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1. Introduction

The study of metals that exhibits reversibility of deformation has been of interest for many years (Otsuka and Wayman,
1998; Tanaka et al., 1986; Thamburaja and Anand, 2002; Wang et al., 2008). Most works focus on shape memory alloys 
which undergo reversible phase transformation, and considerable effort has been made to model their mechanical behavior 
(Gall et al., 2001; Hartl et al., 2010; Moumni et al., 2008). There is another emerging class of alloys that exhibits reversibility 
via twinning/detwinning and reversible slip mechanisms. The potential advantage of these alloys is that by alloying, the yield 
stress can be altered without affecting the temperature interval for reversibility. The ironegallium and ironealuminum 
alloys fall into this category. The Fe3Ga alloy exhibits pseudoelasticity where strains as large as 5% can be recovered upon 
unloading (Yasuda et al., 2013; Yasuda and Umakoshi, 2011). The advantage of an alloy such as Fe3Ga is the potentially large 
pseu-doelastic temperature interval compared to shape memory alloys. Pseudoelasticity is a consequence of reversible pseu-
dotwinning, a form of twinning in ordered alloys, and reversible slip. Alloying of FeeGa crystals with boron has proven 
beneficial for improving the ductility and flow stress (Gao et al., 2009). In this paper, we explore the elevation in critical 
twinning stress in the D03 ordered Fe3Ga crystals with boron with atomisticemicromechanical treatments. We specifically 
investigate pseudotwinning, motivated by the early research on the Fe3Ga system including modeling and experimental 
efforts. We use high resolution Digital Image Correlation (DIC) technique to precisely pinpoint the onset of twinning in Fe3Ga 
and Fe3GaB crystals. We conduct Density Functional Theory (DFT) calculations, utilize micromechanics with anisotropic
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elasticity, fault energy curves, determine interaction energies for varying solute concentrations which are in turn combined 
for macroscopic critical twinning stress determination. We then extend the present analysis on Fe3Ga for various boron 
concentrations emphasizing the promise of such alloys and need for further experimental work.

Generally, pseudoelasticity in shape memory alloys is based on the thermoelastic transformation where stress-induced 
martensite transforms back and forth upon loading and unloading (Otsuka and Wayman, 1998). However, recent studies 
(Umakoshi et al., 2005; Yasuda et al., 2007a,b,c; Yasuda and Umakoshi, 2011) show that Fe3Al and Fe3Ga exhibit pseudoe-
lasticity via reversible slip and pseudotwinning, without martensite transformation. Pseudotwins are different from the 
conventional reflective twins because different species of atoms occupy the mirror position. The occurrence of pseu-
dotwinning in Fe3Al and Fe3Ga provides advantages compared to martensite transformation as there is zero volume change 
and the resultant crystal is not internally twinned. In fact, the lack of multitude of interfaces reduces dissipation. Therefore, 
these factors should assist the reversibility of deformation by reducing the plasticity and minimizing the hysteresis 
respectively.

As seen in the phase diagram (Ikeda et al., 2002), the Fe3Ga occur in various crystallographic structures such as a (bcc), L12, 
D03 or combination of phases for different compositions of gallium and annealing temperature. Of these phases, we are 
interested in the Fe3Ga (25 at.%Ga) samples consisting of single D03 phase which exhibit perfect pseudoelasticty with a recovery 
ratio of one when deformed at low temperature (93 K) (Yasuda et al., 2005; Yasuda and Umakoshi, 2011). The recovery ratio (r) 
is a measure of pseudoelasticity of a material. In other words, it quantifies how much of the inelastic strain accumulated during 
loading is recovered upon unloading. It is defined as the ratio of the difference of the maximum plastic strain
ðεmax

p Þ and the residual strain (εr) to that of the maximum plastic strain, and can be written as follows:

r ¼ ε
max
p � εr

ε
max
p

(1)
In Fig. 1, we illustrate the pseudoelastic response of [012] oriented Fe3Ga crystal deformed in tension at room temperature. 
The recovery ratio is experimentally determined to be 0.83 with the values for εpmax and the residual strain εr as 2.9% and 0.5%

respectively. It is important to note that the recovery ratio depends on several factors such as composition of alloying ele-
ments, test temperature, crystal orientation, degree of order and heat treatment (Yasuda and Umakoshi, 2011). For the case 
of Fe3Ga (25 at.%Ga), the recovery ratio is found to decrease with an increase in temperature (above 93 K) or an increase in 
gallium concentration beyond 25 at.%. Additionally, with an increase in the L12 phase, the recovery ratio is found to decrease 
(Yasuda et al., 2005). This is because pseudotwins are unlikely to occur in the L12 phase due to significantly high energy 
barrier and high twinning stress (492 MPa) (Wang and Sehitoglu, 2014b), as validated by recent simulation results. Tension-
compression asymmetry is observed in the D0 Fe Ga, and therefore, a pseudotwin formed in compression cannot form in
3 3

Fig. 1. The pseudoelastic stress-strain response of [012] oriented Fe3Ga single crystal subjected to tension at room temperature (RT).



tension and vice versa. Experiments show that pseudotwinning follows Schmid law to a first approximation, and twinning 
pseudoelasticity is favorable if {112}<111> twin system has a high Schmid factor (Yasuda and Umakoshi, 2011).

