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Abstract—Modeling bianisotropic constitutive equations, i.e.
magnetoelectric coupling, in electromagnetics simulation increas-
ingly important, in particular in metamaterials applicati ons. This
paper introduces for the first time such constitutive relation-
ships in the framework of FIT and, furthermore, does so by
allowing full generality in the discretization through arb itrary
polyhedral grids. The resulting formulation is consistent, stable
and preserves the thermodynamic properties of the bianisotropic
constitutive equations thanks to the energetic approach used to
construct the interpolating functions.

Index Terms—Must be chosen from the list of the IEEE
keywords.

I. I NTRODUCTION

The study of bianisotropy, i.e. magnetoelectric coupling
in the constitutive equations, has been gaining increasing
attention in recent years due to the possibility of practically
obtaining it through metamaterials [1]. Although the math-
ematical properties of such constitutive equations have been
known for decades [2], and the issue of the approximability of
Maxwell’s equations in the presence of bianisotropic materials
has been addressed in the Finite Element context [3], no
such investigations have been attempted in the framework of
the Finite Integration Technique (FIT). The purpose of this
work is to show how bianisotropic constitutive equations can
be represented in FIT formulations over polyhedral grids by
extending the energetic approach introduced in [4].

II. D ISCRETIZATION OF BIANISOTROPIC CONSTITUTIVE

EQUATIONS

The constitutive equations of a bianisotropic material can
be written in theE −B formulation as follows

D(r, ω) = ¯̄ε(r, ω)E(r, ω) + ¯̄ξ(r, ω)B(r, ω), (1)

H(r, ω) = ¯̄ζ(r, ω)E(r, ω) + ¯̄ν(r, ω)B(r, ω). (2)

The electric displacementD(r, ω) and the magnetic field
H(r, ω) are obtained from the electric fieldE(r, ω) and the
magnetic inductionB(r, ω), by means of thetensors ¯̄ε, ¯̄ξ,
¯̄ζand ¯̄ν. The tensors depend on both the position vectorr and
on the angular frequencyω, as is the case for inhomogeneous
and/or dispersive materials. If in particular both¯̄ξ(r, ω) and
¯̄ζ(r, ω) are zero, the bianisotropic material modeled by Eqs.
(1) and (2) is a standard anisotropic material, characterized
only by the two tensors̄̄ε(r, ω) and ¯̄ν(r, ω).

The energetic approach introduced in [4] for discretizing
constitutive equations in FIT of anisotropic materials canbe

extended to bianisotropic materials as follows. Let the spatial
region Ω be discretized by apolyhedral primal grid G and
its barycentric dual gridG̃. Let e(ω) be the array of the
circulations ei(ω), with i = 1, . . . ne, of the electric field
E(r, ω) along thene edges of the primal gridG. Let b(ω)
be the array of the fluxesbi(ω), with i = 1, . . . , nf , of the
magnetic inductionB(r, ω) across the faces of the primal grid
G. In a similar letd̃(ω) be the array of the fluxes̃di(ω), with
i = 1, . . . nf̃ , of the electric displacementD(r, ω) across the
nf̃=ne faces of the dual grid̃G. Finally let h̃(ω) be the array
of the circulationsh̃i(ω), with i = 1, . . . , nẽ, of the magnetic
field H(r, ω) along thenẽ=nf edges of the dual grid̃G.

Let w
i
e(r), with i = 1, . . . ne, be the same piecewise

uniform vector functions introduced in [4] for tetrahedralgrids
and extended to polyhedral grids in [5], [6] for approximating
the electric fieldE(r, ω) from the circulationsei(ω). Similarly
let wi

f (r), with i = 1, . . . f , be the same piece-wise uniform
vector functions introduced in [4] for approximating the mag-
netic inductionB(r, ω) from the fluxesbi(ω). Using all these
basis functions the following quantities can be computed

mij
ε (ω) =

∫
Ω

w
i
e(r) · ε(r, ω)w

j
e(r) dr,

mij
ξ (ω) =

∫
Ω

w
i
e(r) · ξ(r, ω)w

j
f (r) dr,

mij
ζ (ω) =

∫
Ω

w
i
f (r) · ζ(r, ω)w

j
e(r) dr,

mij
ν (ω) =

∫
Ω

w
i
f (r) · ν(r, ω)w

j
f (r) dr,

which are the elements respectively of thene × ne matrix
Mε(ω), of thene×nf matrix Mξ(ω), of thenf ×ne matrix
Mζ(ω) and of thenf × nf matrix Mν(ω). MatricesMε(ω)
andMν(ω) have already been introduced for FIT in [4], while
matricesMξ(ω) andMζ(ω) are here introduced for the first
time.

