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Abstract

Given metric spaces (X, d) and  (Y, ρ), a partial map between X and Y is a pair (D, u), where D is a 
closed subset of X and u : D → Y is a function. We introduce a general convergence notion for nets of 
such partial functions. While our initial description is variational in nature, we show that this 
description amounts to bornological convergence of the associated net of graphs as defined by 
Lechicki, Levi and Spakowski [26] with respect to a natural bornology on X × Y , and  which  places 
the work on continuous partial functions of Brandi, Ceppitelli, and Holá [12, 13,20,21] in a general 
framework.

1. Introduction

Let (X, d) and (Y, ρ) be metric spaces. By a partial function or a partial map from X to Y , we mean a pair
(D,u) where D is a nonempty closed subset of X and u : D → Y is a function (not assumed continuous
on D). We denote the space of all such maps by P[X,Y ], while by C[X,Y ] we mean those partial maps that
are continuous on their respective domains.

Continuous partial functions were first considered by Kuratowski [24] where X was assumed compact so
that for each (D,u) ∈ C[X,Y ], the graph of u, which we denote by Gr(u), is compact as well. He topologized
C[X,Y ] by equipping the graph space with the classical Hausdorff metric topology [3], identifying partial
functions with their graphs.

In the more general setting we have introduced, graphs of continuous partial functions, while not compact,
will be closed subsets of X×Y . Partial functions play a central role in mathematical economics, since they are
typical utility functions for agents. Tastes of agents on a space X are usually represented by a preference
relation on X, that is, a subset R of X × X where (x, y) ∈ R means the agent prefers alternative x
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to y. Following the seminal work of Debreu [15], utility functions have been considered as more suitable
mathematical tools to represent agents’ preferences. Similarities of agents can be described by a convergence
or topology on partial maps.

Having a dual representation of preferences – relations on one side equipped themselves with a convergence
or topology and functions on the other – demands that one connects the two possible conceptions of similarity.
This actually was the main motivation for Back to introduce the generalized compact open topology on utility
functions [2]. By exploiting a result of Levin [27], Back showed that when X is locally compact and separable,
classical Kuratowski convergence of preference relations can be expressed in terms of the convergence of
suitable utility functions representing the preferences in his topology. Our motivation here is to give a new
variational definition of convergence of partial maps that is compatible with Back’s topology in the locally
compact setting and that might be applicable beyond.

This paper proposes a new convergence on the set of the partial maps that can be described in different
ways. While our initial description is variational in nature, it can also be described in terms of convergence of
graphs and thus is consonant with the initial paper of Kuratowski. All of our descriptions involve bornologies,
macroscopic structures employed over the last 25 years to describe convergence of nets or sequences of sets, the
prototype being the now classical Attouch–Wets convergence, sometimes called bounded Hausdorff
convergence (see, e.g., [1,3,7,28]).

Definition 1.1. A bornology B on a metric space (X, d) is a family of nonempty subsets of X covering X, that is
stable under taking finite unions, and that is hereditary, i.e., stable under taking nonempty subsets.

The smallest bornology on X is the family of nonempty finite subsets of X, F, and the largest is the family of
all nonempty subsets of X, P0(X). Other important bornologies are: the family Bd of the nonempty d-bounded
subsets; the family Btb of the nonempty d-totally bounded subsets; and the family K of nonempty subsets of X
with compact closure. Bornologies in general topology were first considered by Hu [22]; their  role in locally
convex spaces is the subject of the monograph of Hogbe-Nlend [19].

Given a bornology B on (X, d), we can describe an associated convergence notion P(B) on P[X, Y ]: a rule
that assigns to each net in P[X, Y ] a (potentially empty) set of limits in P[X, Y ] (for adequate information
on nets for our purposes, see [23]). First, given a nonempty subset A of a metric space and ε > 0, let Aε

denote the ε-enlargement of A, that is, the union of all open balls of radius ε whose centers run over A.

Definition 1.2. Let (X, d), (Y, ρ) be metric spaces, and let B be a bornology on X. Let  Γ be a directed set and
let 〈(Dγ , uγ )〉γ∈Γ be a net in P[X, Y ]. We say that the net is P(B)-convergent to (D, u), and write (D, u)
∈ P(B)-lim(Dγ , uγ ), if for every B ∈ B and ε > 0, there exists γ0 ∈ Γ such that the following two conditions
hold for all indices γ ≥ γ0:

(1) for each nonempty subset B1 of B, u(D ∩B1) ⊂ [uγ(Dγ ∩Bε
1)]ε;

(2) for each nonempty subset B1 of B, uγ(Dγ ∩B1) ⊂ [u(D ∩Bε
1)]ε.

Notice that in conditions (1) and (2), the inside enlargement in the last expression is taken in X while the
outside enlargement is taken in Y . Even within C[X,Y ], limits need not be unique and we will characterize
bornologies for which uniqueness of limits occurs.

We will present analytical alternatives for conditions (1) and (2) that will be more manageable to check
convergence in practice. But the most tangible and visual description of P(B)-convergence is the following:
for each B ∈ B and ε > 0, eventually both Gr(uγ)∩(B×Y ) ⊂ Gr(u)ε and Gr(u)∩(B×Y ) ⊂ Gr(uγ)ε. In this
formulation, the enlargement is taken with respect to any metric compatible with the product uniformity. For
definiteness, we choose the box metric defined by (d×ρ)((x1, y1), (x2, y2)) := max{d(x1, x2), ρ(y1, y2)}. Read-
ers familiar with the set convergence literature will immediately recognize this as bornological convergence



of graphs in the sense of Lechicki, Levi and Spakowski [26]. Convergence of graphs of continuous functions in 
this sense, where the bornology on X is either K or Bd, has been studied extensively by Brandi, Ceppitelli, 
and Holá (see, e.g., [12–14]).

Our focus will be primarily on C[X, Y ] where the convergence is better behaved and where there is more 
interest. It is still better behaved when the partial functions are strongly uniformly continuous on the 
bornology in a sense consistent with the terminology of Beer and Levi [8]. This occurs when either (1) the 
bornology has a compact base, or (2) the partial functions have compact domains and the bornology has a 
closed base, and in these settings, we show that there are hit-and-miss topologies compatible with P(B)-
convergence, identifying continuous partial functions with their graphs. When (X, d) is locally compact and 
B = K, we prove directly that our hit-and-miss topology on C[X, Y ] is the generalized compact-open topology 
as defined by Back [2] in his pioneering study of utility functions for a noncompact commodity space, thus 
producing an alternate proof of a result of Brandi, Ceppitelli, and Holá [13, Theorem 4.2] which implicitly 
asserts that convergence as we have defined it is compatible with the generalized compact-open topology 
(note: in their result, the target space was Rm rather than a general metric space).