The Fe3Ga single crystals with the stable and metastable D03 phase exhibit pseudoelasticity at a wide range of gallium 
concentration and temperature range (Umakoshi et al., 2007; Yasuda et al., 2007b, 2009, 2005, 2010; Yasuda and Umakoshi, 
2011). The metastable D03 phase exists at a gallium concentration of approximately 23 at.% and temperatures below 650 �C 
(Ikeda et al., 2002). At room temperature and below, the twinning and detwinning of {112} pseudotwins primarily govern the 
transition from twinned to detwinned states, and hence no martensites are observed. This is because, similar to the bcc 
metals, a decrease in temperature suppresses the nucleation of a {110}<111> slip governing APB (antiphase boundary) for-
mation without affecting the stress required to nucleate a {112}<111> twin. Therefore for a given stress at low temperature, it 
is much easier to nucleate a twin than a slip dislocation. The forthcoming analysis in the present paper focuses on pseu-
dotwinning, albeit various mechanisms contribute to pseudoelasticity. Therefore our theoretical analysis is relevant to the 
experimentally observed pseudotwins in Fe3GaB crystals annealed in the D03 phase and deformed at low temperatures.

The present work is based on a simultaneous “bottom-up” approach ranging from atomistic to macroscale to analyze the 
potential twinning in Fe3GaB (see Fig. 2). On an atomic scale, we establish the energy barriers associated with the twinning 
process noting the transition of interstitial sites during shearing. The energy barriers are then employed into the atom-
isticemicromechanical approach, utilizing Peierls Nabarro formalism and Eshelbian anisotropic elasticity at micro-scale. 
During the course, we investigate solute distribution around the twinning dislocation and the interaction energies associ-
ated with the boron in the octahedral position. We finally develop a macroscale twinning stress model for Fe3GaB.

2. Atomistic simulations

The first-principles Density Functional Theory (DFT) calculations were carried out to calculate the systems total-energy.
We utilized the Vienna ab initio Simulations Package (VASP) with the projector augmented wave (PAW) method and the
generalized gradient approximation (GGA) as implementations of DFT (Kresse and Furthmuller, 1996; Kresse and Hafner,
1993). In our calculations, we used a 9 � 9 � 9 Monkhorst Pack k-point meshes for the Brillouion-zone integration to
ensure the convergence of results. Ionic relaxation was performed by a conjugate gradient algorithm and stopped when
absolute values of internal forces were smaller than 5 � 10�3 eV=Ao. The energy cut-off of 350 eV was used for the plane-
wave basis set. The total energy was converged to less than 10�5 eV per atom. For Generalized Planar Fault Energy (GPFE)
Fig. 2. Multiple length scales associated with the present analysis.



calculations, atoms relaxations including perpendicular directions to the fault plane, was allowed for minimizing the short-

range interaction between misfitted layers near to the fault plane. During the relaxation process, atoms avoided coming too 
close to each other, and the total energy of the deformed crystal was minimized.

2.1. D03 structure and Generalized Planar Fault Energy (GPFE)

Fig. 3 illustrates the D03 structure of Fe3Ga, and the positions of Fe and Ga are clearly shown. The unit cell of D03 consists 
of eight cubic sublattices. Four sublattices are B2 like structures while the remaining are of pure bcc types. All eight nearest 
neighbors of the first type of Fe sites are Fe atoms, whereas the second Fe sites are surrounded by four Fe and four Ga nearest 
neighbors. Fig. 3 also shows the {112}<111> twinning system. The boron solutes, when added to the pure crystal, can occupy 
the octahedral or tetrahedral sites depending on the minimum structural energy, and modify the lattice parameters. We
calculated the lattice parameters for pure Fe3Ga, and Fe3GaB occupying both the octahedral and tetrahedral positions and are 
shown in Table 1. However, in actual crystals, the preference of one site over the other depends on the minimum energy of the
Fe3GaB system.

Fig. 4(a and b) show the octahedral and tetrahedral positions projected on a {100} plane for a cubic system. However, in 
real crystals boron atoms are observed to occupy the octahedral positions because of the lower structural energy compared to
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Fig. 5 shows the pseudotwin in D03 Fe3Ga. It occurs by the subsequent motion of a/12<111> twinning partials on
consecutive {112} planes where ‘a ¼ 2a0’ is the lattice parameter. As opposed to a reflective twin, the atomic structure 
formed by shearing consecutive {112} planes do not form a mirror symmetry.

