
I. INTRODUCTION

IFFERENT applications require the generation of high
quality random number sequences, such as Cryptography,

Monte-Carlo numerical simulations and image processing [1]-
[4], just to mention a few. Cryptography, for example, aims to
keep messages safe: a private message, sent via physical
media in form of electromagnetic waves or electrical signals,
must be read only by the addressed recipient. The degree of
security of the message depends on the cipher and the key
used for encoding. Therefore, it is of major importance to have
complex ciphers and keys to avoid unauthorized persons
breaking the confidentiality of the message by simply
guessing the encoding parameters.
In the optimal case, the cipher must guarantee a broad space in
which the key is selected, and the probability to choose a
specific key must be uniformly distributed between all
possible values. The latter requirement is often achieved by
selecting the key using randomly generated numbers. Ideally,
a random number generator provides unbiased and
unpredictable data, hence its output is completely independent
from previously generated number sequences.
Three major families of Random Number Generators (RNG)

S. Tisa, A. Giudice and G. Simmerle are with Micro Photon Devices srl,
Bolzano 39100. Italy (Email: simone.tisa@micro-photon-devices.com).

F.Villa and F. Zappa are with Dipartimento di Elettronica, Informazione e
Biongegneria, Politecnico di Milano, Milano 20133, Italy (Email:
franco.zappa@polimi.it).

exist: Pseudo-RNG (PRNG), Chaotic RNG (CRNG) and
Quantum RNG (QRNG). Pseudo-RNGs produce sequences
which look like random but are, in fact, generated by
deterministic algorithms. Although PRNG are very fast and
cost-effective, they require a seed sequence to initialize the
generator state. The outcomes are then completely predictable,
periodical and seed-dependent. These vulnerabilities are a
major concern for data security.
CRNG are instead based on chaotic physical processes, i.e.
complex systems in which a small variation of initial
conditions produces large changes of some observables.
Typically, CRNGs exploit thermal noise [5], optical
fluctuations of laser radiation [6], jitter of oscillators in
integrated circuits [7], just to cite a few. High quality random
streams are obtained, though these generators themselves are
not intrinsically random. In fact, an attacker could get access
to the chaotic system and simultaneously measure the same
physical observables and reproduce the same random data.
Conversely, QRNGs are based on truly quantum physical
processes, whose randomness is guaranteed by theory and
experiments. In addition, an attacker, who would attempt to
measure the physical observables which are used to generate
the data, would destructively perturb the system, in most
cases, or would be unable anyway to clone the intercepted
message, e.g. by replicate the number of photons measured by
a photodetector. A special class of QRNG is based on optical
phenomena, such as the reflection or transmission of photons
by a semitransparent mirror [8], the time-lag between the
arrival of two photons from an uncorrelated light source to a
detector [9],[10], or the number of measured photons within a
defined time slot [11].
Generally, CRNG and QRNG are complex and expensive
compared to PRNG because dedicated electronic equipment is
required. Furthermore they are comparatively slow and the
output bit stream might suffer of bias and correlation due to
deviations of some components, e.g. employed detectors and
optical elements as in the system described in Ref. [8].
We present a new instrument for random number generation,
which overcomes the limitations of QRNGs, by exploiting a
single monolithic CMOS chip containing an array of
independent cells, each capable of detecting single photons
and properly generating random bits. The photon detection is
performed by a Single Photon Avalanche Diode (SPAD) [12]
in each array cell. The array-based architecture of the chip
allows to boost the rate of processed photons per second,

High speed Quantum Random Number generation
using CMOS photon counting detectors

Simone Tisa, Federica Villa, Andrea Giudice, Georg Simmerle, Franco Zappa, Member, IEEE

D

hence the random bits generation rate. With 1024 cells, laid
out as an array of 32 columns by 32 rows (see Fig. 1-B), the
present chip achieves a maximum bit rate of 200 Mbit/s. This
fast bit-rate makes the generator suited for “One-Time Pad”
quantum cryptography systems, in which a random bit is used
for each information bit sent through the communication
channel [7].