At the end of the article, we look at uniformizability and metrizability of P(B)-convergence. But we do not 
attempt to find general necessary and sufficient conditions for the convergence to be topological, even for 
continuous partial functions. Given that our convergence notion amounts to bornological convergence of nets 
of certain closed subsets of X × Y , there is hope for success. Indeed, in the definitive study of Beer, 
Costantini, and Levi [4], shields were introduced and used to characterize when bornological convergence of 
nets of closed subsets is topological.

2. Notation and background material

All metric space will be assumed to have at least two points. In a metric space (X, d) we will write Bd(x, ε)
for the open ball with center x and radius ε > 0. Thus, if A ⊂ X, Aε =

⋃
a∈A Bd(a, ε). For A ⊂ X, we

denote its closure and interior by A and int(A), respectively. We shall denote the nonempty closed subsets
of X by CL(X) and the nonempty compact subsets by K(X).

We next carefully go over terminology and notation relative to bornologies and bornological convergence.
As we will be working with bornologies on both X and X × Y , we will use a neutral letter for our metric
space in our discussion here.

Let B be a bornology on a metric space (Z, d). By a base B0 for the bornology B, we mean a subfamily
of B cofinal with respect to inclusion. Thus, for Bd, a countable base is {Bd(z0, n) : n ∈ N} where z0 is a
fixed but arbitrary point of the space. If the bornology contains a small ball around each point of Z, it is
called local. In case for every B ∈ B there is δ > 0 such that Bδ ∈ B, the bornology is called stable under
small enlargements. Evidently the bornology K is stable under small enlargements if and only if it is local,
i.e., the space is locally compact. As an example of a bornology that is local but not stable under small
enlargements, let Z = (0, 1], let f(z) = 1

z sin 1
z , and let B = {A ⊂ (0, 1] : f(A) is bounded}.

ε
γ

Bornological convergence as defined in [26] is split into upper and lower bornological convergences, and we 
will utilize both halves. A net 〈Dγ 〉γ∈Γ in P0(Z) is called B−-convergent (lower bornological convergent) to D 
∈ P0(Z) if for every B ∈ B and ε > 0, the following inclusion holds eventually:

D ∩ B ⊂ D .
We shall write D ∈ B−-lim Dγ when this occurs. The net is declared B+-convergent (upper bornological 
convergent) to  D if for every B ∈ B and ε >  0, the following inclusion holds eventually:

Dγ ∩ B ⊂ Dε.

In this circumstance, we shall write D ∈ B+-lim Dγ .



Naturally two-sided bornological convergence occurs when both upper and lower convergences occur, and 
we then write D ∈ B-lim Dγ . Special cases include convergence in Hausdorff distance when B = P0(X) and 
Attouch–Wets convergence when B = Bd [3]. The conditions under which this convergence is topologi-cal, 
uniformizable or pseudo-metrizable are now well-understood [4]. For the relation between bornological 
convergence of a net of sets and uniform convergence of the associated net of distance functionals on the 
bornology, the reader may consult [11]. We mention our favorite result in the theory which gives spe-cial 
weight to Attouch–Wets convergence: if the two-sided convergence for nets of nonempty closed sets is 
metrizable, then it is actually Attouch–Wets convergence under an equivalent remetrization, i.e., the initial 
bornology can be realized as Bρ for some equivalent metric ρ [7].

We now introduce standard notation relative to hit-and-miss topologies on CL(Z) [3]. If E is a nonempty 
subset of (Z, d), we define E−, E+ and E++ by the these familiar formulas:

• E− := {A ∈ CL(Z) : E ∩A 	= ∅},
• E+ := {A ∈ CL(Z) : A ⊂ E},
• E++ := {A ∈ CL(Z) : ∃ε > 0 such that Aε ⊂ E}.

We return to partial maps to end this section. The partial map (D̂, û) ∈ P[X,Y ] is called an extension
of the map (D,u) ∈ P[X,Y ] if D ⊂ D̂ and û(x) = u(x) for all x ∈ D. It is called a restriction of the map
(D,u) if D̂ ⊂ D and û(x) = u(x) for all x ∈ D̂.

3. Upper and lower convergence

We start by describing the lower and upper halves of the convergence on partial functions discussed in
the introduction.

Definition 3.1. Let (X, d) and (Y, ρ) be metric spaces. Let B be a bornology on X. A net 〈(Dγ , uγ)〉γ∈Γ in
P[X,Y ] is said to be P−(B)-convergent to (D,u) if for every B ∈ B and ε > 0, ∃γ0 ∈ Γ such that ∀γ ≥ γ0,
∀B1 ⊂ B, u(D ∩B1) ⊂ [uγ(Dγ ∩Bε

1)]ε.
If 〈(Dγ , uγ)〉γ∈Γ is P−(B)-convergent to (D,u), we write (D,u) ∈ P−(B)-lim(Dγ , uγ).

Definition 3.2. Let (X, d) and (Y, ρ) be metric spaces. Let B be a bornology on X. A net 〈(Dγ , uγ)〉γ∈Γ in
P[X,Y ] is said to be P+(B)-convergent to (D,u) if for every B ∈ B and ε > 0, ∃γ0 ∈ Γ such that ∀γ ≥ γ0,
∀B1 ⊂ B, uγ(Dγ ∩B1) ⊂ [u(D ∩Bε

1)]ε.
If 〈(Dγ , uγ)〉γ∈Γ is P+(B)-convergent to (D,u), we write (D,u) ∈ P+(B)-lim(Dγ , uγ).

The join of these convergences, meaning the convergence that ensues if we declare 〈(Dγ , uγ)〉γ∈Γ con-
vergent to (D,u) provided it is both lower and upper convergent to (D,u), is obviously our two-sided
P(B)-convergence of the Introduction.

We first observe that P−(B)-convergence implies lower bornological convergence of domains, while
P+(B)-convergence implies upper bornological convergence of domains.

Proposition 3.1. Let 〈(Dγ , uγ)〉γ∈Γ be a net in P[X,Y ] and let B be a bornology on X.

(1) If (D,u) ∈ P−(B)-lim(Dγ , uγ), then ∀B ∈ B, ∀ε > 0, eventually D ∩B ⊂ Dε
γ ;

(2) If (D,u) ∈ P+(B)-lim(Dγ , uγ), then ∀B ∈ B, ∀ε > 0, eventually Dγ ∩B ⊂ Dε.

Proof. We just verify statement (2). Fix B ∈ B and ε > 0 and choose γ0 ∈ Γ such that γ ≥ γ0 ⇒ ∀B1 ⊂ B,
uγ(Dγ ∩B1) ⊂ [u(D ∩Bε

1)]ε. Fix γ ≥ γ0 and x ∈ Dγ ∩B. With B1 = {x}, we get

uγ(x) ∈
[
u
(
D ∩ {x}ε

)]ε
.