As seen in Fig. 5, different species of atoms occupy mirror plane E, and hence the term ‘pseudotwin’ is used. Fig. 6 shows
the GPFE (Kibey et al., 2007; Ojha et al., 2014; Vitek, 1968) for Fe3GaB required to create a three layer pseudotwin. The term 
gus represents the energy barrier required to form a first layer fault, gisf represents the first layer intrinsic stacking fault 
energy, gut represents the additional energy barrier required to form a second layer fault, 2gtsf represents the stable second 
layer fault energy, and gtbm represents the twin boundary migration energy which is the difference between gut and 2gtsf. 
Unlike NiTi where fault energy increases with increase in twin layers, the GPFE curve is stabilized in Fe3Ga and Fe3GaB 
suggesting that twin formation and migration is energetically favorable (Ezaz et al., 2011). We obtained the GPFE curves for 
both cases where boron occupies the tetrahedral and octahedral positions (Fig. 6). Nonetheless, we will limit our analysis to 
octahedral interstitial to be consistent with the earlier experimental works (Gao et al., 2009), and the energy results reported 
in Table 1. It should be noted that the boron solutes for the case of octahedral sites are pushed further into the improper sites 
which lie along the close packed directions (hereafter, we refer these improper sites as the “xenohedral” sites, and will be 
discussed later). Therefore, gus in Fig. 6 for the octahedral case represents the energy barrier to nucleate a first layer fault (ux/

b ¼ 1.5) when the solute is in the octahedral position. Subsequent shearing for ux/b > 1.5, the GPFE represents the energy 
barrier to overcome the energy where boron occupies the xenohedral sites.

Fig. 3. D03 structure of Fe3Ga. The shaded plane is the {112}<111> twinning plane.



Table 1
Lattice parameters and the structural energies of Fe3Ga and Fe3GaB occupying the octahedral and tetrahedral sites.

Structure of Fe3Ga Lattice type Structural energy (eV/atom) Lattice parameter ðAoÞ
This study Experimentsa

Pure Fe3Ga bcc �7.09 5.828 5.8295
Fe3GaeB (Octahedral) bcc �7.14 5.833 e

Fe3GaeB (Tetrahedral) bcc �7.094 5.841 e

a Data taken from Ref. (Srisukhumbowornchai and Guruswamy, 2001, 2002).
3. Modeling of pseudotwinning

It has now been well established that twin nucleation in metals are initiated by pre-existing dislocation configuration 
(Sleeswyk, 1963) or from a region of high stress concentration such as grain boundaries and inclusions (Marcinkowski and 
Sree Harsha, 1968). Fig. 7 shows the schematic of the twinning process where each of the twinning partials is associated with 
the solute atmosphere. With the growth of multiple layers, the twin assumes a semi-lenticular morphology, as validated by 
experimental observations (Jin and Bieler, 1995; Zhang, 1999). Once the first partial dislocation is nucleated, it creates an
Fig. 4. (a) Interstitial boron occupying the octahedral site. Projection on {110} plane is shown. (b) Boron occupying the tetrahedral site. Note that only two cubic
sublattices of D03 structure are shown for clarity.



Fig. 5. Three layer {112}<111> pseudotwin in Fe3GaB. Pseudotwins can be created by the passage of a/12<111> partial dislocations on consecutive {112} planes.
Etotal ¼ ED�I þ ED�D þ ED þ EI þ EGPFE �W (2)

intrinsic stacking fault energy, and subsequent trailing dislocations nucleate forming a multilayer twin. While the twinning 
stress expressions proposed earlier account for elastic interactions of dislocations in isotropic medium (Lagerlof, 1994; 
Sleeswyk, 1963), we undertake anisotropic calculations in the present work. Consider a twin with the dislocations 
arrangement shown in Fig. 7. We write the total energy (Etotal) of the dislocation configuration as follows:
Fig. 6. Generalized Planar Fault Energy (GPFE) for F3Ga-B occupying octahedral and tetrahedral sites. The letters T, O and X represent tetrahedral, octahedral and
xenohedral sites respectively



Fig. 7. Schematic of twin nucleation in bcc crystal on {112} plane.
CðXÞ ¼ C0
C0
bNL

þ
�
1� C0

bNL

�
exp

�
Eint
kT

� (3)

Where C0 is the remote concentration of solute atoms expressed as atoms per unit volume, b is the ratio of available solute 
sites to solvent atoms, NL is the number of solute atoms per unit cell volume, and C(X) is the concentration of solute atoms as 
a function of X. T and k are the absolute temperature and Boltzmann constant, respectively. In case of bcc, there are 18 octa-
hedral and 24 tetrahedral sites. It is seen from equation (3) that C(X) depends on the interaction energy term Eint between 
dislocation and solute. The interaction energy term and the solute concentration profile results are discussed next.

