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Let k be an algebraically closed field of characteristic 0 and let HilbdG(PkN ) be  the open locus of the Hilbert scheme Hilbd(PkN

corresponding to Gorenstein subschemes. We proved in several previous papers that HilbdG(PkN ) is irreducible for d � 10 and N 
1, characterizing its singular locus. In the present paper we prove that also HilbG11(PkN ) is irreducible for each N � 1. We also giv
some results about its singular locus.

1. Introduction and notation

Let k be an algebraically closed field of characteristic 0 and let Hilbd(PN
k ) be the Hilbert scheme of

0-dimensional subschemes of PN
k of degree d. A scheme X ∈ Hilbd(PN

k ) is said to be smoothable if it is in
the closure Hilbgend (PN

k ) inside Hilbd(PN
k ) of the locus of reduced schemes R. Notice that R is birational to a

suitable open subset of the dth symmetric product of Pk
N , thus it is irreducible of dimension dN . In particular

the irreducibility of Hilbd(Pk
N ) is equivalent to the smoothability of all 0-dimensional subschemes of Pk

N of
degree d.

It is known that Hilbd(Pk
N ) is actually irreducible if N � 2 (see  [16] where a more general result is proven).

On the other hand the reducibility of Hilbd(Pk
N ) for d large enough with respect to N is proved in [19]. The

first explicit example of reducible punctual Hilbert scheme is Hilb8(P4
k) (see [15]). More recently, in [4], the

authors showed that Hilb8(Pk
N ), N � 4, has exactly two irreducible components.

We now focus our attention on a smaller locus inside Hilbd(Pk
N ), i.e. the set HilbdG(Pk

N ) of points rep-
resenting schemes which are Gorenstein. Such a locus is actually open inside Hilbd(Pk

N ) (see  [28]) and
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R ⊆ HilbGd (PN
k ), thus HilbG,gen

d (PN
k ) := HilbGd (PN

k ) ∩ Hilbgend (PN
k ) is irreducible of dimension dN and open

in HilbGd (PN
k ).

On the one hand in [21], Lemma 6.21, the authors claimed the reducibility of HilbG14(P6
k) (see also [9])

and suggested that d = 14 could be the lower degree for which HilbGd (PN
k ) is reducible. On the other hand

HilbGd (PN
k ) is irreducible when d � 10 (see [8] and [9]) and for N � 3 without restrictions on d (see e.g. [9],

Corollary 2.6).
In the present paper we make a further step confirming the irreducibility of HilbGd (PN

k ) for d � 13 by
proving the following

Main Theorem. The locus HilbG11(PN
k ) is irreducible for d � 11.

The above result has an interesting consequence regarding secant varieties of Veronese embeddings. More
precisely in [17] the author conjectures that the ideal of the 2nd secant variety (the variety of secant lines)
of the dth Veronese embedding of Pn

k is generated by the 3 × 3 minors of the ith catalecticant matrix for
2 � i � d − 2. Such a conjecture was confirmed in [27]. As pointed out in [3], Section 8.1, the above Main
Theorem allows to extend the above result as follows: if r � 11, 2r � d and i = r, . . . , d − r, then the
set-theoretic equations of the rth secant variety of the dth Veronese embedding of Pn

k are given by the
(r + 1) × (r + 1) minors of the ith catalecticant matrix.

Notice that each X ∈ HilbGd (PN
k ) is affine, thus it is isomorphic to spec(A) for a suitable Artinian,

Gorenstein k-algebra (throughout this paper, a k-algebra is an associative, commutative and unitary algebra 
over k). In particular a first necessary step is to deal with such kind of algebras. Indeed, as pointed out in 
Lemma 2.2 of [8], the smoothability of the scheme X := spec(A) does not depend on its embedding, but only 
on its intrinsic structure, i.e. only on the underlying algebra A. In particular, throughout the whole paper we 
will say that a k-algebra A is smoothable if the same is true for the corresponding scheme X := spec(A) with 
respect to a suitable projective embedding (and then, with respect to all ones).

The description of Artinian k-algebras is classical in commutative algebra and related fields. Since each 
Artinian k-algebra is a direct sum of local ones one can restrict its attention to local, Artinian k-algebras. A 
first invariant of any local Artinian k-algebra A is its dimension d := dimk(A) as  k-vector space. Some
general classification results are known for low values of d, namely d � 6 (e.g., see [23–25]). As d increases
the picture is not easy to handle with the same methods (see [4,26] and the references therein), unless 
we introduce some extra technical hypothesis. E.g., if A is assumed to be Gorenstein, then a complete
classification is available up to d � 9 (see  [5]).

A second invariant which turns out to be extremely useful for such a classification is the Hilbert function 
HA of A, i.e. the Hilbert function of the associated graded ring

gr(A) :=
s⊕

i=0
Mi/Mi+1,

where M is the maximal ideal of A and s is the greatest integer h such that Mh �= 0.
Also with the Gorenstein hypothesis we are completely unable to achieve a classification up to isomor-

phisms as d increases. For example, when d � 10 is not possible to classify in the above sense algebras with
Hilbert function (1, n, 4, 1), n � 4: indeed Macaulay’s theory of inverse systems and the results proven in
[12] show that such a classification is actually strictly related to the classification up to projectivities of
cubic surfaces in P3

k.
Anyhow, though it is not possible to classify all algebras for d � 10, the aforementioned relation actually

represents a helpful structure result. For this reason, in order to better understand what follows, we spend
here very few words on the aforementioned Macaulay’s correspondence, postponing a more comprehensive
résumé of such a theory to Section 2. Each local, Artinian, Gorenstein k-algebra A can be obviously repre-
sented as a quotient of the form k[[x1, . . . , xn]]/J for a suitable ideal J ⊆ (x1, . . . , xn)2. Macaulay showed
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that if we look at k[[x1, . . . , xn]] as acting on k[y1, . . . , yn] via derivation (i.e. we identify xi with ∂/∂yi, i
= 1, . . . , n), then each such J is the annihilator Ann(F ) of a suitable apolar polynomial F ∈ k[y1, . . . , yn] whose
degree s is exactly the maximum integer s such that Ms �= 0, the so-called socle degree sdeg(A) of  A.

In this setup, the main∑ result of [12] is that A satisfies HA = (1, n,m, 1) if and only if A k[[x1, . . . , xn]]/
Ann(F3 + i

n
=m+1 yi

2), for a suitable cubic form F3 ∈ k[y1, . . . , ym]. Beside the interest of the above result in 
itself, it has several applications. E.g., in [6], we checked that such a decomposition of the apolar polynomial F 
yields the smoothability of A.

Such a result throws some light on the question of the irreducibility of Hilbd
G(Pk

N ). Along these lines
the papers [7,10] and the results proved in Section 3 generalizing the aforementioned decomposition of the
apolar polynomial allow us to prove the smoothability of all the k-algebras A with dimk(A) = 11 proving
the Main Theorem above.

The results on the decomposition of the apolar polynomial allow us to give an almost complete descrip-tion
of the singular locus of HilbG11(Pk

N ) in Section 6. Indeed, as for the smoothability, the property of a scheme X =
spec(A) ⊆ Pk

N of representing a singular point of Hilbd
G(Pk

N ) can be checked on its irreducible components and
it depends only on A and not on the embedding of X (see [9]). Making use also of the results proven in [8] and
[9], we can focus our attention on algebras A with Hilbert function either (1, 4, 3, 2, 1) or (1, 4, 2, 2, 1) or (1, 5,
3, 1, 1) or (1, 5, 4, 1) or (1, 6, 3, 1) or (1, 4, 4, 1, 1). For all but the last case we are able to prove whether X =
spec(A) represents a singular point or not.

The analysis of the last case (1, 4, 4, 1, 1) will be carried out as an example in the forthcoming paper [10] 
since it needs some extra results and a particular care.