 
 

ε
1

This means that for some w ∈ D ∩ Bd(x, ε) we have ρ(uγ (x), u(w)) < ε. In particular, x ∈ Bd(w, ε) ⊂ Dε, 
and as x ∈ Dγ ∩ B was arbitrary, we have Dγ ∩ B ⊂ Dε as required. �

We next reformulate Definition 3.1 and Definition 3.2 in ways more in the spirit of classical variational 
analysis.
Proposition 3.2. The condition ∀B ∈ B, ∀ε > 0, ∃γ0 ∈ Γ such that ∀γ ≥ γ0, ∀B1 ⊂ B, u(D ∩ B1) ⊂ [uγ (Dγ ∩ 
B )]ε in Definition 3.1 is equivalent to the following condition: ∀B ∈ B, ∀ε > 0, eventually supz∈D∩B 
infx∈Bd(z,ε)∩Dγ ρ(uγ (x), u(z)) < ε.
Proof. Suppose supz∈D∩B infx∈Bd(z,ε)∩Dγ ρ(uγ (x), u(z)) < ε. Immediately, if B1 ⊂ B, we have

sup
z∈D∩B1

inf
x∈Bd(z,ε)∩Dγ

ρ
(
uγ(x), u(z)

)
< ε.

ε
1This means that for all z ∈ D ∩ B1, there exists x ∈ Dγ ∩ {z}ε ⊂ Dγ ∩ B with ρ(uγ (x), u(z)) < ε as required.

Conversely, suppose the condition of Definition 3.1 holds for ε/2. With the choice of B1 = {z} as z runs over 
∈ D ∩ B, eventually

sup
z∈D∩B

inf
x∈Bd(z,ε)∩Dγ

ρ
(
uγ(x), u(z)

)
≤ sup

z∈D∩B
inf

x∈Bd(z,ε/2)∩Dγ

ρ
(
uγ(x), u(z)

)
≤ ε/2 < ε,

ε
1

completing the proof. 

Dually, we have the following result whose proof is left to the reader.

Proposition 3.3. The condition ∀B ∈ B, ∀ε > 0, ∃γ0 ∈ Γ such that ∀γ ≥ γ0, ∀B1 ⊂ B, uγ (Dγ ∩ B1) ⊂ [u(D ∩
B )]ε in Definition 3.2 is equivalent to the following condition: ∀B ∈ B, ∀ε > 0, eventually, supz∈Dγ∩B

infx∈Bd(z,ε)∩D ρ(u(x), uγ (z)) < ε.

We next make several qualitative observations about the P(B)-convergence in P[X, Y ] and its lower and 
upper halves.

• If for each γ ∈ Γ , (Dγ , uγ) = (D,u), then 〈(Dγ , uγ)〉γ∈Γ is P(B)-convergent to (D,u);
• If 〈(Dγ , uγ)〉γ∈Γ is either P(B)− or P(B)+-convergent to (D,u), then so is each subnet;
• Neither P(B)− nor P(B)+-convergence is altered by replacing d and/or ρ by uniformly equivalent

metrics;
• If (D,u) ∈ P−(B)-lim(Dγ , uγ), then (D̂, û) ∈ P−(B)-lim(Dγ , uγ) for any restriction (D̂, û) of (D,u).

Dually, if (D,u) ∈ P+(B)-lim(Dγ , uγ), then (D̂, û) ∈ P+(B)-lim(Dγ , uγ) for any extension (D̂, û) of
(D,u);

• If (D,u) ∈ P−(B)-lim(Dγ , uγ), then (D,u) ∈ P−(B̂)-lim(Dγ , uγ) for any bornology B̂ ⊂ B. The
same happens with upper convergences. Thus, the smaller the bornology, the coarser the conver-
gence;

• Looking at all partial functions that assume only the value y0 in some fixed target space Y allows us to 
recover, by means of the above definitions, the usual definitions of upper and lower bornological 
convergences in CL(X). Besides convergence in Hausdorff distance and Attouch–Wets convergence which 
we have already described, the choice of B = K yields convergence with respect to the Fell topology τFell on 
CL(X) [18] generated by all sets of the form V − where V is open plus all sets of the form (X\K)+ where K 
∈ K(X) [3, p. 141]. 



 
 
 
 
 

Identifying partial functions with their graphs in X×Y , we next show that P(B)− and P(B)+-convergence
in P[X, Y ] are bornological convergences in the sense of [26]. The bornology that is in play is the one having as
a base {B × Y : B ∈ B}, which we denote by B∗. Note that E ∈ B∗ if and only if πX(E) ∈ B, where πX is the
usual projection map on X × Y onto X. The cases when B = Bd and B = K for C[X, Y ] have  already been
studied by Brandi, Ceppitelli, and Holá [12–14]. This alternate understanding provides the easiest way for one
to determine if an actual sequence or net of partial functions either upper or lower converges.

Given a partial function (D, u) we remind the reader that we denote its graph simply by Gr(u) when D 
is clearly understood.
Theorem 3.1. Let 〈(Dγ , uγ )〉γ∈Γ be a net of partial functions from (X, d) to (Y, ρ) and let B be a bornology on 
X. Then for (D, u) ∈ P[X, Y ],

(1) Gr(u) ∈ (B∗)−-lim Gr(uγ) if and only if (D,u) ∈ P−(B)-lim(Dγ , uγ);
(2) Gr(u) ∈ (B∗)+-lim Gr(uγ) if and only if (D,u) ∈ P+(B)-lim(Dγ , uγ).

Proof. We prove statement (2), leaving (1) to the reader. Suppose (D,u) ∈ P+(B)-lim(Dγ , uγ). To verify
bornological convergence of graphs, it suffices to work with basic sets in B∗. Let B × Y be such a basic
set where B ∈ B. Let ε > 0 be arbitrary and choose an index γ0 ∈ Γ so large that for all γ ≥ γ0 both
(i) Dγ ∩ B ⊂ Dε, and (ii) supz∈Dγ∩B infx∈Bd(z,ε)∩D ρ(u(x), uγ(z)) < ε. Now fix γ ≥ γ0 and (z, uγ(z)) ∈
(B × Y ) ∩ Gr(uγ) so that z ∈ Dγ . By (i) Bd(z, ε) ∩ D 	= ∅, and by (ii) for some x in the intersection, we
have ρ(u(x), uγ(z)) < ε. As a result, (x, u(x)) ∈ Gr(u) and

(d× ρ)
((
x, u(x)

)
,
(
z, uγ(z)

))
< ε,

and this yields Gr(uγ) ∩ (B × Y ) ⊂ Gr(u)ε for γ ≥ γ0.
Conversely, suppose we have upper bornological convergence of graphs. Fix B ∈ B and ε > 0. Choosing

δ ∈ (0, ε), there exists γ1 ∈ Γ such that for all γ ≥ γ1, we have

Gr(uγ) ∩ (B × Y ) ⊂ Gr(u)δ.