3.2. Interaction energy between dislocations and solutes, ED-I

Consider boron atoms in the D03 lattice of Fe3Ga. In order to estimate the interaction energy between dislocations and the 
solute, we need to know the stress field of a dislocation that interacts with the strain field of the solute. Eshelby et al. (1953) 
introduced the method for obtaining the stress field of a dislocation in an anisotropic crystal, however closed form solutions 
are possible only when the dislocation line lies along certain symmetry directions such as <100> and <110> directions of the 
cubic crystal. Anisotropic calculations have been done earlier to find the elastic interaction energy between the dislocations 
and the tetragonal defects in cubic medium (Graham and Sines, 1966). We note that in the present analysis, this is not the 
case because the screw dislocation lies along the <111> direction. We use the method developed earlier (Head, 1964a,b) to 
solve for the stress dislocations lying along <111> direction of the cubic lattice, and find the interaction energy of the 
dislocation and the solute as follows:

Eint ¼ �
I
V

sdislpq ε
solute
pq dV (4)

where sdislpq is the stress field of a dislocation in cubic medium and ε
solute
pq is the tetragonal strain field of the solute.

Consider that a screw dislocation lies along the <111> direction as shown in Fig. 8 (Cochardt et al., 1955). At a distance j r!j 
from the dislocation, there is a unit cell with axes 1, 2, 3 whose directions are [100], [010], [001] respectively. Consider another
coordinate frame x0y0z0 where z0 is parallel to the dislocation Burgers vector and y0 is along the radius vector r!. The projection

where EDeI is the dislocationeinterstitial interaction energy, EDeD is the dislocationedislocation interaction energy, ED is the 
self energy of the dislocation, EI is the strain energy of the interstitial, EGPFE is the misfit energy which represents the periodic 
energy barrier required to move the dislocation in an elastic crystal, and W is the applied work. We describe each of the 
parameters in detail in the following sections.

3.1. Concentration dependence

It is well known that the strain energy of the crystal is reduced when the dislocations are surrounded by solutes (Graham 
and Sines, 1966). The cluster of atoms commonly referred to as ‘Cottrell atmosphere’ tend to lock the dislocations and a 
relatively high stress is required to move the dislocations depending on the interaction energy between the dislocation and 
the solute. This generally contributes to strengthening in metals (Fleischer, 1962b, 1963; Graham and Sines, 1966). 
The concentration of the solutes around the dislocation can be approximated using a FermieDirac equation given by 
(Beshers, 1958):



Fig. 8. Schematic showing the coordinate systems for screw dislocation, and its interaction with the solute.
of the 1-axis in the x0ey0 plane is the ½211� direction and the angle between the x0 direction and the ½211� direction is defined
as f. In the cubic coordinate frame, the strain tensor of the tetragonal distortion is given by:

ε ¼
0
@ ε11 0 0

0 ε22 0
0 0 ε22

1
A ¼

0
@0:43 0 0

0 �0:04 0
0 0 �0:04

1
A (5)
The tetragonal strain in equation (5) is obtained for an octahedrally located boron solute using DFT simulations in
conjunction with the visualization code developed by Li (2003). The exact expressions for the stress field spqdisl of the dislo-
cation lying along <111> direction in x0y0z0 coordinate frame can be written as follows (Cochardt et al., 1955):

s0 ¼ C44bH
2pr

0
@ 0 0 1

0 0 0
1 0 0

1
A (6)
In the above stress equation (6), H is the parameter that involves the orientation of the screw dislocation (Head, 1964a,b). 
The parameter H can be written as follows:

Hz1� 4
�
1� A�1=2

��
a2b2 þ g2a2 þ b2g2

�

where A is the Zener's anisotropy ratio of the crystal equal to 2C44/(C11eC12) and a, b, g are the orientation of the dislocation
line with respect to the cubic axes. The terms C11, C12 and C44 are the elastic constants of a cubic crystal in Voigt notation. It is
important to note that in order to calculate the interaction energy, either stress or strain tensor should be transformed into
the coordinates of the other. Transforming the strain tensor (5) into the stress coordinates, we have the following:

ε
0 ¼ εx0z0 ¼

ffiffiffi
2

p

3
ðε11 � ε22Þcos 4 (7)
while other strain components do not contribute to the interaction energy. The strain terms ε11 and ε22 are given in equation 
(5). Fig. 9 shows an example of the concentration profile around a partial dislocation. In this case, the solutes are in the 
octahedral sites. We plot the normalized results where the contours 6, 4.5, 3, 1.8 and 1.5C(X)/C0 are shown. It should be noted 
that higher solute concentration segregate below the dislocation thereby reducing the total strain energy, and making the 
dislocations difficult to move. Next, in order to compute the elevation in stress required for pseudotwinning, the stress field 
of a solute that must be overcome by a dislocation must be calculated. We are interested in determining the stress field due 
to the cluster of atoms at a spatial location, r from the dislocation. For this, we first obtain the stress field due to a single atom, 
and use the linear superposition to find the stresses due to the cluster of atoms C(X) (Andrews et al., 2000). Mura and Cheng 
(1977) have provided the method of obtaining the stress field of a solute in an anisotropic medium in detail. Following their 
work, we have the following expression in spherical coordinates for the stress field (Mura and Cheng, 1977):