1.1. Notation

A k-algebra is an associative, commutative and unitary algebra over k. For each N ∈ N we set S[N ] :=
k[[x1, . . . , xN ]] and P [N ] := k[y1, . . . , yN ]. We denote by S[N ]q ⊕(resp. P [N ]q) the homogeneous⊕component of
degree q of such a graded k-algebra, and we set S[N ]�q := i

q
=1 S[N ]i (resp. P [n]�q := i

q
=1 P [n]i). Finally let S[n]

+ := (x1, . . . , xn) ⊆ S[n]. The ideal S[N ]+ is the unique maximal ideal (x1, . . . , xN ) ⊆ S[N ].
A local ring R is Gorenstein if its injective dimension as R-module is finite. An arbitrary ring R is called

Gorenstein if RM is Gorenstein for every maximal ideal M ⊆ R. A scheme X is Gorenstein if and only if
for each point  x ∈ X the ring OX,x is Gorenstein.

For each numerical polynomial p(t) ∈ Q[t], we denote by Hilbp(t)(Pk
N ) the Hilbert scheme of closed

subschemes of Pk
N with Hilbert polynomial p(t). With abuse of notation we will denote by the same symbol

both a closed point in Hilbp(t)(Pk
N ) and the corresponding subscheme of Pk

N . We denote by HilbpG(t)(Pk
N ) the

locus of points representing Gorenstein schemes.

If γ := (γ1, . . . , γN ) ∈ NN is a multi-index, then we set tγ := tγ1
1 · · · tγN

N ∈ k[t1, . . . , tN ].
For all the other notations and results we refer to [18].

2. Some facts on Macaulay’s correspondence

Let A be a local, Artinian k-algebra with maximal ideal M. The socle degree sdeg(A) of A is the greatest
integer s such that Ms �= 0. The Hilbert function HA of A is the Hilbert function of gr(A). We know that
A ∼= S[n]/J for a suitable ideal J ⊆ S[n]2+ ⊆ S[n], where n := dimk(M/M2) = HA(1).

Each element f ∈ S[n] can be decomposed as f =
∑∞

i=0 fi where fi ∈ S[n]i. The smallest integer i such
that fi �= 0 is called the order of f and it is denoted by ord(f). Moreover ford(f) is called the lower degree
form of f . It will be denoted in what follows with ldf(f).



 
 
 
 

If f ∈ J , then ord(f) � 2. The lower degree form ideal ldf(J) associated to J is

ldf(J) :=
(
ldf(f)

∣∣ f ∈ J
)
⊆ S[n].

It is well known that gr(A) ∼= S[n]/ldf(J).
We have an action of S[n] over P [n] given by partial derivation defined by identifying xi with ∂/∂yi.

Hence

xα ◦ yβ :=
{
α!
(
β
α

)
yβ−α if β � α,

0 if β �� α.

Such an action endows P [n] with a structure of module over S[n]. If J ⊆ S[n] is an ideal and M ⊆ P [n] is
a S[n]-submodule we set

J⊥ :=
{
F ∈ P [n]

∣∣ g ◦ F = 0, ∀g ∈ J
}
,

Ann(M) :=
{
g ∈ S[n]

∣∣ g ◦ F = 0, ∀F ∈ M
}
.

For the following results see e.g. [14,20] and the references therein. Macaulay’s theory of inverse system is
based on the fact that such constructions J 	→ J⊥ and M 	→ Ann(M) give rise to a reversing inclusion bijection
between ideals J ⊆ S[n] such that S[n]/J is a local, Artinian k-algebra and finitely generated S[n]-submodules
M ⊆ P [n]. In this bijection Gorenstein algebras A with sdeg(A) = s correspond to cyclic S[n]-submodules 〈F
〉S[n] ⊆ P [n] generated by a polynomial F of degree s. We simply write Ann(F ) instead  of Ann(〈F 〉S[n]).

On the one hand, given a S[n]-module M , we define, for q ∈ N,

tdf(M)q := M ∩ P [n]�q + P [n]�q−1

P [n]�q−1

and we set tdf(M) :=
⊕∞

q=0 tdf(M)q. tdf(M) can be interpreted as the S[n]-submodule of P [n] generated
by the top degree forms of all the polynomials in M .

We have ldf(Ann(M)) = Ann(tdf(M)) (see [14]: see also [12], Formulas (2) and (3)) whence

gr
(
S[n]/Ann(M)

) ∼= S[n]/ldf
(
Ann(M)

) ∼= S[n]/Ann
(
tdf(M)

)
. (1)

Thus

HS[n]/Ann(M)(q) = dimk

(
tdf(M)q

)
. (2)

We say that M is non-degenerate if HS[n]/Ann(M)(1) = dimk(tdf(M)1) = n, i.e. if and only if the classes of
y1, . . . , yn are linearly independent in tdf(M).

Let A be Gorenstein with s := sdeg(A), so that Soc(A) = Ms ∼= k. In particular A ∼= S[n]/Ann(F ),
where F :=

∑s
i=0 Fi, Fi ∈ P [n]i and, trivially, we can always assume that F0 = 0. It is easy to check that,

for given J = Ann(F ), it also holds J = Ann(F + σ ◦ F ) for every σ ∈ S[n]. Hence, it makes sense to look
for an easier polynomial G such that Ann(G) = Ann(F ).

Lemma 2.1. Let s � 2, F, F̂ ∈ P [n]�s be such that F − F̂ ∈ P [n]�1. If Ann(F ) ⊆ S[n]2+, then Ann(F ) =
Ann(F̂ ).
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Proof. From Ann(F ) ⊆ S[n]2+, it follows Ann(F ) ⊆ Ann(F̂ ). In fact, σ ◦ H = 0 for each H ∈ P [n]�1
and every σ of order at least 2. The same argument shows that each σ ∈ Ann(F̂ ) of order � 2 belongs to
Ann(F ).

Assume by contradiction that σ ∈ Ann(F̂ ) \ Ann(F ). Then, σ has order 1, and σ ◦ F = σ ◦ F1 = λ �= 0.
By degree reasons, λ ∈ k. Let τ ∈ S[n] be of order s (thus at least 2) such that τ ◦ Fs = −λ. It follows that
σ + τ ∈ Ann(F ) has order 1, and so we get a contradiction because Ann(F ) ⊆ S[n]2+. Hence Ann(F ) =
Ann(F̂ ) as claimed. �

Summarizing the previous lemma, if J = Ann(F ) ⊆ S[n]2+, then there exists G =
∑s

i=2 Gi such that
J = Ann(G). We will always make such an assumption in what follows.

We have a filtration with proper ideals (see [20])

C(0) := gr(A) ⊃ C(1) ⊇ C(2) ⊇ · · · ⊇ C(s− 2) ⊇ C(s− 1) := 0.

The quotients Q(a) := C(a)/C(a + 1) are reflexive graded gr(A)-modules. Their Hilbert function HQ(a) of
Q(a) is symmetric around (s−a)/2 (see [20]). In general gr(A) is no more Gorenstein, but the first quotient

G(A) := QA(0) ∼= S[n]/Ann(Fs) (3)

is characterized by the property of being the unique (up to isomorphism) graded Gorenstein quotient
k-algebra of gr(A) with the same socle degree.

The Hilbert function of A satisfies

HA(i) = Hgr(A)(i) =
s−2∑
a=0

HQA(a)(i), i � 0. (4)

Since HA(0) = HG(A)(0) = 1, it follows that if a � 1, then QA(a)0 = 0, whence QA(a)i = 0 when i � s− a

for the same values of a. In particular

Hgr(A)/CA(a+1)(i) = HS[n]/ĈA(a+1)(i) =
a∑

α=0
HQA(α)(i), i � 0.

3. Smoothability and apolar polynomial

In this section we recall and prove some results related to the apolar polynomial of a local, Artinian, 
Gorenstein k-algebra which will be helpful later on both from the classification and the smoothability 
viewpoint.

We start by recalling that it is always possible (see [20], Theorems 5.3A and 5.3B) to choose a system of 
generators of S[n]+ such that F satisfies Fi ∈ P [fi], where

fi :=
s−i∑
a=0

HQ(a)(1)

(so that n = HA(1) = f2). More precisely one can also obtain the following result.