Fix γ ≥ γ1 and let z ∈ Dγ ∩ B be arbitrary. Clearly, (z, uγ(z)) ∈ (B × Y ) ∩ Gr(uγ), so there exists
(x0, u(x0)) in Gr(u) which is δ-close with respect to the box metric to (z, uγ(z)), and we get x0 ∈ D with
d(z, x0) < δ < ε. At the same time, we get ρ(u(x0), uγ(z)) < δ so that

inf
x∈Bd(z,ε)∩D

ρ
(
u(x), uγ(z)

)
< δ,

and then taking the supremum over z ∈ Dγ ∩B yields at most δ < ε. �
Corollary 3.1. Let (X, d) and (Y, ρ) be metric spaces and let B be a bornology on X. Then P(B)-convergence
on P[X,Y ] agrees with B∗-convergence in the hyperspace of graphs of partial functions.

We give three examples for sequences of real-valued continuous functions that are each globally defined.

Example 3.1. Let X = (0, 1] and let Y = R. Let u : (0, 1] → R be defined by u(x) = 1
x sin 1

x and for each
n ∈ N, define un by

un(x) =
{
u(x) if 1

nπ ≤ x ≤ 1
.

0 otherwise



, 
 
 
 

 

With respect to the bornology B = P0(X), we have P+(B)-convergence but not P−(B)-convergence.
However if we replace P0(X) by K, we get lower convergence as well.

Example 3.2. Let X = [0, 1] and let Y = R. Let u be the zero function on [0, 1] and for each n ∈ N, define un

by

un(x) =
{

1 − nx if x ≤ 1
n

0 otherwise
.

n

With respect to the bornology B = P0(X), we clearly have P−(B)-convergence but not P+(B)-conver-
gence; in fact, upper convergence fails even when B = F. This example shows that pointwise convergence is 
not ensured by P−(B)-convergence, even when the bornology is as large as possible.

Example 3.3. Again, let X = [0, 1] and let Y = R. For each n ∈ N by the Tietze extension theorem [23, p. 242]
we can find a continuous function un : [0, 1] → [0, 1] such that for j = 0, 1, 2, . . . , n, un(j/n) = 0  if j is even
while un(j/n) = 1 if j is odd. By the intermediate value theorem, with B = P0(X), 〈un〉 is P(B)-convergent
to any function u : [0, 1] → [0, 1] whose graph is dense in the unit square (no such u can be continuous). The
same of course is true of any smaller bornology on X. This shows that limits can fail to be unique.

One might suspect that P(B)-limits are unique in C[X, Y ], but this is not always the case. What does 
occur is anticipated by [26, Proposition 4.5] that focuses on convergence of nets of closed sets.

Proposition 3.4. Let B be a bornology on (X, d). Then P(B)-limits are unique in C[X, Y ] for each metric target
space (Y, ρ) if and only if B is local.

Proof. If B is local, then so is B∗ so that by [26, Proposition 4.5], with respect to B∗-convergence on CL(X × 
Y ), limits are unique. Thus limits are unique in C[X, Y ] because elements of C[X, Y ] have closed  graphs.
Conversely, suppose the bornology fails to be local. There exists x0 ∈ X such that for each n ∈ N and each B ∈ 
B, there exist x(n, B) ∈ Bd(x0, 1 )\B. Take x1 	= x0 in X and let y0 ∈ Y . Directing N in the

usual way and B by inclusion and giving N × B the product direction, assign to (n, B) the continuous 
partial function mapping both x(n, B) and x1 to y0. Then two distinct limits of the net 〈({x(n, B), x1}, y0)〉 
are (i) the partial function with domain {x1} sending x1 to y0, and (ii) the partial function with domain 
{x0, x1} sending both points to y0. �

As we have seen from Example 3.3, in a space equipped with a local bornology, a net of continuous partial 
functions can have multiple discontinuous limits, but clearly at most one with closed graph. On the other 
hand we have this notable result.

Proposition 3.5. Let B be a local bornology on (X, d), and suppose the net of partial functions 〈(Dγ , uγ )〉γ∈Γ 
each with values in (Y, ρ) is P(B)-convergent to (D, u) ∈ C[X, Y ]. Then the net can P(B)-converge to no 
other partial function of any kind.

Proof. Suppose (C, v) is another partial function to which the net converges. Coincidence of D and C is a 
consequence of [26, Proposition 4.5]. Now suppose there is x ∈ D with u(x) 	= v(x). By continuity there exists 
ε >  0 so small  that Bd(x, ε) ∈ B, and

(
u
(
D ∩Bd(x, 2ε)

))ε ∩Bρ

(
v(x), ε

)
= ∅.



 

 
 

 

By lower convergence, applied to (D, v), eventually there is xγ ∈ Bd(x, ε) such that uγ(xγ) ∈ Bρ(v(x), ε).
By the definition of upper convergence, applied to the limit (D,u) where B1 = Bd(x, ε), eventually we
have

uγ(xγ) ∈ uγ

(
Dγ ∩Bd(x, ε)

)
⊂ u

(
D ∩

(
Bd(x, ε)

)ε)ε ⊂ (
u
(
D ∩Bd(x, 2ε)

))ε
,

a contradiction. This ends the proof. �
There is more than one way to define pointwise convergence for a net of partial functions, so that when

all domains coincide, we recover conventional pointwise convergence (see, e.g., [29]). We adopt one that is
as strong as any.

Definition 3.3. Let 〈(Dγ , uγ)〉γ∈Γ be a net of partial functions and let (D,u) be a partial function. We say
that 〈(Dγ , uγ)〉γ∈Γ converges pointwise to (D,u) if whenever x ∈ Dγ for a cofinal subset Γ0 ⊂ Γ , then
x ∈ D and u(x) = limγ∈Γ0 uγ(x).

A weaker requirement than pointwise convergence as we have defined it for partial functions is to require
that x be residually in the domains to guarantee that x be in D. Alternatively, we may change our definition
in a different direction by not insisting that membership of x to a cofinal set of domains forces membership
of x to D, rather, simply insisting that u(x) = limγ∈Γ0 uγ(x) whenever x happens to be in D.

Proposition 3.6. Let (X, d) and (Y, ρ) be metric spaces. Let B be a bornology on X. Suppose the net
〈(Dγ , uγ)〉γ∈Γ is in P[X,Y ].

(a) If the net is P+(B)-convergent to (D,u) ∈ C[X,Y ], then it is pointwise convergent to (D,u);
(b) If the net is P−(B)-convergent to (D,u) ∈ P[X,Y ], whenever V ⊂ X × Y is open and Gr(u) ∩ V 	= ∅,

then eventually Gr(uγ) ∩ V 	= ∅.

