herein referred as the
reference image) while during loading, the images of the same region are captured
every 2 s. In the strain plots appearing in Figures 7–9, we refer to the uniaxial ten-
sile/compression strain parallel to the load direction as e.

Figure 7 shows the stress–strain curves obtained in tension. The black line refers to
the averaged axial strains measured all over the DIC region during the experiment car-
ried out under the hydraulic load frame (image resolution with this set-up is 1.88 μm/px
over 3 mm × 2.25 mm area). This curve represents the bulk mechanical behaviour of
the single crystal. On the other side, the blue line refers to the experiment conducted
with the SEMtester under the microscope (image resolution 0.44 μm/px). The axial
strains are calculated averaging the DIC strain fields over a region of 700 μm × 525 μm



The critical applied stress sp and the recovery start stress sr are then calculated
using the Schmid law, sp ¼ SF � rp and sr ¼ SF � rr. The strain fields in Figure 8 show
strain localizations along one slip trace, which confirms the activation of one dominant
primary slip system.

In compression (Figure 9), the stress–strain behaviour of the [1 5 11] orientation is
similar to the tensile case. The reported strain fields are measured by in situ DIC under
the hydraulic load frame with a final image resolution of 2.37 μm/px (black line). In
order to be consistent with the strain measurements provided for the tensile case under
the SEMtester (see Figure 7), we calculate the local stress–strain curve (blue line)
averaging the axial strains over a subregion of 800 μm × 600 μm (blue line). The first

Figure 7. (colour online) Calculation of the critical applied stress sp and the recovery start stress 
sr from the stress–strain curves for the [1 5 11] crystal orientation in tension. The strain data 
marked with the black line were obtained averaging the strain fields over a region of 
3 mm × 2.25 mm, while the strains marked with the blue line were calculated averaging the strain 
fields over a region of 700 μm × 525 μm. The applied stress sp and the recovery start stress sr 
are determined using the blue curve (for more details, see the text).

and are referred to as local strain measurements. Since the higher image resolution is
obtained for this set-up, the observation of slip is obtained at the microscale allowing a
precise estimation of the stress required to activate slip. The critical axial stresses (rp
and rr) are obtained using the intersection between the blue curve and the line repre-
senting the elastic slope at 0.05% strain offset. The lines representing the elastic slopes
are indicated in Figure 7. In both loading and unloading parts of the stress–strain
curves, we report the line fitting the elastic region (the elastic modulus is calculated as
88 GPa) and a parallel line representing the elastic slope at 0.05% strain offset.



Figure 8. (colour online) Local strain measurements using high resolution DIC on a [1 5 11]
oriented sample in tension. The broken line represents the ½�1 1 1�(1 0 1) slip trace.

Figure 9. (colour online) Stress–strain behaviour for the [1 5 11] crystal orientation in compres-
sion following two load/unload steps. The black lines refer to the averaged axial strain calculated
over all the DIC area, while the blue lines refer to the local axial strains calculated for the subre-
gion showing the largest strain localization (blue box marked in the bottom of each strain plot).
The stress–strain behaviour during the first load step (continuum lines) is perfectly pseudoelastic,
while during the second load step carried out at higher deformations (dashed lines), some residual
strains remain upon unloading.



load step (black and blue continuum lines) shows a complete plastic recovery of 1.83%
for the averaged strain over the entire region, while locally we measured a complete
plastic recovery of 2.4%. During the second load step (black and blue dashed lines),
the averaged plastic recovery was measured as 2.81%, while locally as 3.39%. Based
on the localized stress–strain curves for the tensile and compressive experiments, we
determined the averaged applied stress sp ¼ 221MPa and the recovery start stress
sr ¼ 175MPa. Using Equations (1) and (2), we then calculate the back stress
sb ¼ 198MPa and the frictional stress so ¼ 23MPa.