Proposition 3.1. Let A be a local, Artinian, Gorenstein k-algebra. If n := HA(1) and s := sdeg(A), then

A ∼= S[n]/Ann(F )

where F :=
∑s

Fi +
∑n

y2
j , Fi ∈ P [fi]i, i � 3, and F2 ∈ P [f3]2.
i=2 j=f3+1
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Proof. See [10], Proposition 3.2. �
The above proposition allows us to reduce the study of algebras associated to polynomials of the form

F = G + x2
n ∈ P [n] with s > 2 and G ∈ P [n− 1] to S[n− 1]/Ann(G). Indeed Corollary 3.2 of [7] yields

Ann(F ) = Ann(G)S[n] +
(
x2
n − 2σ, xixn

)
1�i�n−1 (5)

where σ ∈ S[n− 1] has order s and σ ◦G = 1. Moreover

HS[n]/Ann(F )(q) =
{
HS[n−1]/Ann(G)(q) if q � 2,
HS[n−1]/Ann(G)(q) + 1 if q = 1. (6)

In fact, if q > 2, Formula (2) gives

HS[n]/Ann(F )(q) = dimk

(
tdf(F )q

)
= dimk

(
tdf(G)q

)
= HS[n−1]/Ann(G)(q).

The same equality still holds for q = 2, because tdf(G)2 = tdf(G + y2
n)2. Finally, if q = 1 we know that

yn ∈ tdf(F )q \ tdf(G)q and tdf(F )q = tdf(G)q + 〈yn〉.
Let F and G be as above. We want to relate the smoothability of the two schemes X := spec(S[n]/

Ann(F )) and

X̂ := spec
(
S[n− 1]
Ann(G)

)
∼= spec

(
S[n]

Ann(G) + (xn)

)
.

To this purpose we first embed such schemes in Ak
n via the natural monomorphism k[x1, . . . , xn] ⊆ S[n]. Both

the schemes are then supported on the origin. Let us now consider the scheme X ⊆ A1
k × Ak

n defined by the ideal

J := Ann(G)k[b] ⊗ S[n] +
(
x2
n − bxn − 2σ, xixn

)
1�i�n−1

inside k[b] ⊗ S[n]. The map χ :X → A1
k induced by the projection on the first factor is thus a family of closed 

subschemes of Pk
n.

If (b, a1, . . . , an) is in the support of J , then (a1, . . . , an−1, 0) ∈ X̂. Thus a1 = · · ·  = an−1 = 0 and  a2
n =

ban since σ(0, . . . , 0) = 0. It follows that the reduced structure of X is given by the ideal (x1, . . . , xn−1, xn − b) ∩
(x1, . . . , xn), whence X coincides with its closure X ⊆ A1

k × Pk
n. We claim that χ is flat: thanks to the above

discussion and to [18] Theorem, III.9.9, it suffices to show that its fibres have constant degree in Pk
n.

Thanks to Equalities (5) and (6) the special fibre of X over 0 is exactly X and its degree is d := deg(X) = 
deg(X̂) + 1.

Lemma 3.2. If b �= 0, then Jb = (x1, . . . , xn−1, xn − b) ∩ J ′
b ⊆ S[n], where

J ′
b := Ann(G)S[n] + (xixn, bxn + 2σ)1�i�n.

Proof. Set J ′′
b := (x1, . . . , xn−1, xn − b). Trivially Jb ⊆ J ′′

b and J ′
b = Jb + (x2

n), thus the modular law
(see [1]) implies J ′′

b ∩ J ′
b = J ′′

b ∩ (Jb + (x2
n)) = Jb + J ′′

b ∩ (x2
n). We have J ′′

b ∩ (x2
n) = J ′′

b (x2
n) =

(x1x
2
n, . . . , xn−1x

2
n, (xn − b)x2

n). By the definition of Jb we have xix
2
n ∈ Jb, i = 1, . . . , n− 1, and xnσ ∈ Jb.

It follows that (xn − b)x2
n = (x2

n − bxn)xn ∈ (xnσ) + Jb = Jb, thus J ′′
b ∩ (x2

n) ⊆ Jb. In particular,
Jb + J ′′

b ∩ (x2
n) = Jb, hence the statement is proved. �



Now we come back to the family X → A1
k. The ideals J ′

b and J ′′
b are coprime for b �= 0: indeed

u := −x2
n + 2bxn − 4σ ∈ J ′

b , v := 4σ + (xn − b)2 ∈ J ′′
b and u + v = b2. Hence Lemma 3.2 implies that the

fibre Xb over b �= 0 splits as spec(S[n]/J ′
b) ∪ spec(k). Moreover xiσ ∈ S[n− 1] for each i = 1, . . . , n− 1 and

it has order s + 1, thus it is contained in Ann(G). We conclude that

S[n]/J ′
b
∼= S[n]/Ann(G)S[n] + (xixn, bxn + 2σ)1�i�n

∼= S[n− 1]/Ann(G).

Taking into account Eq. (5), we deduce that, for each b �= 0,  we  have

dimk

(
S[n]/J ′

b

)
= dimk

(
S[n− 1]/Ann(G)

)
= dimk

(
S[n]/Ann(F )

)
− 1.

It follows that the degree of the fibre Xb is constantly d also for b �= 0, whence χ is a flat family of closed
subschemes in Pn

k .
As pointed out in the Introduction, recall that a local, Artinian, Gorenstein k-algebra A with dimk(A) = d

is smoothable if and only if X ∼= spec(A) ∈ HilbG,gen
d (PN

k ) and such a notion does not depend on the
embedding of X, but only on the intrinsic structure of X, i.e. on A.

Theorem 3.3. Let F = G + y2
n. Let us denote by Ann(G) the annihilator of G inside S[n− 1]. If S[n− 1]/

Ann(G) is smoothable, then the same holds for S[n]/Ann(F ).

Proof. Consider the family χ :X → A1
k defined above. The universal property of the Hilbert scheme guar-

antees the existence of a map i :A1
k → HilbGd (Pn

k ) such that i(0) = X and i(b) ∈ HilbG,gen
d (Pn

k ) for b �= 0,
due to the hypothesis. Since this last scheme is closed inside HilbGd (Pn

k ) by definition, it finally follows that
X ∈ HilbG,gen

d (Pn
k ). �

∼=

As an immediate consequence of the above theorem and of Proposition 3.1 we finally obtain the following 
corollary.
Corollary 3.4. Let A be a local, Artinian, Gorenstein k-algebra with f3 � 3. Then  A is smoothable.
Proof. Thanks to Proposition 3.1 we know A S[n]/Ann(G + 

∑
j
n
=f3+1 yj

2). Since f3 �  3, it follows that 
S[f3]/Ann(G) is smoothable (e.g. see [8], Proposition 2.5), hence an iterated application of Theorem 3.3 
yields that A is smoothable too. �

4. The Gorenstein locus of the punctual Hilbert scheme

We now prove the Main Theorem stated in the Introduction.

Theorem 4.1. The locus Hilbd
G(Pk

N ) is irreducible if d � 11.

Proof. It suffices to check that each irreducible scheme X ∼= spec(A) ∈ HilbG11(Pk
N ) is smoothable. Thanks to 

Corollary 3.4 it suffices to check this fact for algebras A with f3 � 4.
Recall that HQ(a) is symmetric around (s − a)/2 where s := sdeg(A). From the symmetry of HQ(a) we 

obtain

dimk

(
G(A)

)
+ 2

s−3∑
a=1

HQ(a)(1) � dimk(A) � 11, (7)

where G(A) = Q(0) as defined in Eq. (3).
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̂
̂

If s � 5, then dimk(G(A)) � 4 + 2HG(A)(1), thus 2f3 = 2
∑s

a
−
=0

3 
HQ(a)(1) � 7, whence f3 � 3. Thus we must 

restrict our attention on the cases s = 3, 4. In the first case, then HQ(1) is symmetric around 1, hence

HQ(1)(2) = HQ(1)(0) = 0. It follows that f3 = HG(A)(1) = HG(A)(2) = HA(2). In particular, if f3 �  4, then 
HA = (1, 5, 4, 1). The smoothability of such algebras was proven in [6], Corollary 3.3.