Proof. For (a), suppose for each γ in a cofinal set of indices Γ0, we have x ∈ Dγ . By  Proposition 3.1, we
have x ∈ D because D is closed. Choose δ < ε/2 such that if d(w, x) < δ, then ρ(u(x), u(w)) < ε/2. By (B∗)
+-convergence of graphs, since for each γ ∈ Γ0

(
x, uγ(x)

)
∈
(
{x} × Y

)
∩ Gr(uγ),

eventually in Γ0 there exists wγ ∈ D with

(d × ρ)
((
x, uγ (x)

)
, 
(
wγ , u(wγ )

)) 
< δ.

Applying the triangle inequality for ρ, we get  ρ(uγ (x), u(x)) < ε eventually in Γ0. Statement (b) is 
immediate from statement (1) of Theorem 3.1 and the inclusion F ⊂ B. �

It follows from [13, Proposition 5.1] and Theorem 3.1 that P(K)-convergence of a net in C[X, Y ] to a
continuous partial function guarantees convergence in the Fell topology of the associated net of graphs. We
also note that for sequences of closed subsets – in particular, sequences of graphs of continuous functions –
Fell convergence agrees with classical Kuratowski–Painlevé convergence. For nets, the latter convergence
is usually stronger, but the two agree when X is locally compact (see [3, pp. 147–149] and [13, Proposi-
tion 5.2]).

To finish this section, we give a simple example showing Fell convergence of graphs of continuous partial 

functions does not ensure P(K)-convergence, even if all functions are globally defined.



 
 

 
 

Example 3.4. Let X = {0} ∪ { 1
n : n ∈ N}, equipped with the Euclidean metric. Here K = P0(X). Let

u : X → R be the zero function and for each n ∈ N, let un be defined by

un(x) =
{
n if x = 1

n

0 otherwise
.

Clearly, we have P(K)−-convergence (and thus convergence of graphs in the lower half of the Fell topology)
but not P(K)+-convergence (note that we do have P(F)-convergence). If K is a compact set in X ×R that
misses Gr(u), then it misses Gr(un) as well for all n > max{y : ∃x with (x, y) ∈ K}. Thus we have
convergence of graphs in the two-sided Fell topology.

4. Compactness, strong uniform continuity and convergence of partial functions

Presently, we will show that P(B)-convergence of nets of continuous partial functions is topological 
provided B has a compact base. We actually display the topology as a hit-and-miss topology. For an 
alternate description of the topology in the special case B = K, we refer the reader to [13, Theorem 4.1].

But first we digress. We now define the notions of uniform continuity and strong uniform continuity for a 
partial map with respect to a bornology which reduce to those given by Beer and Levi in [8,9] for a globally 
defined function. In turn, this work has antecedents in [5].

Let us fix a partial map (D, u) and a bornology B.

Definition 4.1. Let B be a bornology on (X, d) and (D, u) ∈ P[X, Y ]. We say that (D, u) is  uniformly 
continuous relative to the bornology B if for every B ∈ B with D ∩ B 	= ∅, the map

u : D ∩B → Y

is uniformly continuous. We say that (D, u) is strongly uniformly continuous relative to B if for each B ∈ B 
and for each ε > 0 there is δ > 0 such that if d(x, w) < δ  and x, w ∈ D ∩ Bδ, then ρ(u(x), u(w)) < ε.

Remark 4.1. The following facts parallel results given in [8] and are easily proved:

• strong uniform continuity of (D,u) relative to B ensures (D,u) ∈ C[X,Y ] and its uniform continuity
relative to B;

• uniform continuity of (D,u) relative to B ensures (D,u) ∈ C[X,Y ] provided K ⊂ B;
• if (D,u) is uniformly continuous on D in the conventional sense, then (D,u) is strongly uniformly

continuous relative to each bornology;
• if B has a compact base, then each (D,u) ∈ C[X,Y ] is strongly uniformly continuous relative to B;
• if B is stable under small enlargements, then (D,u) is strongly uniformly continuous relative to B if

and only if it is uniformly continuous relative to B.

Strong uniform continuity of the limit permits a different description of P+(B)-convergence.

Theorem 4.1. Let B be a bornology on (X, d) and let (D, u) be strongly uniformly continuous relative to B with
values in (Y, ρ). Then a net  〈(Dγ , uγ )〉γ∈Γ in P[X, Y ] is P+(B)-convergent to (D, u) if and only if for each B
∈ B and ε > 0, there exists δ > 0 such that eventually, supz∈Dγ∩B supx∈Bd(z,δ)∩D ρ(u(x), uγ (z)) < ε.

Proof. In view of Proposition 3.3, we only need to prove that upper convergence of the net implies the 
“sup–sup” condition above.

Let B ∈ B and ε > 0 be fixed. Let ξ > 0 be such that 2ξ < ε. By strong uniform continuity of u relative to
B, there exists σ ∈ (0, ξ) such that x, y ∈ D ∩ Bσ and d(x, y) < 2σ imply ρ(u(x), u(y)) < ξ. By  Proposition
3.1 and Proposition 3.3, there exists γ0 ∈ Γ such that Dγ ∩ B ⊂ Dσ and



sup
z∈Dγ∩B

inf
x∈Bd(z,σ)∩D

ρ
(
u(x), uγ(z)

)
< σ

hold whenever γ ≥ γ0.
We will show that the choice δ = σ does the job. Fix γ ≥ γ0. For every z ∈ B ∩ Dγ , there exists

xz ∈ Bd(z, σ) ∩D such that ρ(u(xz), uγ(z)) < σ < ξ. Since Bd(z, σ) ⊂ Bσ, for every x ∈ D ∩ Bd(z, σ) we
have by strong uniform continuity ρ(u(x), u(xz)) < ξ. Thus for every x ∈ D ∩Bd(z, σ),

ρ
(
u(x), uγ(z)

)
≤ ρ

(
u(x), u(xz)

)
+ ρ

(
u(xz), uγ(z)

)
< 2ξ,

and thus supz∈B∩Dγ
supx∈Bd(z,σ)∩D ρ(u(x), uγ(z)) ≤ 2ξ < ε. This concludes the proof. �

Theorem 4.2. Let B be a bornology on (X, d) that is stable under small enlargements and let (D,u)
be uniformly continuous relative to B with values in (Y, ρ). Then a net 〈(Dγ , uγ)〉γ∈Γ in P[X,Y ] is
P(B)-convergent to (D,u) if and only if both of the following conditions hold:

(i) for each B ∈ B and ε > 0, eventually D ∩B ⊂ Dε
γ ;

(ii) for each B ∈ B and ε > 0, there exists δ > 0 such that eventually

sup
z∈Dγ∩B

sup
x∈Bd(z,δ)∩D

ρ
(
u(x), uγ(z)

)
< ε.

Proof. By Proposition 3.1 and Theorem 4.1, these conditions are necessary for P(B)-convergence because (u, 
D) is strongly uniformly continuous relative to B. For sufficiency, we need only show that given B ∈ B and 
ε > 0, eventually,

sup
z∈D∩B

inf
x∈Bd(z,ε)∩Dγ

ρ
(
uγ(x), u(z)

)
< ε.