Fig. 9. Concentration of interstitial atoms, C(X)/C0, around the partial dislocation.
spq ¼ Cpqik

8>>>>>><
>>>>>>:

r3

8p2ε
*
mn

Z
S*

CjlmnxlxkNij
�
x
�
D�1�x�2�3�x�dS�x�

�ε
*
mn
2p

I
L

CjlmnxlxkNij
�
x
�
D�1�x�			r			�1			r			�1

dq
�
x
�

9>>>>>>=
>>>>>>;

(8)
The term Cpqik (or Cjlmn) is the fourth order elastic modulus tensor for the cubic crystal, r is the radius of the solute, Nij is the
cofactor and D is the determinant of the 3� 3matrix with elements Cirjsxrxs. Here, x is a vector denoting the position of surface
element dS from the center of the inclusion, and ε

*
mn is a constant misfit strain. The term jrj is the magnitude of the vector r!

from the inclusion to the point outside the inclusion, and is written as follows:

jrj ¼ ffiffiffiffiffiffiffi
riri

p

The components of r are given as follows:

r1 ¼ x=r; r2 ¼ y=r; r3 ¼ z=r
Similarly, 2 is a vector, the components of which are given as follows:

21 ¼ rx1


2; 22 ¼ rx2



2; 23 ¼ rx3



2

22 ¼ �rx �2 þ �rx �2 þ �rx �2
1 2 3
S* is the subdomain on S2 satisfying the following condition-

2$r � 1

and the integral along L is performed along the circle on S2 given by
2$r ¼ 1
The numerical solution scheme for solving equation (8) is provided in detail in Mura and Cheng (1977) and Mori et al.
(1978). The reader is advised to see Fig. 4 in Mura and Cheng (1977) for the schematic description of terms.

It is important to note that equation (8) gives the elastic stress field outside a single inclusion. For a remote solute con-
centration of C(X), we use the linear superposition principle to find the stress field generated by the cluster of solutes as 
follows (Andrews et al., 2000):



stotalpq ¼ �
I
V

CðXÞspqðr; q;Dz0ÞdV (9)
The integral limits in equation (9) are based on a cylindrical space with inner radius as the radius (r) of the boron solute,
and the outer radius as 500 r, an arbitrary cutoff radius where the contribution due to solute atoms is considered to be
negligible. Although we are interested in determining the twinning stress in the presence of boron solutes, it is worthwhile
investigating the force exerted by solutes on the dislocation. As an example, we show the force variation on the dislocation, F1
in y direction, which is given by,

F1 ¼ b
Zþ∞

�∞

stotalpq ðx; y; zÞdy (10)
Note that equation (10) depends on the solute concentration through the term spqtotal(see equation (9)). The normalized
force variation (Fi=ðbrC44ε*Þ) obtained upon solving equation (10) for the case of a single solute is shown in Fig. 10. We can 
vary C(X) in equation (9), and evaluate the normalized force variations for different remote solute concentration. Finally, with
spq
total known from equation (9), the interaction energy between inclusions and the dislocation per unit length is given as 

follows (Mura, 1987):

ED�I ¼ �
I
S

stotalpq ðr; q;Dz0ÞεdS (11)
The integration is carried out over the domain S occupied by the inclusions.

3.3. Twinning dislocation interaction energy, ED-D

The dislocations interaction energy in an anisotropic medium is given by (Head, 1964a,b),

ED�D ¼ Kb2

4p

XN�1

m

Xm
i¼1

ln
L
di

þ
Xm
i¼2

ln
L
di

þ :::::þ
Xm

i¼N�1

ln
L
di

!
for i ¼ 1;2::::N � 1 (12)

where d is the separation distance of the dislocations, L is the equilibrium separation distance under zero external stress, and
i
K is defined as:
Fig. 10. Normalized force variation on the dislocation due to a single solute as a function of the dislocation position.