4. Modelling of pseudoelasticity

We calculate the Peierls stress for slip nucleation [34,35] based on the modified PN for-
malism. The Peierls stress is calculated as the maximum slope of the misfit energy
curve which describes the potential energy of the superpartials as a function of the posi-
tions [36,37]. The misfit energy can be derived from the GSFE as follows [36]:

Emisfit ¼
Zþ1

�1
cGSFE f xð Þð Þdx (3)

where f xð Þ is the disregistry function in terms of the dislocation position x, and repre-
sents the inelastic displacements across the glide plane of the dislocation. The solution
to the disregistry function f xð Þ involving multiple dislocations has been discussed in
the literature [38]. Therefore, f xð Þ for four superpartial dislocations can be written as
follows:

f xð Þ ¼ b

p
tan�1 x

n

� �
þ tan�1 x� d1

n
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þ tan�1 x� d1 þ d2ð Þ

n
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n
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Þ þ 2b

The discrete form of Equation (3) can be written as:

Emisfit ¼
Xm¼þ1

m¼�1
cGSFE f ma0 � uð Þð Þa0 (4)

where m is an integer, u is the position of the dislocation line, a0 is the lattice periodic-
ity defined as the shortest distance between two equivalent atomic rows in the direction
of the dislocation displacement [34,39,40] and n is the half core width of the disloca-
tion. The term cGSFE f ma0 � uð Þð Þa0 can be obtained for multiple dislocations [41]. It
should be noted that the disregistry function incorporates the separation distance
between the superpartials, d1 and d2. The following equations are used to find the
separation distances [8].

cNNNAPB ¼ K
1

d1
þ 1

d1 þ d2
þ 1

2d1 þ d2
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cNNNAPB � cNNAPB ¼ K
1
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d1
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with c and K representing the attraction and elastic repulsion force, respectively. The
factor K is equal to Gb2= 2pð Þ, where G is the shear modulus of the slip system. The
Peierls stress for dislocation slip is then calculated as follows:

sp ¼ 1

b
max

@Emisfit

@u

� �
(6)

Figure 10 is the solution to Equation (4). The Peierls stress of 233 MPa is then calcu-
lated in the present analysis by taking the maximum slope of the misfit energy variation
with respect to the dislocation position u.

4.1. Lattice frictional stress (so)

We consider the total energy of the a/4〈1 1 1〉 superpartials. The total energy is
expressed as the sum of (i) the line energies of the dislocations (Eline) (ii) the GSFE
energy (Emisfit) and (iii) the elastic strain energy due to dislocations interaction, Einterac-

tion. The total energy associated with the a/4〈1 1 1〉 superpartial dislocations can thus be
expressed as follows:

Etotal ¼ Eline þ Emisfit þ Einteraction (7)

Writing each of the energy terms in Equation (7), we have the following expression:

Etotal ¼ nHC44b2

4p
ln

L

ro

� �
þ

Xm¼þ1

m¼�1
c f ma0 � uð Þ½ �a0

� HC44b2

4p
ln

L

u� d1
þ L

u� d1 þ d2ð Þþ þ L

u� 2d1 þ d2ð Þ
� �

(8)

In the above energy equation (8), H is the parameter that involves the orientation of the
dislocation [42,43]. The parameter H can be written as follows:

H � 1� 4 1� A�1=2
� 	

a2b2 þ c2a2 þ b2c2
� �

Figure 10. (colour online) Misfit energy variation with respect to dislocation positions for Fe3Al.



where A is the Zener’s anisotropy ratio of the crystal equal to 2C44/(C11 − C12) and
a; b; c are the orientation of the dislocation line with respect to the cubic axes. The
term n is the number of superpartials (equal to 4 in the present analysis) and b is the
Burgers vector, u is the position of the dislocation line and L is the outer dimension of
the crystal usually taken to be 500–1000 times the dislocation core width radius ro. The
lattice frictional stress, so, can be determined by taking the derivative of the total energy
with respect to u, i.e.

so ¼ 1

b
max

@Etotal

@u

� �
(9)

We calculate sp as 233 MPa, sb as 199 MPa and so as 34 MPa for {1 1 0}〈1 1 1〉 slip.
Utilizing Equations (1) and (2), sr is then calculated to be 165 MPa in the present
analysis.