Thanks to the geometric properties of the basis functions
w

i
e(r) andwi

f (r) [4] the following result can be proven.
Property 1: The equations

d̃(ω) = Mε(ω)e(ω) +Mξ(ω)b(ω) (3)

h̃(ω) = Mζ(ω)e(ω) +Mν(ω)b(ω) (4)

are FIT discretizations of the bianisotropic constitutiveequa-
tions (1), (2). In fact theyexactlytransform the circulations of
E(r, ω) along the edges ofG and the fluxes ofB(r, ω) across



the faces ofG into the fluxes ofD(r, ω) across the faces of
G̃ and the circulations ofH(r, ω) along the edges of̃G, in the
hypothesis thatE(r, ω), B(r, ω) and¯̄ε(r, ω), ¯̄ξ(r, ω), ¯̄ζ(r, ω),
¯̄ν(r, ω) are uniform in each volume ofG.

The discretized constitutive equations of bianisotropic mate-
rials are thusconsistent extensions of discretized constitutive
equations of anisotropic materials within FIT. As it can be
proven, these equations preserve the thermodynamic properties
[5] of the bianisotropic constitutive equations (1), (2), such as
reciprocity and passivity or in particular losslessness. These
properties are not only important on a physical ground, but
also crucial in numerical analysis since, similarly to the case
of anisotropic materials, they ensure astable discretization.

III. B IANISOTROPIC FIT FORMULATION

The discrete constitutive equations of bianisotropic materi-
als are approximate equations that have to be completed by
the balance equations characteristic of FIT. Hence, equations
in the angular frequency domainω are considered, Faraday’s
equation is discretized in terms of the exact matrix equation

Ce(ω) = −iωb(ω), (5)

in which C is the nf × ne face-edge incidence matrix of
the primal gridG. Similarly Ampère-Maxwell’s equation is
discretized in terms of the exact matrix equation

C̃h̃(ω) = iωd̃(ω), (6)

in which C̃ = C
T is the nf̃ × nẽ face-edge incidence

matrix of dual grid G̃. As with anisotropic materials, also
with bianisotropic materials, the number of discrete equations
(3)-(6) can be reduced by removing discrete variables. In
particular, substituting Eqs. (3), (4) into Eq. (6) ford̃(ω) and
h̃(ω), and then substituting Eq. (5) in the obtained equation
for b(ω) it can be written

(CT
Mν(ω)C− iω(CT

Mζ(ω)+

+Mξ(ω)C)− ω2
Mε(ω))e(ω) = 0 (7)

Boundary conditions have to be treated as usual in FIT. Eq.
(7) is an extension of the equations written in the sole discrete
variablese for anisotropic materials. It is suitable for applying
the preconditioning and iterative methods already used in the
case of anisotropic materials.

IV. N UMERICAL EXAMPLE

The numerical example refers to the waveguideΩ shown
in Fig. 2. Without loss of generality, half of the waveguide
is filled with a lossless bi-isotropic material, which is both
important from the point of view of practical applications and
can be realized with the help of metamaterials. Precisely, all
tensors are diagonal,̄̄ε and ¯̄ν have the properties of vacuum
in all Ω, while ¯̄ξ = ¯̄ζ are equal to the purely imaginary scalar
iκ which is different from zero only within the bi-isotropic
material. The waveguide is meshed with tetrahedra, with the
basis functions of [4]. The susceptance Im(Y ) at theTE10 port
of the structure has been evaluated for three grids with24133,

Figure 1: Benchmark problem

3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4 4.1 4.2
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

 

 

Im
(Y

)
(S

)

κ/c−1

0

Grid 1
Grid 2
Grid 3

Figure 2: Susceptance Im(Y ) at theTE10 port as a function
of material parameterκ, for increasingly refined meshes.

35934 and55456 edges, respectively. Accurate estimations of
Im(Y ) are obtained for the rather coarse grid2, as shown in
Fig. 2.

V. CONCLUSIONS

The full paper will include proofs of the most important
properties of the proposed scheme, details on the implementa-
tion of the formulation and imposition of boundary conditions.
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