K ¼ ðC11 þ C12Þ
�

C44ðC11 � C12Þ
C11ðC11 þ C12 þ 2C44Þ

�
(13)
3.4. Twin boundary energy, EGPFE

The disregistry function accounting for the interaction of multiple dislocations in y direction can be described by the 
following expression (Carrez et al., 2009; Jo�os et al., 1994).

f ðyÞ ¼ b
2
þ b
p

�
tan�1

�
y
z

�
þ tan�1

�
y� d1

z

�
þ ::::::þ tan�1

�
y� d1 � d2 � :::di

z

��
for i ¼ 1;2;…N � 1 (14)

where z represents the half-core width of the dislocation. The disregistry function f(y) represents the relative displacement of
the two half crystals in the twin plane along the y-direction.

Since slip and twinning are governed by different parts of the GPFE curve, the energy required to nucleate a slip and twin
can be written respectively as

gsf ðf ðyÞÞ ¼ gisf þ
�
gus � gisf

2

��
1� cos

�
2p

f ðyÞ
b

��
for 0 � f ðyÞ � b

�
2gtsf þ gsf

�
1
� �

2gtsf þ gisf
��� �

f ðyÞ��

gtwinðf ðyÞÞ ¼ 2

þ
2

gut � 2
1� cos 2p

b
for 0 � f ðyÞ � Nb
The twin boundary energy, EGPFE based on the Peierls Nabarro formulation can be written as (Carrez et al., 2009; Jo�os et al., 1994)

EGPFEðdÞ ¼
Xm¼þ∞

m¼�∞
gSFff ðmbÞgbþ ðN � 1Þ

Xm¼þ∞

m¼�∞
gtwinff ðmbÞgb (15)
3.5. Self-energy of dislocation line ED, and the interstitial strain energy, EI

The self energy of dislocation line in cubic medium is given by (Head, 1964a,b),

ED ¼ NKb2

4p
ln

R
ro

(16)

where N is the total number of twinning partials, the parameter K is defined by expression (13), R is the radius of the
dislocation strain field, and ro is an effective core radius. Similarly, the total strain energy of the interstitial solute embedded 
in the matrix is given as follows (Eshelby, 1957):

EI ¼ �1
2

Z
v

sijε
*
ijdV (17)

where ε*ij is the misfit strain and sij is the stress derived from ε
*
ij by Hooke's law.We note that the self-energy of the dislocation

line, ED, and the strain energy of the interstitial, EI appear as constant terms in the total energy expression and hence, they do
not contribute to the twinning stress.

3.6. Applied work, W

The work done in moving the dislocations is given by:

W ¼
XN�1

i¼1

tshdi (18)

where t is the applied stress, s is the twinning shear, and h is the height of the three layer twin nucleus.
Now, it is important to emphasize that the energy terms EDeI, EDeD, EGPFE and W in equation (2) for Etotal all have di 

dependence, where di is the separation distance between the dislocations. The term EDeI in equation (11) incorporates di 
through the term r. We differentiate the total energy Etotal with respect to di as follows:



vEtotal
vdi

¼ 0 for i ¼ 1;2;3::::: (19)
For a given number of N dislocations forming the twin nucleus (equal to 3 in the present analysis), we have (Ne1) inde-
pendent equations to solve for each di. Note that for three twinning dislocations, we solve for two separation distances d1 and
d2. The critical twinning stress is then numerically obtained as the minimum applied stress that satisfies both the equations.

4. Experimental methods and results

Ingots of FeGa24B1 and FeGa24 were sectioned into 4 mm � 4 mm � 10 mm compressive specimens. The specimens were 
homogenized at 1100 �C/48 h under vacuum, solution-treated at 800 �C/1 h and quenched in iced water, and successively 
annealed at 600 �C/10 h for D03 ordering. The specimen surfaces were polished using SiC paper and the grain boundaries were 
determined by the etchant containing 5 vol.% nitric acid and 95 vol.% methyl alcohol. The specimen surface for DIC strain 
measurements was successively polished with SiC paper up to P1500. The speckle pattern for DIC strain measurements was 
obtained using black paint and an Iwata Micron B airbrush. The images suited for DIC strain measurements were captured by
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image (reference) was captured at zero load on the undeformed specimen, while during loading images were captured every
two seconds. The correlation between the reference image and the deformed images was performed with commercial software 
(VIC-2D). The specimens were loaded under an MTS hydraulic load frame in displacement control under a constant strain 
rate of approximately 10�4 s�1. An example of these experiments is shown in Fig. 11 for a FeGa24B1 specimen. Some of the 
analyzed grains in the DIC region show predominantly deformation by twinning, other by slip. We conducted detailed 
post-mortem analysis by polishing and etching the specimen in order to precisely detect the grains deformed by 
twinning (as show in the inset of Fig. 11) and the ones predominantly by slip. Further analyses were carried out using 
electron back-scattering diffraction in order to determine the grain orientation and to index the active twin systems via 
trace analysis.