II. QRNG CHIP

The QRNG is based on the statistical detection of quantum
events by means of a quantum sensor, namely a Single Photon
Avalanche Diode (SPAD) [12], [14], i.e. a reverse biased p–n
junction, biased well above its breakdown voltage. Under this
operating condition, the electric field is so high that any
generated electron-hole pair will be accelerated across the
junction toward opposite directions. The energy of the charge
carriers is eventually sufficient to trigger a macroscopic
avalanche current of few milliamperes through the device.
Proper analog electronics senses the current onset and signals
the event through a digital pulse.

The use of a SPAD as a detector has several advantages.
Firstly, an event can be triggered by both “internal” thermal
generation processes and “external” photons. In this way, both
quantum processes can be exploited to provide the random
generation of bits. The former does not require any external
illumination, but the bit rate is limited by the thermal electron-
hole generation rate, which is usually limited to some kHz at
room temperature. Instead the latter is almost independent of
the chip temperature, and can easily be adjusted by a simple
(unfocused) illumination of the chip. A second advantage is
that a SPAD is intrinsically digital, since it acts as a “Geiger-
like” counter, hence no analog measurement of voltage or
current is needed and no further digital conversion is required.
It follows that no read-out noise is added to the measurement
process and no electrical noise affects the ignition of the
events, hence the randomness.

We designed the QRNG module shown in Fig. 1-A, based
on the CMOS chip shown in Fig. 1-B, an array of 1024
independent cells, organized as a 32x32 matrix, designed and
produced in a standard 0.35 µm CMOS technology [15].

As shown in Fig. 2, each cell has a SPAD driven by a
quench and control front-end electronics [16], which provides
the reverse bias voltage above breakdown, senses the
avalanche current onset and then quenches it. After ignition
and quench, the SPAD is then reset back to operation after a
so-called dead-time. An 8-bit Linear-Feedback Shift-Register

(LFSR) counts the quantum ignitions within well-defined time
slots, set by a Start and a Stop synch pulses. An on-chip global
electronics individually address the 1024 cells and provides
the data to an external FPGA.

III. MODULE ELECTRONICS

Once generated by the QRNG chip, the random stream is
read-out by an FPGA and then transmitted via USB link. We
employed a Spartan 6 Xilinx FPGA with an USB 2.0
controller. The FPGA provides all control signals to the chip,
for setting the LFSR integration time slots and performing the
counters read out. A bit-selector is introduced to remove some
of the bits from the stream according with their position in the
LFSR counter, depending on the average number of quantum
events detected by each array cell, in order to provide an equal
probability of generating zeroes and ones. After this
processing, a constant bit-rate of 200 Mbit/s of random data is
guaranteed.

In addition, the FPGA implements a basic PRNG, namely a
KISS (Keep It Simple Stupid) [17], which was introduced to
test the security level of the QRNG and, if needed, to enhance
it even further. Such KISS PRNG is initialized once, during
the startup of the electronics, through the quantum random
stream, and then runs indefinitely. When the security option is
activated, an XOR (exclusive OR) logic operation is
performed between the QRNG stream and the PRNG one. In
this way, the output stream remains random even in case of a
global failure of the QRNG chip or of just few cells. Note that
the KISS PRNG and the security option were not active for the
validation of the QRNG generator described in the followings,
since it proved to be effectively reliable and robust.

Finally, the stream is sent to a FIFO register to maximize
the transfer rate of random bits to the computer. By user
choice, in case the USB 2.0 link is not suitable for the
application, the FIFO data can be directed to a serial hardware
output (HW-OUT), which provides 3.3 V LVCMOS logic
values.

In order to provide extremely high quantum event
generation rates, the chip (i.e. the SPAD detectors) is
illuminated by means of a simple light emitting diode, driven

Fig. 1. (A) Picture of the QRNG module and (B) microphotograph of the
QRNG chip composed of 32 x 32 cells, with a SPAD each.