5. Discussion of the results

We established the GSFE curve for D03 Fe3Al using first principles energy calculations,
and incorporated it into the mesoscale elastic formulation to obtain the critical slip
initiation stress during loading (sp), and the recovery start stress (sr) during unloading.
We then experimentally determined the slip initiation and recovery start stresses using
real-time high resolution strain measurements on compressive and tensile single crystal
specimens precisely oriented for single slip. We note that for the case of {1 1 2}〈1 1 1〉
slip, the frictional stress (so) of superpartials during loading is different from unloading.
This is because, if during loading, the superpartials move in the twinning sense, they
move in the antitwinning sense during unloading and vice versa. We show that the fric-
tional stress (so) for the case of {1 1 2}〈1 1 1〉 slip where superpartials move in the
anitwinning sense is 93 MPa. We also observe that the so is higher for the case of
antitwinning sense than that of the twinning sense by 62 MPa. In such a case where
loading/unloading asymmetry is observed, it should be noted that so in Equations (1)
and (2) will be different for forward and reverse loadings, and that sp and sr should be
calculated using their respective values as follows:

sp ¼ sb þ soð Þf (10)

sr ¼ sb � soð Þr (11)

where soð Þf and soð Þrare respectively the frictional stresses during forward loading and
reverse unloading.

The results for three cases are presented in Table 4: (i) in case of {1 1 0}〈1 1 1〉 slip
where loading/unloading symmetry is not observed, soð Þf for forward loading is the
same as soð Þr for reverse loading, (ii) in case of {1 1 2}〈1 1 1〉 slip, when forward load-
ing is in twinning sense and reverse unloading in antitwinning sense, soð Þf for forward
loading is the Peierls stress to move the superpartials in the twinning sense, and hence
is lower than soð Þr and, (iii) when forward loading is in antitwinning sense and reverse
unloading in twinning sense for {1 1 2}〈1 1 1〉 slip, the magnitude of soð Þr is lower than
soð Þf . It is worth noting that the loading orientation that tends to activate {1 1 2}〈1 1 1〉
slip in antitwinning sense has to overcome a large stress (317 MPa) compared to the



stresses required to nucleate {1 1 0}〈1 1 1〉 and {1 1 2}〈1 1 1〉 slips in twinning sense.
Therefore, the activation of {1 1 2}〈1 1 1〉 in antitwinning sense is unfavourable for a
given loading orientation. Large recoverability is observed when one of the slip systems
is activated. In case where both {1 1 0}〈1 1 1〉 and {1 1 2}〈1 1 1〉 slip systems are active,
the latter are frequently observed to cross slip onto the {1 1 0} plane forming jogged
dislocations giving rise to numerous dipoles[4]. These dipoles hinder the reversible
motion of the dislocations, and hence low recoverability is obtained. However, in the
present case, the single crystal is oriented such that {1 1 0}〈1 1 1〉 slip systems are only
activated, and hence large recovery is observed.

Table 4 also shows the experimental and theoretical values of the stresses obtained
for Fe3Al for {1 1 0}〈1 1 1〉 slip, and we note that the theoretically obtained values are
within 10% of the experimental ones. It is worth noting from Table 4 that the set of
stress values obtained from the theoretical calculations meets the condition for APB
pseudoelasticity, which requires both sp and sr to have the same sense, tensile or com-
pressive, during loading and unloading. A large magnitude of back stress (sb) of
199 MPa for {1 1 0}〈1 1 1〉 slip can easily pull the superpartials back during unloading
overcoming the much smaller frictional stress (34 MPa) yielding a high recovery value.

Several factors such as degree of order, Al concentration, deformation temperature
and loading orientation affect the reversibility value (r) of Fe3Al [4,12]. Since pseudoe-
lasticity in Fe3Al can occur by pseudotwinning as well, the choice of orientation and
deformation temperature is important. As pointed out in the literature [4], the core struc-
ture of a/4〈1 1 1〉 dislocations is considered similar to that of the a/2〈1 1 1〉 screw
dislocation in a bcc crystal. Hence, similar to bcc metals, the deformation behaviour of
Fe3Al is greatly affected by the crystal orientation and temperature. We observed
experimentally that Fe-23at.%Al shows up to 3.39% pseudoelastic recovery at room
temperature. The reversibility value tends to decrease with the increase in Al concentra-
tion or a deviation in deformation temperature outside of 173–473 K regime. The rea-
son behind this is that at extremely low temperatures, so rapidly increases with
decreasing temperature, while sb remains constant; and hence, the backward motion of
dislocations become difficult at lower temperatures [3]. While in the higher temperature

Table 4. The critical slip nucleation stress and recovery start stress in D03 Fe3Al for {1 1 0}〈1 1 1〉
and {1 1 2}〈1 1 1〉 slips obtained in the present analysis. The theoretically obtained values for
{1 1 0}〈1 1 1〉 systems are compared to the experimentally measured values. The separation
distances of the superpartials and the shear moduli are also given.