The twin nucleation stress was then determined using the Schmid factor (0.49 in the present case) for the active twin 
system multiplied by the axial stress. In Fig. 11 we show an example of the local stress-strain curve calculated for a grain 
showing high density of twins. The axial strains reported in the curve were calculated averaging the axial strain contained in 
the selected grain. This enabled to precisely identify the twin nucleation stress. The stress-strain curve in Fig. 11 shows some 
pseudoelastic recovery upon unloading. The ratio of recoverability is generally lower than that of the single crystal specimen 
(see for example the curve shown in Fig. 1) as the grain boundaries curtail pseudoelasticity. The averaged critical twinning 
stresses for Fe3Ga and Fe3Ga-1 at.%B specimens are reported in Table 2.

5. Discussion of the results

Fig. 10 shows the normalized force exerted on one of the partial dislocations due to a single solute as a function of the 
distance from the solute obtained using equation (10). For solute concentration (C0) of 0.5 at.%, 2 at.% and 4 at.%, the maximum
Fig. 11. The twinning-detwinning mechanism in Fe3GaB during deformation captured with sub-grain strain measurements via digital image correlation. The
critical twinning stress (tN) for Fe3Ga-1 at.%B was obtained as 220 MPa (average of three tests).



values of the total normalized force were obtained as 6.17, 7.34 and 7.83 respectively (figures not shown in the paper). The elastic 
constants used in the present calculations for Fe3Ga are C11 ¼ 181 GPa, C12 ¼ 166 GPa and C44 ¼ 126 GPa (Zhang et al., 2010). Similarly, 
the {112}<111> shear moduli for Fe3Ga with 0.5, 1, 2 and 4 at.% boron were obtained as 19, 22, 23 and 27 GPa respectively using 
methodology described by Wang and Sehitoglu (2014a). It is evident from Fig. 10 that the force exerted on the dislocation increases 
sharply at short distances from the solute reaching a maximum value of approximately 4 at the solute interface ðy=r; z=rÞ of (0.5,0.5), 
and falls off at larger distances. Based on the present analysis, in Table 2, we compare the critical twinning stresses for the Fe3Ga with 
the Fe3GaB system for different boron concentrations obtained using equation
(19). The ideal twinning stress (Ogata et al., 2005) in Table 2 is calculated using equation, tidealcritical ¼ pgtbm=b, where gtbm is the

twin boundary migration energy reported in Table 3, and b is the Burgers vector of the twinning partial. The twinning stress of
235 MPa calculated using the present analysis for pure Fe3Ga is consistent with the experimental twinning stress of 225e249 
MPa (Yasuda et al., 2009) for the case of single crystal, and is much lower than the ideal twinning stress of 1860 MPa. Using 
present analysis, when pure Fe3Ga is alloyed with 0.5 at.% boron at first, the increase in stress is maximum (38 MPa) while 
with further alloying (>0.5 at.%), the stress increment is less pronounced. Furthermore, the twinning stresses measured on 
the Fe3Ga and Fe3Ga-1 at.%B polycrystals using DIC strain measurements show that boron increases the twinning stress (see 
Table 2). Despite the experiments are made on polycrystal specimens (with a large grain size approximately >1 mm) and the 
influence of the grain boundaries cannot be neglected, the measured stresses provide a useful comparison between the 
Fe3Ga and Fe3GaB alloys, thus highlighting the effect of boron on the twinning stress elevation. The stress required to 
nucleate twins in Fe3Ga was measured as 150 MPa, while for Fe3Ga-1 at.% B as 220 MPa. These results confirm the trend 
captured with the present model. The reason behind the increase in twinning stress with an increase in boron content is the 
following. The number of boron solutes that can diffuse into the dislocation is limited because the addition of more boron 
solutes is no longer able to reduce the strain energy of the crystal (Cochardt et al., 1955). Therefore, an increase in solute 
concentration beyond a certain limit will no longer contribute to the increase in stress. Therefore, we note that the increase 
in solute concentration in stress elevation is more pronounced up to approximately 0.5 at.% beyond which we expect the 
stress values to saturate rapidly.

The reason behind this can be rationalized from energetic perspectives as well. We obtained the GPFE parameters for 
different concentrations of boron solutes, and are shown in Table 3. It is interesting to note that when 0.5 at.% boron is added 
to pure Fe3Ga, the gtbm increases approximately by a factor of two, but with the higher concentration beyond 1 at.%, gtbm 

increases moderately. With an increase in gtbm, the twinning stress is expected to increase as well (Ojha et al., 2014). While 
further increase in boron concentration does not appreciably affect the gtbm values, the effect of boron on twinning stress 
level is not so significant beyond 1 at.%.