Fig. 2. QRNG module architecture. A single cell of the 32x32 QRNG
array chip is shown. All 1024 independent cells contain a SPAD detector, a
front-end electronics and a Linear Feedback Shift Register (LFSR) for
counting the quantum events. An FPGA reads out the chip and sends the
random binary stream to the computer, via an USB 2.0 interface.

by a current generator controlled via a digital filter within the
control unit. The filter monitors the total number of quantum
generation events after several read out operations and adjusts
the LED current to keep the mean ignition rate high enough to
provide the desired bit rate. In this way, the QRNG always
operates in optimal conditions, independently of variations of
physical parameters like LED efficiency, SPAD sensitivity,
chip tolerances and drifts, warm up at power on, aging, etc.
This controller is not critical for the random bit generation
process, but it is necessary to assure the performance and the
stability of the device over long operating times. In case of
failure of the illumination source, the system stops and
generates an error message to the user. Since the typical dead-
time of the SPAD front-end is 60 ns, a maximum number of
16.6·106 photons per second and per SPAD can be acquired
when the active LED illumination is on. It follows that up to
17·109 quantum events per second are available to generate
the random stream with the 32x32 cell array chip. Instead,
with no illumination, the QRNG chip can relies on the
intrinsic thermal generation rate, that is about 4kHz per SPAD
(the so called dark count rate), corresponding to an intrinsic
(no photon) rate of 4·106 quantum events per second, i.e.
about 4000 times lower a bit rate.

Compared to other commonly employed optical QRNG, the
presented CMOS chip architecture has several key advantages:
1) no complex electronic devices are required to control the
random generator; 2) it is fabricated in a standard and low-cost
CMOS technology, thus allowing the integration of any
possible digital processing; 3) it features a massive
parallelized acquisition of quantum events; 4) the array size,
i.e. number of rows and columns and SPAD dimensions, can
be tailored to match the required random number generation
rate for any specific application; 5) a simple FPGA or
microcontroller is sufficient to acquire the random bit-stream
and to transfer it to the end-user device; 6) apart from the
quantum origin of the random events (photons or spontaneous
thermal carrier generation), even the method for random bits
generation is simpler than those reported so far. In fact, the
cells are based on a simple single counter, which collects the
quantum events within constant time slots of about 20 µs.
Conversely, generators based on the photon timing (e.g. the
photon arrival time, in respect to a synch) require expensive
time-to-digital converters with accuracy of few picoseconds
[10] or anyhow high-bandwidth electronics.

IV. RANDOM GENERATION PROCESS

The QRNG chip settings can be properly adjusted in order
to maximize the random bits throughput. The array readout
time must be as short as possible in order to acquire the largest
number of counter values per second. The readout of the
whole SPAD array requires at least 1037 clock cycles, which
with a 50 MHz master clock (20 ns clock period), corresponds
to 20.74 µs. It follows that about 49.3 MB/s of raw data are
generated by the chip.

Each pixel counter accumulates the number of SPAD
ignitions due to three different contributions: dark-counts (due
to thermally generated carriers), detected photons (due to

external illumination), and afterpulses. The latter is due to
SPAD ignitions caused by avalanche carriers which get
trapped in the high field region and that are released later,
when the SPAD is reset again above breakdown [18]. These
three processes are stochastic. There is also a contribution due
to optical crosstalk among pixels, but since crosstalk for the
presented SPAD array is in the order of 10-5, its contribution
it’s truly negligible. The number of photons and dark-counts
stems from Poisson processes, thus the probability pi that the
ith counter counts N events follows a Poisson distribution of
mean λ:

pi N =
 λN e- λ

N!
(1)

For Poisson processes, the standard deviation, an index of
the dispersion (“noise”) of the values assumed by such a
stochastic variable around its mean, is equal to √λ. These
stochastic variables pi have mean and variance equal to λ and
are independent and identically distributed, assuming a
uniform generation rate (e.g. illumination) across the chip and
constant SPAD properties.

The resulting Poisson distributions are obviously not
uniform and need to be whitened. We observed that for a
Poisson distribution with a sufficiently high mean value (in
order to make it converging to a Gaussian), the extraction of
only the least significant bit (i.e. parity) results in a substantial
whitening of the stream, while maintaining the other stochastic
properties. Depending on the initial entropy of the stream, the
extraction of the less significant bits can be extended to the
second bit, third bit and so on. Of course a limit exists after
which the resulting stream will return to show significant
biasing. For a Poisson distribution with λ>>10 (converging to
a Normal distribution of variance λ), the entropy H is about
1/2log2(2πλe) and the min-entropy H∞ is about 1/2log2(2πλ),
which poses a maximum limit to the number of extracted bit.