Choose δ < ε so small that by (ii), for some γ0 ∈ Γ , whenever γ ≥ γ0,

(♦) sup
z∈Dγ∩Bδ

sup
x∈Bd(z,δ)∩D

ρ
(
u(x), uγ(z)

)
<

ε

2 ,

and so that Bδ ∈ B. Then choose by (i) γ1 ≥ γ0 such that γ ≥ γ1 implies D ∩ B ⊂ Dδ
γ . Let z ∈ D ∩ B be

arbitrary; then whenever γ ≥ γ1, there exists xz,γ ∈ Dγ ∩Bδ with d(z, xz,γ) < δ. In view of (♦), this gives
ρ(u(z), uγ(xz,γ)) < ε

2 , and so

sup
z∈D∩B

inf
x∈Bd(z,ε)∩Dγ

ρ
(
uγ(x), u(z)

)
≤ sup

z∈D∩B
inf

x∈Bd(z,δ)∩Dγ

ρ
(
uγ(x), u(z)

)
≤ ε

2 < ε

as required. �
In the remainder of the section, we show that two-sided convergence of continuous partial functions is

topological in two separate contexts in which the functions are automatically strongly uniformly continuous
with respect to the bornology. Our descriptions of the topologies show that convergence of partial functions
in these particular contexts is not affected by replacing our metrics d and ρ by equivalent metrics.

Theorem 4.3. Let B be a bornology with compact base on a metric space (X, d), and let (Y, ρ) be a second
metric space. Then P(B)-convergence on C[X,Y ] is compatible with the hyperspace topology on graphs of
partial functions generated by all sets of the form



(
V − :=

{
(D, u) : Gr(u) ∩ V 	= ∅

{
V open in X × Y,

(X × Y )\F 
)+ :=

{
(D, u) : Gr(u) ∩ F = ∅

{
F ∈ CL(X × Y ) and πX(F ) ∈ B ∩ K(X).

Proof. Suppose we have P(B)-convergence of 〈(Dγ , uγ)〉γ∈Γ to (D,u), that is, B∗-convergence of
〈Gr(uγ)〉γ∈Γ to Gr(u). As recorded in Proposition 3.6, by lower convergence alone, if V is open and
Gr(u)∩V 	= ∅, then Gr(uγ)∩V 	= ∅ eventually. Suppose F is closed in X×Y where πX(F ) ∈ B∩K(X) and
Gr(u)∩F = ∅. Now if D∩πX(F ) = ∅, then there is positive gap between them, so that by P(B+)-convergence
and Proposition 3.1, eventually Dγ ∩ πX(F ) = ∅. Thus eventually, Gr(uγ) ∩ F = ∅ as well. Otherwise,
D ∩ πX(F ) is a nonempty compact set and if û is the restriction of u to D ∩ πX(F ), by compactness of the
graph, we can find ε > 0 such that with respect to the box metric on the product, Gr(û) ∩ F ε = ∅.

We claim (♣): there exists δ < ε
2 such that for all x ∈ (πX(F ))δ ∩D we have

Bd×ρ

((
x, u(x)

)
,
ε

2

)
∩ F = ∅.

Otherwise, for each n ∈ N there is xn ∈ (πX(F ))1/n ∩ D such that Bd×ρ((xn, u(xn)), ε
2 ) ∩ F 	= ∅. Since

πX(F ) is compact and D is closed, 〈xn〉 has a cluster point p in D ∩ πX(F ), and by continuity of (D,u),
Bd×ρ((p, u(p)), ε) ∩ F 	= ∅, and a contradiction is obtained.

For all γ sufficiently large, we have Gr(uγ) ∩ (πX(F ) × Y ) ⊂ Gr(u)δ, and it follows from (♣) that
Gr(uγ) ∩ F = ∅ for all such γ.

Conversely, suppose 〈Gr(uγ)〉γ∈Γ converges to Gr(u) in the stated hit-and-miss topology. To show
P(B)-convergence, it suffices to show that for each compact B ∈ B and ε > 0, eventually both
(i) Gr(u) ∩ (B × Y ) ⊂ Gr(uγ)ε and (ii) Gr(uγ) ∩ (B × Y ) ⊂ Gr(u)ε.

Inclusion (i) follows from the fact that Gr(u)∩ (B×Y ) if nonempty is the graph of the restriction ũ of u
to the compact set B ∩D. As Gr(ũ) is a compact set, it may be covered by a finite number of open ε

2 -balls
with respect to the box metric whose centers lie in the graph of the restriction. If Gr(uγ) were to hit each
of these balls, then it is clear that Gr(u) ∩ (B × Y ) ⊂ Gr(uγ)ε.

For inclusion (ii), if Gr(u) ∩ (B × Y ) = ∅, take F = B × Y . Then (D,u) ∈ ((X × Y )\F )+ implies
(Dγ , uγ) ∈ ((X × Y )\F )+ eventually so Gr(uγ) ∩ (B × Y ) = ∅ eventually.

Otherwise, by the assumption that Y contains at least two points, it is not hard to show using the uniform
continuity of ũ that there exists δ < ε so that

πX

(
(B × Y )\Gr(ũ)δ

)
= B.

Put F = (B × Y )\Gr(ũ)δ. Clearly, (uγ , Dγ) ∈ ((X × Y )\F )+ implies

Gr(uγ ) ∩ (B × Y ) ⊂ Gr(u
)δ ⊂ Gr(u)δ,

and this establishes (ii). �
If B is a bornology with compact base, we now denote the topology of P(B)-convergence on C[X, Y ] by τP 

(B). The topology τP (K) is actually uniformizable when X is locally compact because the bornology is stable 
under small enlargements (see [13, Proposition 4.3] and Section 5 below).

In [2], Back introduced the so-called generalized compact-open topology on the set of all continuous real-
valued partial maps with closed domains in a locally compact separable space X. This topology, also known as 
the Back topology, is widely studied in the literature for its several important applications in mathemat-ical 
economics [2], dynamic programming models [25,30] and for differential equations [12]. Holá [20,21], 
following [12,13], generalized it by substituting for X and the reals arbitrary Hausdorff spaces, and studied 
various topological properties of the function space.



Most important for our purposes, Brandi, Ceppitelli, and Holá [13, Theorem 4.2] proved that when Y = 
R

m, K∗-convergence of nets of graphs of continuous partial functions is compatible with the generalized 
compact-open topology if and only if X is locally compact. Here, we intend to establish this compatibility for a 
general metric target space in a very different way by showing directly that our hit-and-miss topology of 
Theorem 4.3 agrees with Back’s topology.

In order to define the generalized compact-open topology on C[X, Y ], we introduce some standard no-
tation. In what follows, G is an open subset of X, K is a compact subset of X, and I is an open possibly empty 
subset of Y .

