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Abstract—Modeling bianisotropic constitutive equations, i.e. extended to bianisotropic materials as follows. Let theiapa
magnetoelectric coupling, in electromagnetics simulatioincreas-  region 2 be discretized by golyhedral primal grid G and

ingly important, in particular in metamaterials applicati ons. This its barycentric dual grid@ Let e(w) be the array of the
paper introduces for the first time such constitutive relation- . . N L
circulationse;(w), with ¢ = 1,...n., of the electric field

ships in the framework of FIT and, furthermore, does so by . )
allowing full generality in the discretization through arbitrary. E(r,w) along then.edges of the primal gridj. Let b(w)
polyhedral grids. The resulting formulation is consistent stable be the array of the fluxe;(w), with i = 1,...,ny, of the
and preserves the thermodynamic properties of the bianisebpic  magnetic inductiorB(r,w) across the faces of the primal grid
constitutive equations thanks to the energetic approach sl to G. In a similar Iet&(w) be the array of the quxeéi(w), with

construct the interpolating functions. D S
Index Terms—Must be chosen from the list of the IEEE ¢ = L1:---7j, of the electric displacememd(r,w) across the

keywords. n j=n. faces of the dual grig. Finally let h(w) be the array
of the circulationsh;(w), with i = 1,..., n¢, of the magnetic
l. INTRODUCTION field H(r,w) along thens=n[ edges of the dual grig.
The study of bianisotropy, i.e. magnetoelectric coupling Let wi(r), with i = 1,...n., be the same piecewise

in the constitutive equations, has been gaining increasidgiform vector functions introduced in [4] for tetrahedgaids
attention in recent years due to the possibility of pradiica and extended to polyhedral grids in [5], [6] for approximati
obtaining it through metamaterials [1]. Although the mattthe electric fieldE(r, w) from the circulations:; (w). Similarly
ematical properties of such constitutive equations hawnbdet w'(r), with i = 1,... f, be the same piece-wise uniform
known for decades [2], and the issue of the approximability gector functions introduced in [4] for approximating thegna
Maxwell's equations in the presence of bianisotropic niaker netic inductionB(r,w) from the fluxesb;(w). Using all these
has been addressed in the Finite Element context [3], hasis functions the following quantities can be computed
such investigations have been attempted in the framework of

the Finite Integration Technique (FIT). The purpose of this md(w) = [ wi(r)-e(r,w)wi(r)dr,
work is to show how bianisotropic constitutive equationa ca B s _ _
be represented in FIT formulations over polyhedral grids by mg (w)= [ wi(r) -E(r,w)wgc(r) dr,
extending the energetic approach introduced in [4]. §2
Qg iy, i(r) d
[I. DISCRETIZATION OF BIANISOTROPIC CONSTITUTIVE me (@) wa(r) C(r,w)we(r) dr,
EQUATIONS g . .
oo R miw)= [ wi(r) vir,w)wl () dr,
The constitutive equations of a bianisotropic material can Q
be written in theE — B formulation as follows which are the elements respectively of the x n. matrix

= = M, (w), of then,. x ny matrix M¢(w), of theny x n. matrix
D(r,w) = &(r,w) B(r, w) +§(r’w) B(r,w), @) M¢(w) and of theny x ny matrix M, (w). MatricesM (w)
H(r,w) = {(r,w) E(r,w) + U(r,w) B(r,w). ~ (2) andM,, (w) have already been introduced for FIT in [4], while
d matricesM¢ (w) and M, (w) are here introduced for the first

The electric displacemenD(r,w) and the magnetic fiel

H(r,w) are obtained from the electric fieldi(r,w) and the Thanks to th i i f the basis functi
magnetic inductionB(r,w), by means of theensors g, &, 1 hanks 1o the geometric properties of the basis functions
= w,(r) andw(r) [4] the following result can be proven.