The assumption of Poisson processes is only valid at low
quantum ignition rates, when the effect of the SPAD dead-
time is negligible. At high rates, the statistics of the quantum
events deviates from a Poisson distribution. The reason being
that the dead-time alters the process statistics in this way:

λreal= λ
Treal
T

=
λ
T

 T 1- λreal
tdead
T

=

(2)
=

λ

1+ λ tdeadT
where T is the integration time slot and λreal is the measured
counter mean value. For very large number of counts per
second, λreal saturates to the value T/tdead and the variance goes
to zero because as soon as a SPAD is triggered, quenched and
then reset back to working condition, a new generation
immediately triggers it again. In fact, the Poisson process is no
longer effective in generating random bits because the counter
has a very high probability to accumulate always the same
value. It follows that it is not correct to maximize the number
of generation and triggering events within the integration time

slot, thus to increase √λ and to generate as many random bits
as possible. Instead, an optimum detection rate should be
reached, depending on SPAD dead-time. Moreover, also
afterpulsing plays a role, causing a slight increase of standard
deviation compared to the ideal Poisson process.

The optimum of the standard deviation of the counter value
can be assessed through the experimental setup shown in Fig.
3. The beam of a solid-state CW laser emitting at 660 nm
(PDL 800D, Picoquant GmbH, Germany) is coupled to a
monomode fiber and attenuated by an electrically controlled
variable attenuator (DD-100-11-670-4, OZ Optics, Canada).
The collimated output beam is further attenuated by Neutral
Density (ND) filters (OD = 2.3) and focused on a single SPAD
of the array chip by a microscope objective (Plan N 10X,
Olympus, US). In our setup the beam had 9 µm diameter at the
focal plane, which is about two times smaller than the SPAD
20 µm diameter.

Firstly, we measured the average number of photons per
second as a function of the attenuation, by using an optical
power meter (1931-C, Newport Corporation, US) placed in
front of the microscope objective. Then we acquired the
counter value at different dead-time values and at increasing

photon rates. Each measurement was repeated from 5,000 to
60,000 times every 20.74 µs in order to compute its mean and
standard deviation.

Results are shown in Fig. 4. As predicted by Eq. (2), the
mean counter value saturates at high photon rates: this is
clearly visible at longer dead-time values (above 100 ns, with
the measurement conditions of the experiment). On the other
hand, the standard deviations (see Fig. 4-B) show marked
peaks, at a value higher than expected for a pure Poisson
distribution.

In conclusion, the experiments show that the dead-time
must be set to the lowest possible value (50 ns, blue curve
with diamond * markers) in order to maximize the standard
deviation, i.e. the entropy of the process. Furthermore, the
number of quantum events detected by the SPADs must be
also adjusted to be close to the peak. Assuming a 50 ns dead-
time, an illumination intensity of about 180 - 200 photons per
integration time is required, i.e. a photon flux of about 107
photons/s.

In the QRNG module described in this work, such photon
rate was provided by four LEDs controlled in closed loop by a
current driver, with a mean value of about 200 photons per
pixel per frame, corresponding to a measured variance of
about 400 (see Fig. 4B). H is thus about 6.3 bits and H∞ is
about 5.6 bits. That means that it is in theory possible to
extract up to 5.6 bits from each 8 bits word, obtaining a stream
with full entropy. In order to allow for a safe margin
accounting for not considered non-idealities, we decided to
extract only the 4 least significant bits, corresponding to an
overall generation rate of 200Mbit/s.

V. EXPERIMENTAL RESULTS

We tested the quality of the 200 Mbit/s random binary
stream generated by the QRNG chip by means of two of the
most popular test suites for random number generators,
Dieharder [19] and TestU01 [20]. The C libraries used to
control the QRNG chip were directly integrated in the source

Fig. 3. Experimental setup used to optimize the QRNG chip: a 660 nm
CW laser is attenuated and then focused into a single SPAD by a 10x
objective.

Fig. 4. (A) Measured mean values accumulated by the counter as a function of the number of photons detected by the SPAD, at different dead-time
values. The curves saturate because many photons hit the SPAD, even during the dead-time. (B) Measured standard deviations as a function of the total
number of detected photons. As expected, shorter dead-times cause broader dispersions of counter values around the mean value. Therefore an optimum
can be found.

code of both test suites, in order to prove the long-term
stability of the QRNG in generating random numbers at high
rates and at frequent requests of new data streams. As a further
crosscheck, we also applied the original test suites to random
data streams previously stored on the hard-drive and generated
by the same QRNG chip. No differences on the test results
were observed.