Now assume s = 4.  Let  HG(A) = (1, a1, a2, a1, 1), HQ(1) = (0, b1, b1, 0, 0). If a2 + b1 �  4, and HA(1) 
4, then HA = (1, 4, 4, 1, 1) necessarily. Now assume a2 + b1 �  3, whence a2 �  3. If a2 �  2, then a1 �  a2 

thanks to Macaulay’s growth theorem (see [2], theorem 4.2.10), hence f3 = a1 + b1 � a2 + b1 � 3.
Let a2 = 3, so that b1 = 0. Again Macaulay’s growth theorem implies a1 �  4. Equality cannot 

hold, otherwise dimk(G(A)) = 13. Thus f3 = a1 � 3.
We now focus our attention on the schemes X ⊆ Pk

N such that X ∼= spec(A) with HA = (1, 4, 4, 1, 1). We 
already pointed out that the smoothability of X only depends on A. Thus it suffices to check that X is 
smoothable with respect to a particular embedding, e.g. to the natural embedding X ⊆ P4

k induced by
k[x1, x2, x3, x4] � S[4] � S[4]/J ∼= A.

Let Z4 ⊆ HilbG11(P4
k) be the locus of points representing irreducible schemes corresponding to algebras with 

Hilbert function (1, 4, 4, 1, 1). We will show that Z4 ⊆ Hilb11
G,gen(P4

k). Recall that the tangent space to 
HilbG11(P4

k) at any point Z is canonically identified with H0(Z, NZ ), NZ being the normal sheaf of Z ⊆ A4
k.

Claim 4.2. Z4 is irreducible.

Claim 4.3. There exists a smoothable X ∈ Z4 ∩Hilb11
G,gen(P4

k).

Claim 4.4. For the aforementioned scheme X we have h0( X̂,  N̂
X

) = 44.

X̂

Assume the three claims above. Due to Claim 4.2, Z4 is contained in an irreducible component H⊆
HilbG11(P4

k). If H �= Hilb11
G,gen(P4

k)eachX ∈Z4 ∩Hilb11
G,gen(P4

k) would be necessarily obstructed, whence
h0(X, NX) > dim(Hilb11

G,gen(P4
k)) = 44. In particular, such an inequality would hold true for the scheme

defined in Claim 4.3, contradicting Claim 4.4. Thus the theorem is completely proven. �
We will now prove the claims above.

F

Proof of Claim 4.2. There exists a natural fibration Z4 → P4
k associating to each scheme its supporting scheme. 

All the fibres of such a map are trivially isomorphic, thus Z4 ∼= P4
k × Z4(0), Z4(0) being the fibre over the point 

[1, 0, 0, 0, 0] ∈ P4
k. We claim that Z4(0) is irreducible, whence we deduce the irreducibility of Z4.

Let X := spec(A) ∈ Z4(0). Thus A ∼= S[4]/Ann(F ) where ∈ P [4] has degree 4. If F4 is the top degree form 
of F , then G(A) ∼= S[4]/Ann(F4) (see Formula (3)). Since HA = (1, 4, 4, 1, 1), we deduce that HG(A) = (1, 1, 
1, 1, 1), whence we deduce that F4 = 
4 for a suitable non-zero linear form. In particular, F = 
4 + G where G 
∈ P [4]�3.

Conversely let V ⊆ P [4] be the scheme of polynomials of the form 
4 + G where 
 is a linear form and 
deg(G) � 3. V is trivially irreducible since it has naturally the structure of a vector bundle over the subspace P 
[4]�3 ⊆ P [4]. We assert that there exists a Zariski non-empty open subset U ⊆ V such that S[4]/Ann(
4 + 
G) has  Hilbert function (1, 4, 4, 1, 1) if 
4 + G ∈ U . Indeed G(A) ∼= S[4]/Ann(
4), thus
HG(A) = (1, 1, 1, 1, 1). Decomposition (4) implies HA = (1, n,m, 1, 1) with 1 � m � n � 4.

Now let A70
k be the affine space whose points represent polynomials of degree at most 4 in k[x1, x2, x3, x4] ⊆

S[4] and define

W :=
{
(F, g) ∈ V × A70

k

∣∣ g ∈ Ann(F )
}
.

We have (
∑

aαy
α,

∑
bβx

β) ∈ W if and only if
α β



∑
α,β

aαbβx
β ◦ yα = 0,

thus W is a closed subvariety of V ×A70
k . Moreover, we also have an induced projection π :W ⊆ V ×A70

k → V

whose fibre over the point corresponding to an algebra with Hilbert function (1, n,m, 1, 1) is a linear subspace
in A70

k of dimension 67 −m− n. Set

Vh :=
{
F ∈ V

∣∣ dim
(
π−1(F )

)
� 67 − h

}
⊆ V.

Due to [18], Exercise II.3.22, it follows that Vh is closed. Since 1 � m � n � 4 and, trivially, V2 ⊆ V3 ⊆
· · · ⊆ V7 ⊆ V8 we also have V8 = V . Finally, it is easy to check that for each m,n such that 1 � m � n � 4

y4
4 +

m−1∑
i=1

y3
i +

3∑
i=m

y2
i ∈ Vm+n \ Vm+n−1

the first (resp. second) summation being empty if m = 1 (resp. m = 4). We conclude that U := V8 \V7 ⊆ V

is open and non-empty.
Let us consider the family of ideals

{
(F, g) ∈ U × A70

k

∣∣ g ∈ Ann(F )
}

+ (x1, x2, x3, x4)5 ⊆ U × k[x1, x2, x3, x4].

Arguing as in the construction of family χ in the previous Section 3, we obtain a family X ⊆ U ×A4
k ⊆ U ×P4

k 

which is flat over U . The universal property of the Hilbert scheme yields the existence of a natural map 
U → HilbG11(P4

k) whose image is exactly Z4(0). Since U is irreducible the same is true for Z4(0). �
Proof of Claim 4.3. Let us consider in k[b] ⊗ S[4] the ideal

J := 
(
x3x4, x2x4, x1x4, x

3
1 − x2

2, x1x2 + x2
3, x1x3, x

3
4 − b2x4 + (b − 1)x4

1, x
3
3, x

2
2x3, x

3
2
)
,

and consider the corresponding scheme X ⊆ A1
k × A4

k ⊆ A1
k × P4

k, inducing a family χ :X → A1
k.

The special fibre X̂ of X over 0 is spec(A) where A = S[4]/J with

J :=
(
x3x4, x2x4, x1x4, x

3
1 − x2

2, x1x2 + x2
3, x1x3, x

3
4 − x4

1, x
3
3, x

2
2x3, x

3
2
)
.

Let ai be the class of xi in A. We have HA = (1, 4, 4, 1, 1) with basis 1, a1, a2, a3, a4, a2
1, a2a3, a2

3, a2
4,

a3
1, a4

1. In particular, dimk(A) = 11. We also have

a1a3 = a1a4 = a2a4 = a3a4 = 0, a1a2 = −a2
3, a2

2 = a3
1, a1a

2
2 = a4

1, a2a
2
3 = a4

1, a3
4 = a4

1.

Let

a = α0 +
4∑

i=1
αiai + α5a

2
1 + α6a2a3 + α7a

2
3 + α8a

2
4 + α9a

3
1 + α10a

4
1

where αh ∈ k, h = 0, . . . , 10. Using the above relations it is easy to check that the condition a ∈ Soc(A)
yields αh = 0, h = 0, . . . , 9, thus Soc(A) ∼= k. We deduce that A is Gorenstein.



Now take b �= 0 and define

J ′ :=
(
x2

4, x3x4, x2x4, x1x4, x1x3, x1x2 + x2
3, x

3
1 − x2

2, x
3
3, x

2
2x3, x

3
2, (b− 1)x4

1 − b2x4
)
,

J ′′ :=
(
x1, x2, x3, x

2
4 − b2

)
.