We note from Fig. 9 that the partial dislocation is surrounded by an atmosphere of boron solutes, and hence an additional 
stress is required to move the dislocations out of this atmosphere. Strengthening of metal matrix by tetragonal distortions 
has been well documented in the literature (Fleischer, 1962a,b; Graham and Sines, 1966), for example, the strengthening of 
Fe matrix by interstitial carbon atoms located octahedrally in the matrix. In case of deformation twinning in bcc iron in the 
presence of carbon solutes, it was observed that the stress necessary for twinning increased significantly from 333 MPa at 
0.019 at.%C to 459 MPa at 0.089 at.%C (Magee et al., 1971). The increase in twinning stress arises from the fact that during the 
twin formation process, majority of the solutes in octahedral sites are sheared into the improper sites thereby increasing the 
stress for further deformation. It was also reported that with an increase in carbon concentration, the deformation mode 
changed from twinning to slip. In the present case, we observe that the increase in twinning stress is due to the increased 
interaction energy between the dislocations and the boron-induced tetragonal distortions which are asymmetrical unlike the 
uniform distortions created by the substitutional solutes. The phenomenological relationships (Fleischer, 1962a,b, 1963) 
considering the strengthening of metals by substitutional impurities show concentration dependence for the case of 
tetragonal distortion, and this has been successfully captured in the present analysis.

An analysis of the GPFE curves in Fig. 6 and their corresponding values reported in Table 3 reveals that with the boron in 
the tetrahedral site, the twin boundary migration energy is lower compared to the octahedral site. It is possible that if the 
boron solutes were to occupy the tetrahedral positions during shearing, the twin growth would be much easier contributing 
to enhanced ductility. Magee et al. (1971) have considered the effect of octahedral interstitials in the twinning of bcc metals. In 
fact, when a bcc crystal containing octahedral interstitials is sheared to form a twin, two-thirds of the solute atoms initially
Table 2
Comparison of twinning stress for pure Fe3Ga and Fe3GaB using our analysis with the ideal and experimental twinning stress values.

Material Critical twinning stress (MPa)

Ideal Present theory Experimentb (Single crystal) Experimenta (Polycrystal, this study)

Fe3Ga 1860 235 225e249 150
Fe3Ga-0.5 at.%B 3515 273 e e

Fe3Ga-1 at.%B 6582 290 e 220
Fe3Ga-2 at.%B 7106 311 e e

Fe3Ga-4 at.%B 7405 326 e e

a The critical twinning stress values for polycrystalline samples are based on sub-grain strain measurements with known orientation from EBSD analysis.
The value is an average of 4 tests for Fe3Ga and 3 tests for Fe3Ga-1 at.%B.

b Data taken from Ref. (Yasuda et al., 2009, 2010).



Table 3
Predicted fault energies of a twin boundary for Fe3Ga for different boron concentration. The units of fault energies are in mJ-m�2.

Metals gtwin
us gisf gut 2gtsf gtbm

Fe3Ga 170 150 200 150 50
Fe3Ga-0.5 at.%B (Oct) 360 300 395 301 94
Fe3Ga-1 at.%B (Oct) 407 303 486 310 176
Fe3Ga-1 at.%B (Tet) 457 400 460 395 65
Fe3Ga-2 at.%B (Oct) 457 367 560 370 190
Fe3Ga-4 at.%B (Oct) 476 390 585 387 198

Fig. 12. The migration of an octahedral interstitial (O) to a xenohedral site (X) in a cubic lattice during twinning.
6. Conclusion

Using anisotropic elasticity calculations, we established the twinning stress for Fe3Ga alloyed with various boron con-
centrations. The preference of boron over octahedral site to tetrahedral site was found by considering the total structural
energy of Fe3Ga. It was found that the stress level required for pseudotwinning increased with an increase in boron con-
centration, and this was validated both theoretically and experimentally. Remarkable elevation in twinning stress was
observed when pure Fe3Ga was alloyed with 0.5 at.% boron while further increase in boron concentration increased the
twinning stressmoremoderately. The GPFE curves for Fe3GaBwere established, andwe observed that the increased twinning
stress with increase in boron concentration in Fe3Ga was due to the increase in twin boundary migration energy. We showed
that when concentration of boron atoms is 0.5 at.%, a higher stress is required to nucleate a twin compared to unalloyed Fe3Ga.
We compare the twinning stress results from our analysis to experimental values for the Fe3Ga single crystals and obtain an
excellent agreement. Furthermore, the predictions in the present analysis can all be obtained from DFT without requiring any
empirical constants.
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occupying the octahedral positions are sheared into the new sites which lie along the closed packed directions, for example 
the xenohedral sites, in the lattice of the twin as shown in Fig. 12. It is clear from Fig. 6 that gtbm for xenohedral interstice is 
much higher than that of the tetrahedral site. This potentially contributes an increased strength of Fe3GaB crystal compared to 
pure Fe3Ga by increasing the Peierls Nabarro barrier.

It should be noted that several assumptions are made during the course of the evaluation of the twinning stress. We 
neglect any thermal activation of the solute atoms, and the position of the boron solute atmosphere does not change during 
the dislocation motion.
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