Dieharder is an extension of the “Diehard Battery of Tests
of Randomness” [21], a very well-known random number test
suite developed by G. Marsaglia. In particular, Dieharder was
extended with specific tests for checking bit-level randomness
of sequences produced by physical RNG (Monobit, Runs and
Serial). Furthermore, it incorporates tests from the Statistical
Test Suite (STS) developed by the National Institute for
Standards and Technology (NIST) [22].

Table I shows the results of 10 complete and independent
executions of the Dieharder test suite. In most cases, the

obtained p-values are above 0.01 and below 0.99 and only few
exceptions are obtained outside these boundaries, producing a
warning message. However, the number of suspect p-values is
within the expected statistical failure rate, assuming a 1%
significance level, and thus perfectly normal for a good
generator, as explained in Dieharder documentation [19]. In
addition, the p-values are well uniformly distributed within 0
and 1. The mean values, computed over single test types and
executions, are sufficiently close to 0.5. Only the
diehard_sums test produces undesired results, but this is due to
some unsolved bugs in the test code [19], that it is thus
considered not reliable even by the test suite author. As a
comparison, cryptographically secure random number
generators, as the Advanced Encryption Scheme (AES), and
the XOR between the QRNG and the KISS PRNG
(implemented into the FPGA of our QRNG module) gave
similar p-value distributions (data not shown).

TABLE I
SUMMARY OF THE RESULTS OF TEN EXECUTIONS OF THE DIEHARDER STATISTICAL TEST SUITE. THE P-VALUES ARE LISTED FOR EACH TEST FAMILY.