One can check that Jb = J ′
b ∩ J ′′

b if b �= 0 (imitate the proof of Lemma 3.2). Thus, Xb with b �= 0 is
the disjoint union of the two simple points [1, 0, 0, 0,±b] ∈ P4

k, corresponding to the ideal J ′′
b , and of a

smoothable scheme of degree d − 2 supported on [1, 0, 0, 0, 0] ∈ P4
k defined by J ′

b . This last scheme is
smoothable because

S[4]/J ′
b
∼= S[3]/

(
x1x3, x1x2 + x2

3, x
3
1 − x2

2
)

=: A0
3,3,9

(see [8] for a proof of the smoothability of A0
3,3,9). Thus, we can follow verbatim the same argument of the 

proof of Theorem 3.3. We conclude that X̂ is smoothable too. �
Proof of Claim 4.4. Let X̂ ⊆ P4

k be the embedding induced by the identification A4
k = {x0 �= 0} ⊆ P4

k.
dim(HilbG,gen

11 (P4
k)) = 44 and we have to show that h0(X̂,N

X̂
) = 44. Recall that if Z ∼= spec(S[N ]/J) ⊆ AN

k

is a Gorenstein punctual scheme, then

h0(Z,NZ) = dimk

(
S[N ]/J2)− dimk

(
S[N ]/J

)
(8)

X
̂

(see [8], Proposition 5.5).
In the case we are interested in, using any computer algebra software, it is immediate to obtain 

h0( X̂,  N̂) = 44, for the aforementioned scheme X, whence the assertion. �
5. Classification of algebras with Hilbert functions (1, n, 2, 2, 1, 1) and (1, n, 3, 2, 1)

In this section we give a complete classification of local, Artinian, Gorenstein k-algebras A such that
HA is either (1, n, 2, 2, 1, 1) or (1, n, 3, 2, 1). Besides its intrinsic interest, we will make partial use of such a
classification in the next Section 6, in order to deal with the singular locus of HilbG11(PN

k ).
Assume first HA = (1, n, 2, 2, 1, 1) where n � 2. Thus Decomposition (4), is

(1, 1, 1, 1, 1, 1) + (0, 1, 1, 1, 0, 0) + (0, n− 2, 0, 0, 0, 0).

Theorem 5.1. Let n � 2 be an integral number. If A is a local, Artinian, Gorenstein, k-algebra with HA =
(1, n, 2, 2, 1, 1), then A ∼= At

n,2,2,n+7 := S[n]/Jt, t = 1, 2, where

J1 :=
(
x2

2 − x3
1, x

3
1x2, xixj , x

2
j − x5

1
)
i�1,j�3,i �=j

,

J2 :=
(
x2

2 − x1x2 − x3
1, x

3
1x2, xixj , x

2
j − x5

1
)
i�1,j�3,i �=j

.

Moreover, At
n,2,2,n+7

∼= At′

n′,2,2,n′+7 if and only if n = n′ and t = t′.

∼=Proof. We know that A S[n]/Ann(F ) where F = G + 
∑

j
n
=2 yj

2 where G ∈ P [2] (see Theorem 3.1). An iterated 
application of Equality (6) implies that both

Ann(F ) = Ann(G)S[n] +  
(
xixj , xj

2 − σ
)
i�1,j�3,i �=j

where σ ◦ G = 1 and the Hilbert function of S[2]/Ann(G) is (1, 2, 2, 2, 1, 1). Thanks to [13], Theorem 2.8, up 

to automorphisms of S[2], Ann(G) can be put in one of the following forms



I1 :=
(
x2

2 − x3
1, x

3
1x2

)
, I ′1 :=

(
x2

2 − x2
1x2x

3
1, x

3
1x2

)
, I2 :=

(
x2

2 − x1x2 − x3
1, x

3
1x2

)
.

Example 5.4 of [13] shows that S[2]/I1 ∼= S[2]/I ′2. It is easy to check that I1 = Ann(y5
1 + 30y2

1y
2
2),

I2 = Ann(y5
1 + 30y2

1y
2
2 + 20y1y

3
2 + 5y4

2), thus we can choose σ = x5
1/5!. The transformation xj 	→ xj/

√
5!,

j � 3, finally yields the ideals J1 and J2 respectively.
It remains to show that At

n,2,2,n+7
∼= At′

n′,2,2,n′+7 if and only if n = n′ and t = t′. The “if” part is an easy
check. So, we assume that At

n,2,2,n+7
∼= At′

n′,2,2,n′+7.
Trivially n = HAt

n,2,2,n+7
(1) = HAt′

n′,2,2,n′+7
(1) = n′. It remains to prove that A1

n,2,2,n+7 � A2
n,2,2,n+7.

Consider the set

Ut :=
{
u ∈ M/M2 ∣∣ u2 = 0

}
⊆ gr

(
At

n,2,2,n+7
)
.

If u :=
∑n

i=1 λixi (here xi is the class of xi inside of M/M2), then u2 := λ2
1x

2
1 + 2λ1λ2x1x2 + λ2

2x
2
2. Thus

U1 = 〈x2, . . . , xn〉 and U2 = 〈x3, . . . , xn〉. It follows that A1
n,2,2,n+7 � A2

n,2,2,n+7. �
Assume now that HA = (1, n, 3, 2, 1) where n � 3. Decomposition (4) of HA is one of the following:

(1, 2, 3, 2, 1) + (0, 0, 0, 0, 0) + (0, n− 2, 0, 0, 0),

(1, 2, 2, 2, 1) + (0, 1, 1, 0, 0) + (0, n− 3, 0, 0, 0).

In both cases the algebra G(A) has been described in [5].
The following theorem gives a complete classification up to isomorphisms of the algebras we are inter-

ested in. First we fix some notation. Let u and v be acting on k \ {0,±1,±3} as follows: u(α) = −α and
v(α) = α−3

α+1 . The transformations u and v generate a group G ∼= S3 and the G-orbit of α ∈ k \ {0,±1,±3}
is Gα := {±α,±α−3

α+1 ,±
α+3
α−1}.

Theorem 5.2. Let n � 3 be an integral number. If A is a local, Artinian, Gorenstein, k-algebra with HA =
(1, n, 3, 2, 1), then A ∼= At,α

n,3,2,n+7 := S[n]/Jt,α, t = 1, . . . , 7, where

J1,0 :=
(
x1x2 − x2

3, x1x3 − x3
2, x2x3 − x3

1, x
4
1 − x4

2, x
3
3 − x4

1, xixj , x
2
j − x4

1, x
5
1
)
1�i<j�n,j�4,i �=j

,

J2,0 :=
(
x1x2, x1x3, x2x3, x

4
1 − x4

2, x
3
3 − x4

1, xixj , x
2
j − x4

1
)
i�1,j�4,i �=j

,

J3,0 :=
(
x2

2 − x3
1, x1x3, x2x3, x

4
1 − x3

1x2, x
3
3 − x4

1, xixj , x
2
j − x4

1
)
i�1,j�4,i �=j

,

J4,0 :=
(
x2

2, x1x3, x2x3, x
4
1 − x3

1x2, x
3
3 − x4

1, xixj , x
2
j − x4

1
)
i�1,j�4,i �=j

,

J5,0 :=
(
x3

1, x
3
2, xixj , x

2
j − x2

1x
2
2
)
i�1,j�3,i �=j

,

J6,0 :=
(
x3

1, x
3
2 − x2

1x2, xixj , x
2
j − x2

1x
2
2
)
i�1,j�3,i �=j

,

J7,α :=
(
x3

1 − αx1x
2
2, x

3
2 − αx2

1x2, xixj , x
2
j − x2

1x
2
2
)
i�1,j�3,i �=j

, α ∈ k \ {0,±1,±3}.

Moreover, At,α
n,3,2,n+7

∼= At′,α′

n′,3,2,n′+7 if and only if n = n′, t = t′ and, in the case t = t′ = 7, α′ ∈ Gα.