• [G] := {(D,u) ∈ C[X,Y ] : D ∩G 	= ∅};
• [K : I] = {(D,u) ∈ C[X,Y ] : u(D ∩K) ⊂ I}.

Definition 4.2. Let (X, d) and (Y, ρ) be metric spaces. The family of sets [G], [K : I] is a subbase for a
topology on C[X,Y ], denoted by τB , and called the generalized compact-open topology on C[X,Y ].

Theorem 4.4. Let (X, d) be a locally compact metric space and let (Y, ρ) be a metric space. Then on C[X,Y ],
the topology τB coincides with the topology τP(K).

Proof. The inclusion τB ⊂ τP(K) does not require local compactness of the domain. We show each subbasic
open set in τB lies in τP(K). Evidently whenever G is open in X we have [G] = (G × Y )−. Next suppose
K ⊂ X is compact and I ⊂ Y is open. If I = Y , then [K : I] = C[X,Y ] which is open in any topology on
C[X,Y ]. Otherwise, put F = K × (Y \I). Clearly, πX(F ) = K ∈ K(X) and [K : I] = ((X × Y )\F )+.

For the reverse inclusion, suppose (D,u) ∈ V − where V is open in X × Y . Choose x ∈ D such that
(x, u(x)) ∈ V . There exist ε > 0 such that Bd×ρ((x, u(x)), ε) ⊂ V . Then with K = {x} and I = Bρ(u(x), ε),
we have (D,u) ∈ [K : I] ⊂ V −.

Finally, suppose (D,u) ∈ ((X × Y )\F )+; denote the compact set πX(F ) by C. If D ∩ C = ∅, then

(D,u) ∈ [C; ∅] ⊂
(
(X × Y )\F

)+
.

Otherwise, let W = (X × Y )\F , an open neighborhood of Gr(u). For each x ∈ D ∩ C 	= ∅ we can find
a ball Bd(x, δ) and an open neighborhood I of u(x) such that Bd(x, δ) × I ⊂ W . Then by continuity and
local compactness we can find a smaller ball with center x whose closure is compact and is mapped into I

by u. By the compactness of D∩C, we can find a finite subset {x1, x2, . . . , xn} of D∩C and balls Bd(xj , εj)
covering D ∩C each with compact closure Cj for j = 1, 2, . . . , n in X such that u(D ∩Cj) ⊂ Ij where Ij is
open in Y and (Cj × Ij) ⊂ W . Put K = C\

⋃n
j=1 Bd(xj , εj), a possibly empty compact set. If K is empty,

then

(D,u) ∈
n⋂

j=1
[Cj : Ij ] ⊂

(
(X × Y )\F

)+
.

Otherwise, as K ∩D = ∅,

(D,u) ∈ [K : ∅] ∩
n⋂

j=1
[Cj : Ij ] ⊂

(
(X × Y )\F

)+
,

and this completes the proof. �
To end this section, we aim to show that P(B)-convergence on the space of continuous partial maps with

compact domains is topological provided the bornology has a closed base. This falls out of a more general
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result of interest about bornological convergence of nets of compact sets that was somehow overlooked in
earlier studies [4,7,26], despite the fact the argument used in the proof of [3, Theorem 5.1.6] can be adapted to
get this result. Clearly, the topology on K(X) we describe is a bornological modification of the classical
Vietoris topology [3, p. 47]; in fact when  B = P0(X), it is the Vietoris topology (see [3, Exercise 3.2.9]).

Theorem 4.5. Let B be a bornology on a metric space (X, d) with a closed base. Then B-convergence of nets of
nonempty compact subsets is compatible with the topology τ on K(X) generated all sets of the form {K ∈
K(X) : K ∩ V 	= ∅} where V is open in X plus all sets of the form {K ∈ K(X) : K ∩ F = ∅} where F ∈ CL(X) ∩
B.

Proof. It is easy to show that B-convergence of a net in K(X) ensures convergence in the topology τ , which
we leave as an exercise to the reader. Conversely, suppose 〈Kγ 〉 is a net in K(X) that is τ -convergent to K ∈
K(X). To check lower and upper bornological convergence, fix B ∈ B ∩ CL(X) and let ε > 0. We first look at
lower convergence B−.

If K ∩ B = ∅, then K ∩ B ⊂ K for all γ. Otherwise by its compactness, we can find {x1, x2, . . . , xn} ⊂  K ∩
B with K ∩ B ⊂ {x1, x2, . . . , xn}ε/2. By τ -convergence, eventually ∀j ≤ n, Kγ ∩ Bd(xj , ε/2) 	= ∅ and so K ∩ B
⊂ K eventually.

For B+-convergence, if B ∩ (X\Kε) = ∅, then for all γ,

Kγ ∩B ⊂ B ⊂ Kε.

Otherwise B1 = B ∩ (X\Kε) ∈ CL(X)∩B and K ∩B1 = ∅. By τ -convergence, there exists γ0 such that
γ ≥ γ0 ⇒ Kγ ∩B1 = ∅, and we compute for all such γ

Kγ ∩B = (Kγ ∩B1) ∪
(
Kγ ∩B ∩Kε

)
= ∅ ∪

(
Kγ ∩B ∩Kε

)
⊂ Kε,

which establishes B+-convergence. �
Corollary 4.1. Let B be a bornology with closed base on a metric space (X, d) and let (Y, ρ) be a second metric
space. Put Ck[X,Y ] := {(D,u) ∈ C[X,Y ] : D is compact}. Then P(B)-convergence restricted to Ck[X,Y ] is
compatible with a topology on Ck[X,Y ] generated by all sets of the form

{
(D,u) ∈ Ck[X,Y ] : Gr(u) ∩ V 	= ∅

}
V open in X × Y,

plus all sets of the form

{
(D, u) ∈ Ck[X, Y ] : Gr(u) ∩ F = ∅

{
F ∈ CL(X × Y ) ∩ B∗.

Proof. The induced bornology B∗ on X ×Y also has a closed base, so that by Theorem 4.5, B∗-convergence of 
nets of graphs of continuous partial functions that are defined on compact subsets of X can be described as 
above because each such function has compact graph. �
5. Uniformizability and metrizability of the space of partial maps

We shall assume throughout this section that the bornology B on X is stable under small enlargements.
We will first show directly that P(B)-convergence on P[X,Y ] is compatible with a uniformizable topology
that we denote by τO(B).



 
 

 
 

 
 

Consider the following family of subsets of P[X,Y ] × P[X,Y ]:

O(B, ε) :=
{[

(D,u), (C, v)
]

: sup
z∈C∩B

inf
x∈Bd(z,ε)∩D

ρ
(
u(x), v(z)

)
< ε ∧ sup

z∈D∩B
inf

x∈Bd(z,ε)∩C
ρ
(
v(x), u(z)

)
< ε

}

where B ∈ B and ε > 0 are arbitrary. If follows from the proof of Proposition 3.1 that [(D, u), (C, v)] ∈ O(B, 
ε) ⇒ C ∩ B ⊂ Dε and D ∩ B ⊂ Cε.