¢andw. The tensors depend on both the position veetand e

on the angular frequenay, as is the case for inhomogeneous Property 1. The equations

and/or dispersive materials. If in particular baiftr,w) and &(w) = Mc(w)e(w) + Mg (w)b(w) (3)

¢(r,w) are zero, the bianisotropic material modeled by Egs. = o

(1) and (2) is a standard anisotropic material, charaetdriz h(w) = M¢(w)e(w) + M, (w)b(w) )

only by the two tensorg(r,w) ando(r,w). are FIT discretizations of the bianisotropic constitutaeua-
The energetic approach introduced in [4] for discretizintions (1), (2). In fact theyexactlytransform the circulations of

constitutive equations in FIT of anisotropic materials d@n E(r,w) along the edges af and the fluxes 0B (r,w) across



the faces oG into the fluxes ofD(r,w) across the faces of
G and the circulations df(r,w) along the edges df, in the
hypothesis thak(r,w), B(r,w) ande(r,w), &(r,w), {(r,w),
v(r,w) are uniform in each volume 6.

The discretized constitutive equations of bianisotropaten
rials are thusconsistent extensions of discretized constitutive
equations of anisotropic materials within FIT. As it can be
proven, these equations preserve the thermodynamic pieper
[5] of the bianisotropic constitutive equations (1), (¢ck as
reciprocity and passivity or in particularlossessness. These
properties are not only important on a physical ground, but
also crucial in numerical analysis since, similarly to tlase

of anisotropic materials, they ensurestable discretization.

The discrete constitutive equations of bianisotropic mate
als are approximate equations that have to be completed
the balance equations characteristic of FIT. Hence, egpsti
in the angular frequency domain are considered, Faraday’s
equation is discretized in terms of the exact matrix equatio

Ce(w) = —iwb(w), (5)

in which C is the ny x n. face-edge incidence matrix of
the primal gridG. Similarly Ampere-Maxwell's equation is
discretized in terms of the exact matrix equation

Ch(w) = iwd(w),

B IANISOTROPICFIT FORMULATION

(6)

in which C = CT is the ny X ng face-edge incidence

Figure 1: Benchmark problem

T
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K/cy?t

m.atrix_ of dual grid Gg. As with anisotropic r_naterials_, alsoFigure 2: Susceptance (i) at theT E1, port as a function
with bianisotropic materials, the number of discrete euat of material parametex, for increasingly refined meshes.

(3)-(6) can be reduced by removing discrete variables. In

particular, substituting Egs. (3), (4) into Eq. (6) f&(w) and 35934 and55456 edges, respectively. Accurate estimations of
h(w), and then substituting Eq. (5) in the obtained equatidm(Y") are obtained for the rather coarse geidas shown in

for b(w) it can be written

(CTM, (w)C — iw(CTM¢ (w)+
+ M (w)C) — w’Mc(w))e(w) =0 (7)

Fig. 2.

V. CONCLUSIONS

The full paper will include proofs of the most important

N . properties of the proposed scheme, details on the implement
Boundary conditions have to be treated as usual in FIT. Bipn of the formulation and imposition of boundary conditso

(7) is an extension of the equations written in the sole digcr
variablese for anisotropic materials. It is suitable for applying
the preconditioning and iterative methods already usethén t[1]
case of anisotropic materials.

IV. NUMERICAL EXAMPLE

The numerical example refers to the wavegu§dleshown
in Fig. 2. Without loss of generality, half of the Waveguidé3]
is filled with a lossless bi-isotropic material, which is bot
important from the point of view of practical applicationsda
can be realized with the help of metamaterials. Precisdly, g
tensors are diagonat, and v have the properties of vacuum
in all ©, while ¢ = ¢ are equal to the purely imaginary scalal®]
ix which is different from zero only within the bi-isotropic
material. The waveguide is meshed with tetrahedra, with tfeg
basis functions of [4]. The susceptancg ) at theT E; port
of the structure has been evaluated for three grids 283,
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