Proof. Let HA = (1, 2, 3, 2, 1) + (0, 0, 0, 0, 0) + (0, n − 2, 0, 0, 0). In this case A ∼= S[n]/Ann(F ) where
F = G +

∑n
j=3 y

2
j where G ∈ P [2] (see Theorem 3.1). Moreover, Equality (6) again implies that both

Ann(F ) = Ann(G)S[n] +
(
xixj , x

2
j − σ

)

i�1,j�3,i �=j



where σ ◦ G = 1 and the Hilbert function of S[2]/Ann(G) is (1, 2, 3, 2, 1). Thanks to the results proved in 
Section 3 of [5] we know that we can find an automorphism of S[2] such that Ann(G) can be put in one of the 
following forms

I5,0 := 
(
x3

1, x
3
2
)
, I6,0 := 

(
x3

1, x
3
2 − x2

1x2
)
, I7,α := 

(
x3

1 − αx1x
2
2, x

3
2 − αx2

1x2
)
,

where α ∈ k \ {0, ±1, ±3}. It is easy to check that these three ideals correspond to the polynomials 6y1
2y2

2,
6y2

1y
2
2 + y4

2 , 6y2
1y

2
2 + α(y4

1 + y4
2) respectively. Thus we can choose σ := x2

1x
2
2/24. The transformation xj 	→

xj/
√

4!, j � 3, finally yields to the ideals J5,0, J6,0, J7,α respectively.

∼=
Now we focus our attention on the other case HA = (1, 2, 2, 2, 1)∑+ (0, 1, 1, 0, 0) + (0, n  − 3, 0, 0, 0). Again 

from Theorem 3.1 we know that A S[n]/Ann(F ) where F = G+ j
n
=4 yj

2 where G is a quartic polynomial in P [3]. 
If G4 is the leading form of G, G(A) ∼= S[2]/Ann(G4) has Hilbert function (1, 2, 2, 2, 1). Thus [5](see Section 
4) yields that Ann(G4) can be put in one of the following forms

I1 :=
(
x1x2, x

4
1 − x4

2
)
, I2 :=

(
x2

2, x
4
1 − x3

1x2
)
.

Correspondingly G4 is either y1
4 + y2

4 or y1
4 +4y1

3y2.Since deg(G) = 4, it follows that either x4
1 − x4

2 or x4
1 − 

x3
1x2 is in Ann(G) respectively. Again Equality (6) implies that

Ann(F)=Ann(G)S[n]+
(
xixj,xj

2 − x4
1
)
i�1,j�4,i�=jwhere the Hilbert function of S[2]/Ann(G)is(1, 3, 3, 2, 1).

We examine the second case, the first one being similar. Since G(A) is a quotient⊕of gr(A), it follows that
the classes of x1, x2, x2

1, x2
2, x3

1, x3
2 and x4

1 in G(A) can be lifted to generators of i
∞

=2 M
i/Mi+1 ⊆ gr(A) as 

k-vector space, thus of M2 ⊆ A, due to Nakayama’s Lemma. In particular, x2
1, x2

2, x3
1, x3

2, x4
1 are linearly 

independent modulo Ann(G). In what follows we will denote by ai the class of xi in S[3]/Ann(G).
Notice that HS[3]/Ann(G)(2) = 3, thus, besides a2

1, a2
2, there exists another generator in degree 2. We can 

always assume that such a generator is aia3. Via a transformation of the form a3 	→ ai + a3 we can finally 
choose a1, a2, a3, a2

1, a2
2, a2

3, a3
1, a3

2, a4
1 as a basis of the ideal generated by (a1,a2,a3)as k-vector space. 

Recall that a4
1 = a4

2 in A.

There are quadratic forms qi,j ∈ (a2
1, a

2
2, a

2
3), 1 � i < j � 3, such that aiaj − qi,j ∈ (a1, a2, a3)3. Thus

aiaj − qi,j ∈ ldf(Ann(G)) = Ann(tdf(G)). Since y3
1 , y

3
2 ∈ tdf(G), it follows that qi,j = ui,ja

2
3 where ui,j ∈ k.

Thus

aiaj = ui,ja
2
3 + v1

i,ja
3
1 + v2

i,ja
3
2 + wi,ja

4
1 (9)

for suitable ui,j , v
1
i,j , v

2
i,j , wi,j ∈ k.

The linear automorphism of S[3]/Ann(G) given  by b3 := a3, bi := a1 + ui,3a3, i = 1, 2, allows us to 
assume ui,3 = 0 in Eq. (9), i = 1, 2. The automorphism defined by c1 := b1 + v1

2
,2b

2
2, c2 := b2 + v1

1
,2b

2
1, c3 := b3 

allows us to assume v1
1
,2 = v1

2
,2 = 0. Finally, the automorphism (d1, d2, d3) := (c1, c2 + w1,2c

3
1, c3) allows us to 

assume also w1,2 = 0, i.e.

d1d2 = u1,2d
2
3. (10)

Notice that, after the above automorphisms, d1, d2, d3, d2
1, d2

2, d2
3, d3

1, d3
2, d4

1 still is a basis of the ideal 
(d1, d2, d3) = (a1, a2, a3) as k-vector space.

Since ui,3 = 0,  then  Eq.  (9) and the vanishing (d1, d2, d3)5 = 0  yield  di3d3 = 0,  i = 1, 2. 
Substituting in Eq. (9) we also obtain did2

3 = 0,  i = 1, 2. Consequently Eq. (10) yield d2
1d2 = d1d

2
2 = 0.



 
 

 
 

Let d3
3 = λ1d

3
1 + λ2d

3
2 + λ4

1 = 0,  λ1, λ2, λ  ∈ k. The conditions di3d3 = 0 above also imply d4
3 = 0.  It  is

easy  to check that ai = di − ui,3d3 modulo (d1, d2, d3)5, i = 1, 2, thus the conditions a4
1 = a4

2 and d4
3 = 0 finally

give d4
1 = d4

2.
We have did3

3 = λidi
4, hence λi = 0 because di4 �= 0,  i = 1, 2. If λ = 0 too, then Eq. (9) would imply d1d

2
3 =

d2d
2
3 = d3

3 = 0, hence d2
3 ∈ Soc(S[3]/Ann(G)). But this is not possible because d2

3 is a minimal generator of
(d1, d2, d3)2. Thus we can assume λ = 1, whence d3

3 = d4
1.

Let (e1, e2, e3) := (d1, d2, d3 + v1
1
,3d

2
1 + v2

2
,3d

2
2 + w1,3d

3
1 + w2,3d

3
2). It is easy to check that we still have 

e1e
2
3 = 0,  i = 1, 2, and

e3
3 = e4

1, e4
1 = e4

2. (11)

Then e1e3 = v1
2
,3e

3
2 + v2

2
,3e1e

2
2 + w2,3e1e

3
2 = v1

2
,3e

3
2 because we checked above that e1e

2
2 = 0. Similarly 

e2e3 = v2
1
,3e

3
1.

We have v1
2
,3e

4
2 = e2(e1e

′
3) = e1(e2e3) = v2

1
,3e

4
1, thus v1

2
,3 = v2

1
,3. Due to Equalities (10), (11) and to 

eie
2
3 = 0,  i = 1, 2, we obtain u1,2 = v1

2
,3 = v2

1
,3 because e1e2e3 = v1

2
,3e

4
2 = v2

1
,3e

4
1 = u1,2e

3
3.

Either u1,2 = v1
2
,3 = v2

1
,3 = 0  or  u1,2 = v1

2
,3 = v2

1
,3 = μ2 for a suitable non-zero μ ∈ k. In the former case we 

recover J2,0. In the latter the transformation (f1, f2, f3) := (μ3e1, μ
3e2, μ

4e3) allows us to assume u1,2 = v1
2
,3 = 

v2
1
,3 = 1. In this case we thus recover J1,0.