Test 1 2 3 4 5 6 7 8 9 10 Mean

diehard_birthdays 0.3076 0.3885 0.8915 0.0920 0.2119 0.0421 0.6225 0.6221 0.6560 0.9465 0.4781
diehard_operm5 0.6092 0.7151 0.9232 0.3270 0.3980 0.4632 0.9970 0.9085 0.5261 0.4593 0.6327
diehard_rank_32x32 0.7586 0.0148 0.3911 0.2398 0.0673 0.4608 0.4535 0.9969 0.3683 0.2394 0.3991
diehard_rank_6x8 0.2750 0.4677 0.3459 0.9769 0.4058 0.9870 0.5612 0,8559 0.8352 0.1099 0.5821
diehard_bitstream 0.0664 0.6368 0.1847 0.8392 0.3445 0.3888 0.3830 0.3433 0.9891 0.4336 0.4609
diehard_opso 0.4493 0.9904 0.2566 0.7402 0.8743 0.4962 0.3230 0.9607 0.9712 0.0681 0.6130
diehard_oqso 0.1313 0.6521 0.9631 0.9070 0.9346 0.5601 0.5631 0.0604 0.7495 0.8364 0.6358
diehard_dna 0.1121 0.4518 0.3289 0.1370 0.0001 0.3805 0.1516 0.7131 0.3625 0.9875 0.3625
diehard_count_1s_str 0.9560 0.7377 0.2618 0.8614 0.2909 0.4300 0.0870 0.9520 0.2478 0.9515 0.5776
diehard_count_1s_byt 0.2358 0.7591 0.7140 0.1464 0.4822 0.4741 0.1418 0.4085 0.0355 0.0617 0.3459
diehard_parking_lot 0.8727 0.1671 0.9570 0.5313 0.6291 0.9717 0.3695 0.3190 0.7734 0.2540 0.5845
diehard_2dsphere 0.7778 0.8088 0.4922 0.9094 0.8781 0.1495 0.7450 0.7547 0.9576 0.8871 0.7360
diehard_3dsphere 0.6588 0.9591 0.5813 0.9995 0.9444 0.1866 0.2974 0.4312 0.8888 0.4421 0.6389
diehard_squeeze 0.5869 0.4116 0.7330 0.7908 0.6881 0.2039 0.7038 0.2007 0.2033 0.7529 0.5275
diehard_sums ** 0.0097 0.0717 0.0359 0.2323 0.0091 0.0053 0.3168 0.1191 0.6860 0.0201 0.1506
marsaglia_tsang_gcd 0.5372 0.9716 0.5264 0.1508 0.1409 0.0160 0.4270 0.4694 0.9310 0.7774 0.4948
marsaglia_tsang_gcd 0.8496 0.8879 0.1440 0.8815 0.3175 0.9092 0.2900 0.0506 0.3872 0.9979 0.5715
sts_monobit 0.0232 0.9088 0.8883 0.8851 0.8387 0.3365 0.4675 0.8459 0.9966 0.5923 0.6783
sts_runs 0.6791 0.7988 0.6423 0.8294 0.7319 0.1705 0.2974 0.6352 0.9967 0.7853 0.6567
rgb_kstest_test 0.9513 0.8005 0.5268 0.2059 0.6548 0.6139 0.5529 0.1210 0.4686 0.3972 0.5293
dab_bytedistrib 0.5512 0.0672 0.3609 0.6737 0.5163 0.3615 0.3049 0.4640 0.3203 0.0973 0.3717
dab_dct 0.1387 0.3679 0.5654 0.1441 0.1231 0.0406 0.4712 0.2342 0.8333 0.9845 0.3903
dab_monobit2 0.0425 0.2548 0.1360 0.9773 0.6560 0.1601 0.7439 0.5859 0.3931 0.6717 0.4621
sts_serial * 0.4584 0.4807 0.5967 0.5733 0.6404 0.5538 0.6001 0.5897 0.6433 0.5137 0.5650
rgb_bitdist * 0.6155 0.3641 0.5680 0.5508 0.5550 0.5925 0.6804 0.6519 0.5825 0.4730 0.5634
rgb_minimum_distance * 0.1913 0.2326 0.4021 0.4785 0.3705 0.3996 0.6690 0.5090 0.7495 0.4966 0.4499
rgb_permutations * 0.5470 0.6697 0.4188 0.5457 0.3954 0.4412 0.5461 0.8310 0.6045 0.6972 0.5697
rgb_lagged_sum * 0.4910 0.5497 0.6195 0.5459 0.5702 0.5379 0.4864 0.4917 0.5671 0.6088 0.5468
dab_filltree * 0.2873 0.8643 0.8436 0.6482 0.7891 0.5431 0.1971 0.5901 0.7201 0.4563 0.5939
dab_filltree2 * 0.2854 0.8174 0.4092 0.2859 0.3400 0.2796 0.1865 0.1648 0.7603 0.7939 0.4323
diehard_runs * 0.5100 0.3717 0.8628 0.4501 0.8081 0.9790 0.6927 0.4991 0.1212 0.6766 0.5971
diehard_craps * 0.2298 0.8773 0.2641 0.7589 0.2988 0.5364 0.6011 0.3626 0.4948 0.3664 0.4790
Mean 0.4436 0.5787 0.5261 0.5724 0.4970 0.4272 0.4666 0.5232 0.6194 0.5574 0.5212

(*) Several tests are repeated more than once in the test suite with different parameters. Thus, only the average p-value is reported.

(**) diehard_sums generates p-values which are not uniformly distributed. Similar p-value distributions were obtained by executing the test suite with
AES and making the XOR between the QRNG output and the KISS PRNG (data not shown). The results confirm that diehard_sums is not a reliable test, as
already stated in the Dieharder documentation [19].

The second test suite applied to the QRNG was Big Crush
from TestU01 [20] that requires a much larger number of
random data compared to Dieharder in order to remove
suspicious (i.e. too close to 0 or 1) p-values, which are due to
less probable (although not impossible) data streams and not
to failures of the generator under test. As shown in Table II,
the QRNG chip successfully passed all TestU01 tests.

In addition to the statistical test suites, we tested correlation
and bias of the output bit stream in a more severe way. In fact,
physical RNG might suffer from correlations for short lags
and bias due to either limitations of the used instrumentation
or the random bit extraction process (see Ref. [11] and
references therein). The probability of ‘1’ was computed from
200 binary streams of 32 Gbit each in order to stress the
presence of bias of the random bit generation process. The
distribution of the computed bias from each stream is shown
in Fig. 5. As predicted by the central limit theorem, we obtain
a Gauss-shaped distribution, peaked at about λt = 0 and with a
standard deviation of σt = 0.5/√N = 2.8·10-6, for N = 3.2·1010
bits.