Slip systems
Critical shear stress (MPa)

Separation
distances (nm)

Shear
modulus
(GPa)

sp sr sb soð Þf soð Þr d1 d2

{1 1 0}〈1 1 1〉 (theory, present
study)

233 165 199 34 – 20 30 21

{1 1 0}〈1 1 1〉 (experiments,
present study)

221 175 198 23 – 8–10[8] 20–30

{1 1 2}〈1 1 1〉 (forward load
twinning sense)

226 102 195 31 93 14 22 22

{1 1 2}〈1 1 1〉 (forward load
antitwinning sense)

317 193 224 93 31 12 22



regime, the energy term cNNAPB diminishes exponentially such that the back stress is
not large enough for dragging back the superpartials [3]. Our present analysis is rele-
vant to the experimentally observed pseudoelasticity in Fe3Al where slips are restricted
to {1 1 0}〈1 1 1〉 primary systems and deformed at room temperature.

Experimentally, we used tension and compression Fe3Al single crystals oriented for
single slip in order to capture sp and sr. DIC strain measurements were adopted in order
to pinpoint these stresses. For example, if 0.2% strain offset of the macroscopic stress–
strain curve was used to measure the stress, the slip nucleation stress for forward load-
ing would be 266 MPa compared to the stress of 221 MPa obtained using DIC. This is
a considerable difference. In general, strains measured with the extensometer overesti-
mate the stress required to initiate slip since the early activation of slip on the micro-
scale cannot be detected. On the other side, advanced DIC techniques used in
conjunction with high resolution images under an optical microscope enable to measure
the local stress–strain behaviour (Figures 7–9). In this work, a special load cell was
used in order to load the specimen in tension under the optical microscope and capture
the images at the resolution of 0.44 μm/px. The present experimental set-up is particu-
larly important for studies on pseudoelasticity where the strains are recovered upon
unloading and precise real-time strain measurements are required.

It is well known that pseudoelasticity is not observed in the L12 phase of Fe3Al.
This is the result of the high {1 1 0}〈1 1 1〉 shear modulus (80 GPa compared to 21 GPa
for D03 structure), and hence the high lattice frictional stress to initiate slip, as evident
from Equations (8) and (9). The shear modulus of the slip system can be obtained from
the maximum slope of the GSFE curve in Figure 5 [44]. For example, the shear modu-
lus of {1 1 0}〈1 1 1〉 system is approximately Gf1 1 2gh1 1 1i ¼ 2p@c

@u




max

� 21GPa and that
of {1 1 2}〈1 1 1〉 slip system is 22 GPa from Figure 5. This is in accordance with the
experimental value of 20 GPa for {1 1 2}〈1 1 1〉 system using an alternative equation for
shear modulus suggested by Roundy et al. [45]. Another reason for reduced or no pseu-
doelasticity in L12 phase is the lower back stress compared to the lattice frictional
stress, and hence the dislocations cannot shuttle back and forth during loading and
unloading. Other important factor that hinders pseudoelasticity is the activation and
interaction of conjugate slips with the primary {1 1 0}〈1 1 1〉 slips.

6. Conclusion

In summary, single crystals of Fe3Al were selected in the D03 phase, and slip initiation
stress was measured both in the tension and compression experiments in conjunction
with high resolution DIC images. We utilized DFT calculations to obtain the energy
barriers associated with the {1 1 0}〈1 1 1〉 and {1 1 2}〈1 1 1〉 slips both in twinning and
antitwinning sense. Two important energy parameters, cNNAPB and cNNNAPB were estab-
lished from DFT calculations, which were then combined with the mesoscale anisotro-
pic elastic calculations to obtain the slip initiation and recovery start stress. The values
we obtained from our theoretical calculations are within 10% of the experimentally
observed values, reflecting a close agreement.
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