In order to complete the proof we have to show that At,α
n,3,2,n+7

∼= At′,α′

n′,3,2,n′+7 if and only if n = n′,
t = t′ and, in the case t = t′ = 7, α′ ∈ Gα, one implication being an easy check. Conversely,
if At,α

n,3,2,n+7
∼= At′,α′

n′,3,2,n′+7, then n = n′. Let Ht,α := ldf(Jt,α) + (x3, . . . , xn) ⊆ S[n]. There exists an
epimorphism gr(At,α

n,3,2,n+7) � S[n]/Ht,α.
Moreover (see Sections 3 and 4 of [5] for the following results and undefined notation), we also have that S[n]/
Ht,α ∼= A1

2,2,2,8 for t ∈ {1, 2}, S[n]/H4,0 ∼= A2
2,2,2,8 for t ∈ {3, 4} and S[n]/Ht,α ∼= A2

8
,
−
3,2
t,α
,9 for

t ∈ {5, 6, 7} (see Section 4 of [5]). Since both A2,
t,α

3,2,9 and At
2,2,2,8 are Artinian Gorenstein local k-algebras with 

socle degree 4, it follows that

G
(
At,α

n,3,2,n+7
) ∼=

⎧⎪⎨⎪⎩
A2

2,2,2,8 if t = 1, 2,
A1

2,2,2,8 if t = 3, 4,
A8−t,α

2,3,2,9 if t = 5, 6, 7.

∼= A8−t′,α′

2,3,2,9 if and only if t = t′ and, in the case t = t′ = 1, alsoIn Section 3 of [5] we proved that A2
8
,
−
3,2
t,α
,9 α

′ 

∈ Gα.
It remains to prove that A1,0

n,3,2,n+7 � A2,0
n,3,2,n+7 and A3,0

n,3,2,n+7 � A4,0
n,3,2,n+7. Let us first examine the

second case. Consider the set

Ut :=
{
u ∈ At,0

n,3,2,n+7
∣∣ u2 ∈ M4}.

Let xi be the class of xi inside S[n]/Jt. If

u :=
n∑

i=1
λixi + λn+1x

2
1 + λn+2x1x2 + λn+3x

3
1 + λn+4x

2
1x2 + λn+5x

4
1,

then

u2 = λ2
1x

2
1 + 2λ1λ2x1x2 + λ2

2x
2
2 + λ2

3x
2
3 + 2λ1λn+1x

3
1 + (2λ2λn+1 + 2λ1λn+2)x2

1x2

+
(

n+1∑
i=4

λ2
i + 2λ1λn+3 + 2λ1λn+4 + 2λ2λn+2 + 2λ2λn+3 + 2λn+1λn+2

)
x4

1.



If u ∈ Ut we must have λ1 = λ3 = λ2λn+1 = 0. Moreover, u ∈ U3 if and only if λ2 = 0 too. It follows that

U3 =
〈
x4, . . . , xn, x

2
1, x1x2, x

3
1, x

2
1x2, x

4
1
〉
,

U4 =
〈
x2, x4, . . . , xn, x1x2, x

3
1, x

2
1x2, x

4
1
〉
∪
〈
x4, . . . , xn, x

2
1, x1x2, x

3
1, x

2
1x2, x

4
1
〉
,

hence A3
n,2,2,n+7 � A4

n,2,2,n+7.
Finally, we will prove that A1

n,
,0
3,2,n+7 � A2

n,
,0
3,2,n+7 by checking that gr(A1

n,
,0
3,2,n+7) � gr(A2

n,
,0
3,2,n+7). Recall 

that, if R is a regular local ring with maximal ideal M and A := R/I for a suitable ideal I ⊆ M2, then the 
minimal number of generators μ(I) of  I depends only on A since it coincides with the first deviation of A 
(see [22], Section 21: in particular, see Theorem 21.1(iii)).

Recall that gr(At,
n,

0
3,2,n+7) ∼= S[n]/ldf(Jt,0), t = 1, 2 (see Identity (3)). Trivially

ldf(J1,0) =
(
x1x2 − x2

3, x1x3, x2x3, x
4
1 − x4

2, x
3
3, xixj , x

2
j

)
i�1,j�4,i �=j

,

ldf(J2,0) =
(
x1x2, x1x3, x2x3, x

4
1 − x4

2, x
3
3, xixj , x

2
j

)
i�1,j�4,i �=j

.

It is not difficult to check that the system of generators for ldf(J2,0) indicated above is minimal and that
x3

3 = −x3(x1x2 − x2
3) + x2(x1x3) holds in ldf(J1,0). Thus μ(ldf(J1,0)) = μ(ldf(J2,0)) − 1 < μ(ldf(J2,0)),

whence A1,0
n,3,2,n+7 � A2,0

n,3,2,n+7. �
6. On the singular locus of HilbG

11(PN
k )

In the previous papers [8] and [9], we gave a complete description of the singular locus of HilbdG(Pk
N ) for

d � 10. In the present section we prove partial results about Sing(HilbG11(PN
k )), along the same lines. Since

HilbGd (PN
k ) = HilbG,gen

d (PN
k ) for d � 11, it suffices to check whether h0(X,NX) > dN = dim(HilbGd (PN

k )),
NX being the normal sheaf of X ⊆ PN

k .
As pointed out in the introduction, X ∈ Sing(HilbGd (PN

k )) if and only if there exists an irreducible
component Y ⊆ X which is singular in the corresponding Hilbert scheme. Moreover, in Lemma 2.3 of [8] it is 
proved that such a dimension can be computed with respect to any embedding, as for its smoothability. Thus 
it makes sense to say that the algebra A is unobstructed if and only if the same is true for some embedding 
spec(A) ⊆ Pk

N

Moreover, we can also restrict our attention to the case n � 4, since Gorenstein algebras A with HA(1) � 3 
are automatically unobstructed (see e.g. Proposition 2.5 and the references therein).

In particular, all the schemes in HilbG11(Pk
N ) containing as a connected component one of the obstructed 

irreducible schemes spec(A) described in Theorems 4.1 and 4.7 of [9], are obstructed too.
We quickly list the obstructed algebras up to dimension 11, using the results proven both in the two 

aforementioned theorems and in the remaining part of the present section. For the notation see also [9].

Hilbert function Notation Obstructedness Reference
(1, n, 1, . . . , 1) An,d iff n � 4
(1, n, 2, 1, . . . , 1) At

n,2,d iff n � 4
(1, 4, 2, 2, 1) At

4,2,2,10 for all t

[8], Section 5 
[8], Section 5 
[8], Section 5

(1, 4, 2, 2, 1, 1) At
4,2,2,11 for all t

(1, 4, 3, 1) At,α
4,3,9 iff t = 4, 5, 6

(1, 4, 3, 1, 1) At
4,3,10 iff t = 2, 3, 4, 5, 6

(1, 4, 3, 1, 1, 1) At
4,3,11 iff t = 2, 3, 4, 5, 6

(1, 4, 3, 2, 1) At,α
4,3,2,11 iff t = 2, 3, 4, 5, 6, 7

(1, 5, 2, 2, 1) At
5,2,2,11 for all t

(1, 5, 3, 1) At,α
5,3,10 for allt

(1, 5, 3, 1, 1) At
5,3,11 for all t

(1, 6, 3, 1) At
6,3,11 for all t

(1, 4, 4, 1) A4,4,10 iff β = 3
(1, 4, 4, 1, 1) A4,4,11 sometimes
(1, 5, 4, 1) A5,4,11 every such an algebra

Proposition 6.1 below 
[8], Section 5
[8], Theorem 4.1 
Proposition 6.1 below 
Proposition 6.3 below 
Proposition 6.1 below 
[8], Section 5 
Proposition 6.1 below 
Proposition 6.2 below 
[9], Theorem 4.7 [10] 
below Proposition 6.2 
below



 

 

 

 
 

 

 
 

Thus the cases that we have to investigate are

(1, 4, 2, 2, 1, 1), (1, 4, 3, 1, 1, 1), (1, 4, 3, 2, 1), (1, 4, 4, 1, 1),

(1, 5, 2, 2, 1), (1, 5, 3, 1, 1), (1, 5, 4, 1), (1, 6, 3, 1).