The measured distribution of the bias was compared against
the expected normal distribution, using a Kolmogorov-

Smirnov test [23]. The null-hypothesis, i.e. the bias is
normally distributed with mean (λt) and variance (σt) as given
by the theory, was verified and led to a p-value of 0.89.
Therefore, we can claim that the dispersion of the measured
bias is dominated by statistical fluctuations for streams up to
32 Gbit.

The serial autocorrelation function was also estimated
according to the following equation [24]:

𝜌! =
1

𝑀 − 𝑘
∗

𝑏! ∗ 𝑏!!! − 𝜇!!!
!!!

𝜎!!

where bi is the ith bit of the binary stream, µb and σb
2 are the

mean and variance of the random bi which are assumed to be
independent and identically distributed. These quantities are
unknown, but they can be estimated from the data using the
sample mean and variance formula.

Fig. 6 shows the first 1024 coefficients of the serial
autocorrelation obtained from a 160 Mbit stream. The
autocorrelation coefficients are clearly randomly distributed
around 0 and their standard deviation is about 0.79·10-4, as
expected for a random stream of 160 Mbit [6]. Furthermore,
no spikes are observed in the function, which might be a hint
for correlations in the data streams.

TABLE II
RESULTS FROM THE EXECUTION OF THE BIG CRUSH TEST SUITE (TESTU01).

THE SUITE WAS EXECUTED TWICE. ALL TESTS WERE PASSED IN BOTH CASES.

Test Result

SerialOver PASSED
CollisionOver PASSED
BirthdaySpacings PASSED
ClosePairs PASSED
SimpPoker PASSED
CouponCollector PASSED
Gap PASSED
Run (sknuth) PASSED
Permutation PASSED
CollisionPermut PASSED
MaxOft PASSED
SampleProd PASSED
SampleMean PASSED
SampleCorr PASSED
AppearanceSpacings PASSED
WeightDistrib PASSED
SumCollector PASSED
MatrixRank PASSED
Savir2 PASSED
GCD PASSED
RandomWalk1 PASSED
LinearComp PASSED
LempelZiv PASSED
Fourier3 PASSED
LongestHeadRun PASSED
PeriodsInStrings PASSED
HammingWeight2 PASSED
HammingCorr PASSED
HammingIndep PASSED
Run (sstrings) PASSED
AutoCorr PASSED

Fig. 5. Measured bias for 200 binary streams of 32 Gbit each. No
correlation of the data is visible. As expected, the bias has a mean equal to
zero and standard deviation below 3·10-6.

Fig. 6. Serial autocorrelation coefficients evaluated for a sequence of 160
Mbit; the first 1024 coefficients show no correlation of the data. The
horizontal lines define the ±3σ range;

VI. CONCLUSIONS

We presented a very effective and reliable optical quantum
random number generator, implemented into a single standard
CMOS chip. The device is made of an array of independent
cells (1024 in our implementation), each containing a single
photon avalanche diode, a sensing front-end and a digital
counting electronics. By counting quantum events like
detected photons or electron-hole thermal generations, the
QRNG produces very high-quality random bit streams, up to
200 Mbit/s.

Future works will be focused in pushing the generation rate
to higher values, up to the theoretical limit as predicted by
Shannon’s entropy.

REFERENCES
[1] N. Gisin, G. Ribordy, W. Tittel and H. Zbinden, “Quantum

cryptography”, Rev. Mod. Phys., vol. 74, pp. 145-195, March 2002.
[2] I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré and N.

Gisin, “Distribution of Time-Bin Entangled Qubits over 50 km of
Optical Fiber”, Phys. Rev. Lett. vol. 93, pp. 180502, Oct. 2004.

[3] P. P. Boyle, “Options: a Monte Carlo Approach”, J. Fin. Econ., vol. 4,
pp. 323-338, 1977.

[4] G. Winkler, Image Analysis, Random Fields and Markov Chain Monte
Carlo Methods: A Mathematical Introduction, Berlin, Germany,
Springer, 2002.

[5] T. Saito, K. Ishii, I. Tatsuno, S. Sukagawa, and T. Yanagita,
“Randomness and Genuine Random Number Generator With Self-
testing Functions”, presented at Joint International Conference on
Supercomputing in Nuclear Applications and Monte Carlo, 2010.
Hitotsubashi Memorial Hall, Tokyo, Japan, edited by K. Todani and T.
Takeda.