We want to prove that the family of all O(B, ε) is a base for a uniformity whenever B is stable under 
small enlargements.

Theorem 5.1. Let B be a bornology on X stable under small enlargements. The family of all O(B, ε) where B ∈
B and ε > 0 is a base for a uniformity on P[X, Y ] and the topology τO(B) determined by this uniformity is
compatible with P(B)-convergence.

Proof. Trivially, any O(B, ε) for B ∈ B, ε > 0 is symmetric and contains the diagonal of P[X, Y ]×P [X, Y ].
Moreover, for all B1, B2 ∈ B and ε1, ε2 > 0 there exist B3 ∈ B and ε3 > 0 such that O(B3, ε3) ⊂ O(B1, ε1) ∩
O(B2, ε2): take B3 = B1 ∪ B2, ε3 ≤ min{ε1, ε2}.

Now, we claim for all B ∈ B, ε > 0 there exists B1 ∈ B and ε1 > 0 such that O(B1, ε1) ◦ O(B1, ε1) ⊂ O(B, ε).
Since B is stable for small enlargements, we can find ε1 < ε/2 such that B1 := Bε1 ∈ B. Let now  [(D, f), (C,
h)] ∈ O(B1, ε1) and  [(C, h), (L, g)] ∈ O(B1, ε1). We want to prove that [(D, f), (L, g)] ∈ O(B, ε).

First, we claim that

∀z ∈ L ∩B, ∃x ∈ Bd(z, ε) : ρ
(
g(z), f(x)

)
< 2ε1.

Let z ∈ L ∩ B. Then there is y ∈ C ∩ Bd(z, ε1) such that ρ(h(y), g(z)) < ε1. Since y ∈ C ∩ Bε1 there is
x ∈ D ∩Bd(y, ε1) ⊂ Bd(z, ε) such that ρ(h(y), f(x)) < ε1. Thus ρ(g(z), f(x)) < 2ε1.

The claim established and with 2ε1 < ε in mind, it follows that

sup
z∈L∩B

inf
x∈Bd(z,ε)∩D

ρ
(
f(x), g(z)

)
< ε.

The other inequality is handled in the same way. Compatibility with our convergence for partial functions 
is obvious. �

In view of Proposition 3.4 the trace of τO(B) on C[X, Y ] is Hausdorff, while Example 3.3 shows that the 
induced topology on the entire space of partial functions need not be.

If we restrict our attention to (CL(X), τO(B)) by as usual considering only functions that assume the same 
constant value, the base of the uniformity on CL(X) we get is given by the following family of subsets of 
CL(X) × CL(X):

O(B, δ) =
{
(D, C) :  D ∩ B ⊂ Cδ, C ∩ B ⊂ Dδ

{
where B ∈ B, δ > 0, as identified in [7]. From this perspective, uniformizability of P(B)-convergence on P[X, 
Y ] also falls out of the uniformizability of B∗-convergence on P0(X × Y ), as B∗ is stable under small 
enlargements if B is (the general uniformizability result for bornological convergence of nets of arbitrary 
subsets with respect to a bornology that is stable under small enlargements is implicit in [26] and is explicit as 
[7, Theorem 3.1]).

Since the topology τO(B) is uniformizable, we are looking for necessary and sufficient conditions for the 
metrizability in the spirit of Corollary 3.9 in [7] that, for the convenience of the reader, we now state as a 
proposition.



Proposition 5.1. (See [7].) Let B be a bornology on (X, d) that is stable under small enlargements. 
The following are equivalent:

(1) B has a countable base;
(2) (CL(X), τO(B)) is metrizable.

Theorem 5.2. Let B be a bornology on (X, d) that is stable under small enlargements. The following are
equivalent:

(1) B has a countable base;
(2) (P[X,Y ], τO(B)) is pseudo-metrizable;
(3) (C[X,Y ], τO(B)) is metrizable.

Proof. (1) ⇒ (2) Let B0 = {Bk : k ∈ N} be a countable base for B such that Bk ⊂ Bk+1 for every k ∈ N. Clearly, 
{O(Bk, 1/n) : (k, n) ∈ N × N} is a countable family of entourages that forms a base for the defining 
uniformity, which gives pseudo-metrizability of (P(X, Y ), τO(B)). (2) ⇒ (3) As the defining uniformity is 
separated, we get metrizability. (3) ⇒ (1) It follows from Proposition 5.1. �
Corollary 5.1. (See [21].) The following are equivalent:

(1) X is locally compact and second countable;
(2) (C[X,Y ], τB) is metrizable;
(3) (C[X,Y ], τO(K)) is metrizable;
(4) X is a hemicompact space.

Corollary 5.2. For every metric space (X, d), both (C[X, Y ], τO(Bd)) and (C[X, Y ], τO(P0(X))) are metrizable.

The proximal topology, introduced in [6] and later given considerable attention in [3], is generated by all 
sets of the form V − where V runs over the open subsets of X plus all sets of form (X\B)++ where B ∈ CL(X). 
We recall that the bounded (resp. totally bounded) proximal topology on CL(X) is generated by all sets of form 
V − where V runs over the open subsets of X plus all sets of form (X\B)++ where B runs over Bd ∩ CL(X)
(resp  Btb ∩ CL(X)).

In [16], there is given the following definition which characterizes second countability of the totally 
bounded proximal topology σTB.

Definition 5.1. (See [16].) A metric space (X, d) is called weakly globally hemitotally bounded if there exists a 
sequence {Bn : n ∈ N} of totally bounded closed sets such that whenever V is open and B is totally bounded 
with B ∈ V ++, there exists a Bn with B ⊂ Bn and Bn ∈ V ++.

Corollary 5.3. (See [16].) For a metric space (X, d), and  B = Btb the following are equivalent:

(1) X is weakly globally hemitotally bounded;
(2) (C[X,Y ], τO(Btb)) is metrizable.

Proof. (2) ⇒ (1) follows from Proposition 4.13 in [16]. �
Corollary 5.4. (See [10,17].) For a metric space (X, d), the following are 
equivalent:

(1) each bounded set is totally bounded;
(2) (C[X,Y ], τO(Bd)) (bounded proximal topology) is metrizable.



Proof. (1) ⇒ (2) follows from Theorem 5.2 and Corollary 5.3.
(2) ⇒ (1) follows from Theorem 4.4 in [17]. �

Corollary 5.5. (See [10,17].) For a metric space (X, d), the following are 
equivalent:
(1) X is totally bounded;
(2) (C[X, Y ], τO(P0(X))) (proximal topology) is metrizable. 

Proof. (1) ⇒ (2) follows from Theorem 5.2 and Corollary 5.3.
(2) ⇒ (1) follows from Theorem 4.3 in [17]. �
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