In all the aforementioned cases but HA = (1, 4, 4, 1, 1), we are able to give a simple answer.
In Theorem 5.1 we gave a complete classification of algebras A with HA = (1, 4, 2, 2, 1, 1). Let X := spec(A):
using Formula (8) and any computer algebra software (e.g. we used CoCoA: see [11]), one checks
via direct computation that h0(X, NX) = 49 > 44 = dim(HilbG11(P4

k)).
The classification of algebras A such that HA = (1, n, 3, 1, . . . ,  1) is described in [5], Section 6. We have
seven isomorphism classes denoted by At

n,3,11, t = 0, . . . , 6. We can again make a direct computation using
Formula (8) as in the previous case, obtaining

h0(X,NX) =

⎧⎪⎪⎨⎪⎪⎩
44 if n = 4 and t = 0, 1,
49 if n = 4 and t = 2, . . . , 6,
62 if n = 5 and t = 0, 1,
69 if n = 5 and t = 2, . . . , 6.

The classification of algebras A such that HA = (1, 5, 2, 2, 1) is described in [5], Section 4. We have three
non-isomorphic algebras denoted by At

5,2,2,11, t = 1, 2, 3. Again a direct computation as in the previous
cases yields h0(X,NX) = 69 in all the three cases.

We summarize the above results in the following

Proposition 6.1. Let A be a local, Artinian, Gorenstein k-algebra such that HA is either (1, 4, 2, 2, 1, 1), or (1, 5,
2, 2, 1), or  (1, 4, 3, 1, 1, 1), or  (1, 5, 3, 1, 1). Then  A is obstructed but the case A ∼= At

4,3,11 with t = 0, 1.

Now consider the case of an Artinian Gorenstein local algebra A with HA equal to either (1, 6, 3, 1), 
or (1, 5, 4, 1). We have the following, more general, result.

Proposition 6.2. Let A be a local, Artinian, Gorenstein k-algebra such that HA = (1, n,m, 1) with n � 5 and 
m = 3, 4. Then A is obstructed.

Proof. Assume that the statement is true when n = 5 and we prove it for n >  5 by induction on n. In
Proposition 4.8 of [8] and Theorem 4.2 of [6] flat families A →  A1

k with special fibre A and general fibre
isomorphic to A′ ⊕ k with HA′ = (1, n  − 1,m, 1) are explicitly constructed. Correspondingly, we have a flat
family of schemes X → A1

k in HilbdG(Pk
n). The general fibre of X is obstructed since it contains spec(A′) which is

obstructed by induction hypothesis. It follows that the limit point X is obstructed too.
Now we prove the statement for n = 5.  When  m = 3 the statement is part of Theorem 4.1 of [9]. Thus

it remains to examine the case m = 4. We have an isomorphism A ∼= S[5]/J , hence an embedding X ⊆ A5
k. We

will check that h0(X, NX) > 55. Using Formula (8) above, it suffices to verify that

dimk

(
S[5]/J2) 

> 66.
Since dimk(S[5]/J2) = dimk(gr(S[5]/J2)) = dimk(S[5]/ldf(J2)) (see Formula (1)), we can finally reduce to 
check that

dimk

(
S[5]/ldf

(
J2)) > 66. (12)

We now deal with the generators of J2. A system of generators for J2 certainly contains the products
of the elements of a system of generators of J , thus we first describe them. In Theorem 4.1 of [12] it is



 
 

 
 

 
 

 
 

proved that, up to a proper choice of the variables x1, . . . , x5, there is a cubic form G ∈ P [4] such that
J = Ann(G + y2

5).
In particular we can apply Eq. (5) to such an ideal J obtaining

J = Ann(G)S[4] + 
(
x2

5 − 2σ, xix5
)
1�i�4

for a suitable cubic form σ ∈ S[4]. We know that Ann(G) ⊆ S[4] is generated by six quadratic forms q1, . . . , q6 
and, possibly, by other cubic forms (see [9], Lemma 4.2). Thus J2 is also generated by the products

qiqi′ , qixjx5, qi
(
x2

5 − 2σ
)
, xjxj′x

2
5, xjx5

(
x2

5 − 2σ
)
,

(
x2

5 − 2σ
)2
,

i = 1, . . . , 6, j, j′ = 1, . . . , 4, and, possibly, by other polynomials whose lower degree forms have degree at least
five. Thus, in degree up to 3, the ideal ldf(J2) is zero and in degree 4 it is generated by the lower degree forms
of the generators listed above, i.e.

qiqi′ , qixjx5, qix
2
5, xjxj′ x2

5, xjx
3
5, x4

5,

i, i′ = 1, . . . , 6, j, j′ = 1, . . . , 4, j �= j′. Let W be the k-space generated by the above quartic forms.
The dimension of the subspace in S[5] of polynomials of degree up to 4 is 126, thus the first member of 

Inequality (12) is at least 126 − dimk(W ). We have to find an upper bound for dimk(W ).
The forms qiqi′ are at most 21. The forms qixj are cubic forms in Ann(G). Since the Hilbert function of

S[4]/Ann(G) is (1, 4, 4, 1) they are at most 19. It follows that at most 19 among the quartic forms qixjx5
are linearly independent.

We would have to add the other six forms qix2
5, i = 1, . . . , 6. But these forms are contained in the space

generated by the forms xjxj′ x2
5. The forms xjxj′ x2

5 are exactly 10. It remains only the forms xjx
3
5, which

are 4, and x4
5.

The above computations show that dimk(W4) � 55, thus dimk(S[5]/ldf(J2)) � 126 − 55 = 71 > 66. Taking 
into account of Inequality (12), the proof of the statement is now complete. �

It remains to examine the case of algebras A with HA = (1, 4, 3, 2, 1). In this case we described in Theorem
5.2 a complete classification. We have a 1-dimensional family and six other algebras. These last six cases can be
treated as in the proof of Proposition 6.2 obtaining

h0(X,NX) =
{

44 if t = 1,
49 if t = 2, . . . , 6.

In the first case, when we have a continuous family, we cannot compute such a dimension directly: we prove 
the obstructedness with the same argument used in the proof of Proposition 6.2.

Proposition 6.3. Let A be a local, Artinian, Gorenstein k-algebra such that HA = (1, 4, 3, 2, 1). Then  A is 
obstructed but the case A ∼= A1

4,3,2,11.

Proof. It remains to examine the case when X := spec(S[4]/J) where the ideal J is generated by two cubic 
forms q1, q2 ∈ S[2] and by (x1x3, x2x3, x1x4, x2x4, x3x4, x

2
3 − x2

1x
2
2, x

2
4 − x2

1x
2
2) (see  Theorem 5.2).

The ideal J2 is also generated by the products of the aforementioned polynomials. Again, in degree up 
to 3, the ideal ldf(J2) is zero. In degree 4 it is generated by the lower degree forms of degree 4 of the 
aforementioned products. The same is true in degree 5. Thus ldf(J2) has the following generators in degree 
up to 5:

qixjxh, qixhxh′ , xjxj′xhxh′ , xjxhx
2
h′ , x2

hx
2
h′ ,



i = 1, 2, j, j′ = 1, . . . , 4, h, h′ = 3, 4, j �= h, j′ �= h′. It is easy to check that there are exactly 22 generators of 
degree 4. The generators of degree 5 which do not come from products containing qi are exactly 40. The forms 
qixhxh′ are all in the space generated by xjxj′ xhxh′ . Finally, there are at most 8 other generators of the 
form qixjxh. Thus the generators of ldf(J2) up to degree 5 are at most 70. On the other hand the dimension 
of the space of polynomials of degree up to 5 in S[4] is 126. We conclude that

dimk

(
S[4]/J2) 

= dimk

(
S[4]/ldf

(
J2)) 

� 56 > 55.

Formula (8) then yields the obstructedness of the scheme X. �
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