[6] C. R. S. Williams, J. C. Salevan, X. Li, R. Roy and T. E. Murphy, “Fast
physical random number generator using amplified spontaneous
emission”, Opt. Express, vol.18, no. 23, pp. 23584-23597, 2010.

[7] B. Sunar, W. J. Martin and D. R. Stinson, “A Provably Secure True
Random Number Generator with Built-In Tolerance to Active Attacks”,
IEEE Trans. Com., vol. 56, pp. 109-119, Jan. 2007.

[8] A. Stefanov, N. Gisin, O. Guinnard, L. Guinnard and H. Zbinden,
“Optical quantum random number generator”, J. Mod. Opt., vol. 47, no.
4, pp. 595-598, Jul. 2000.

[9] M. A. Wayne and P. G. Kwiat, “Low-bias high-speed quantum random
number generator via shaped optical pulses”, Opt. Express, vol. 18, no.
9, pp. 9351-9357, 2010.

[10] M. Wahl, M. Leifgen, M. Berlin, T. Rohlicke, H.-J. Rahn and O.
Benson, “An ultrafast quantum random number generator with provably
bounded output bias based on photon arrival time measurements”, Appl.
Phys. Lett., vol. 98, pp. 171105, 2011.

[11] M. Fürst, H. Weier, S. Nauerth, D. G. Marangon, C. Kurtsiefer and H.
Weinfurter, “High speed optical quantum random number generation”
Opt. Express, vol. 18, no. 12, pp. 13029-13037, 2010.

[12] F. Zappa, S. Tisa, A. Tosi, S. Cova, “Principles and features of single-
photon avalanche diode arrays,” Sensors and Actuators A, vol. 140, pp.
103–112, 2007.

[13] S. Tisa, F. Zappa, A. Tosi, S. Cova, “Electronics for single photon
avalanche diode arrays”, Sensors and Actuators A, vol. 140, pp. 113-
122, 2007.

[14] M. Ghioni, A. Gulinatti, I. Rech, F. Zappa, and S. Cova, “Progress in
Silicon Single-Photon Avalanche Diodes”, IEEE J. Select. Topics
Quantum Electron., vol. 13, pp. 852-862, 2007.

[15] S. Tisa, A. Tosi and F. Zappa, “Fully-integrated CMOS single photon
counter”, Opt. Express, vol. 15, pp. 2873-2887, 2007.

[16] S. Tisa, F. Guerrieri and F. Zappa, “Variable-Load Quenching Circuit
for single-photon avalanche diodes”, Opt. Express, vol. 16, pp. 2232-
2244, 2008.

[17] G. Marsaglia and A. Zaman, “Monkey tests for random number
generators. “, Comp. Math. Appl., vol. 26, pp. 1-10, 1993.

[18] A. Giudice, M. Ghioni, S. Cova and F. Zappa, “A process and deep level
evaluation tool: afterpulsing in avalanche junctions”, presented at IEEE

Conf. on European Solid-State Device Research, 2003, Estoril, Portugal,
edited by J. Franca and P. Freitas.

[19] Dieharder documentation [Online]. Available:
http://www.phy.duke.edu/~rgb/General/dieharder.php

[20] P. L'Ecuyer and R. Simard, “TestU01: A C library for empirical testing
of random number generators”, ACM Trans. Math. Softw. , vol.33, no.
4, pp. 22, 2007.

[21] G. Marsaglia, “The Marsaglia random number cdrom including the
diehard battery of tests of randomness”, 1995. [Online] Available:
http://www.stat.fsu.edu/pub/diehard/

[22] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M.
Levenson, M. Vangel, D. Banks, A. Heckert, J. Dray and S. Vo, A
Statistical Test Suite for Random and Pseudorandom Number
Generators for Cryptographic Applications. Special Publication 800-22,
Revision 1a, Gaithersburg, USA, NIST, 2010.

[23] F. J. Massey, “The Kolmogorov-Smirnov test for goodness-of-fit”, J.
Am. Stat. Assoc., vol. 46, pp. 68-78, 1951.

[24] D. E. Knuth, The Art of Computer Programming: Semi-numerical
Algorithms, 3rd edition, Boston, USA, Addison-Wesley Professional,
1998), p. 64.

