
I. INTRODUCTION

IFFERENT applications require the generation of high 
quality random number sequences, such as Cryptography, 

Monte-Carlo numerical simulations and image processing [1]-
[4], just to mention a few. Cryptography, for example, aims to 
keep messages safe: a private message, sent via physical 
media in form of electromagnetic waves or electrical signals, 
must be read only by the addressed recipient. The degree of 
security of the message depends on the cipher and the key 
used for encoding. Therefore, it is of major importance to have 
complex ciphers and keys to avoid unauthorized persons 
breaking the confidentiality of the message by simply 
guessing the encoding parameters. 
In the optimal case, the cipher must guarantee a broad space in 
which the key is selected, and the probability to choose a 
specific key must be uniformly distributed between all 
possible values. The latter requirement is often achieved by 
selecting the key using randomly generated numbers. Ideally, 
a random number generator provides unbiased and 
unpredictable data, hence its output is completely independent 
from previously generated number sequences. 
Three major families of Random Number Generators (RNG) 
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exist: Pseudo-RNG (PRNG), Chaotic RNG (CRNG) and 
Quantum RNG (QRNG). Pseudo-RNGs produce sequences 
which look like random but are, in fact, generated by 
deterministic algorithms. Although PRNG are very fast and 
cost-effective, they require a seed sequence to initialize the 
generator state. The outcomes are then completely predictable, 
periodical and seed-dependent. These vulnerabilities are a 
major concern for data security. 
CRNG are instead based on chaotic physical processes, i.e. 
complex systems in which a small variation of initial 
conditions produces large changes of some observables. 
Typically, CRNGs exploit thermal noise [5], optical 
fluctuations of laser radiation [6], jitter of oscillators in 
integrated circuits [7], just to cite a few. High quality random 
streams are obtained, though these generators themselves are 
not intrinsically random. In fact, an attacker could get access 
to the chaotic system and simultaneously measure the same 
physical observables and reproduce the same random data.   
Conversely, QRNGs are based on truly quantum physical 
processes, whose randomness is guaranteed by theory and 
experiments. In addition, an attacker, who would attempt to 
measure the physical observables which are used to generate 
the data, would destructively perturb the system, in most 
cases, or would be unable anyway to clone the intercepted 
message, e.g. by replicate the number of photons measured by 
a photodetector. A special class of QRNG is based on optical 
phenomena, such as the reflection or transmission of photons 
by a semitransparent mirror [8], the time-lag between the 
arrival of two photons from an uncorrelated light source to a 
detector [9],[10], or the number of measured photons within a 
defined time slot [11].  
Generally, CRNG and QRNG are complex and expensive 
compared to PRNG because dedicated electronic equipment is 
required. Furthermore they are comparatively slow and the 
output bit stream might suffer of bias and correlation due to 
deviations of some components, e.g. employed detectors and 
optical elements as in the system described in Ref. [8].  
We present a new instrument for random number generation, 
which overcomes the limitations of QRNGs, by exploiting a 
single monolithic CMOS chip containing an array of 
independent cells, each capable of detecting single photons 
and properly generating random bits. The photon detection is 
performed by a Single Photon Avalanche Diode (SPAD) [12] 
in each array cell. The array-based architecture of the chip 
allows to boost the rate of processed photons per second, 
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hence the random bits generation rate.  With 1024 cells, laid 
out as an array of 32 columns by 32 rows (see Fig. 1-B), the 
present chip achieves a maximum bit rate of 200 Mbit/s. This 
fast bit-rate makes the generator suited for “One-Time Pad” 
quantum cryptography systems, in which a random bit is used 
for each information bit sent through the communication 
channel [7]. 

II. QRNG CHIP

The QRNG is based on the statistical detection of quantum 
events by means of a quantum sensor, namely a Single Photon 
Avalanche Diode (SPAD) [12], [14], i.e. a reverse biased p–n 
junction, biased well above its breakdown voltage. Under this 
operating condition, the electric field is so high that any 
generated electron-hole pair will be accelerated across the 
junction toward opposite directions. The energy of the charge 
carriers is eventually sufficient to trigger a macroscopic 
avalanche current of few milliamperes through the device. 
Proper analog electronics senses the current onset and signals 
the event through a digital pulse. 

The use of a SPAD as a detector has several advantages. 
Firstly, an event can be triggered by both “internal” thermal 
generation processes and “external” photons. In this way, both 
quantum processes can be exploited to provide the random 
generation of bits. The former does not require any external 
illumination, but the bit rate is limited by the thermal electron-
hole generation rate, which is usually limited to some kHz at 
room temperature. Instead the latter is almost independent of 
the chip temperature, and can easily be adjusted by a simple 
(unfocused) illumination of the chip. A second advantage is 
that a SPAD is intrinsically digital, since it acts as a “Geiger-
like” counter, hence no analog measurement of voltage or 
current is needed and no further digital conversion is required. 
It follows that no read-out noise is added to the measurement 
process and no electrical noise affects the ignition of the 
events, hence the randomness.  

We designed the QRNG module shown in Fig. 1-A, based 
on the CMOS chip shown in Fig. 1-B, an array of 1024 
independent cells, organized as a 32x32 matrix, designed and 
produced in a standard 0.35 µm CMOS technology [15].  

As shown in Fig. 2, each cell has a SPAD driven by a 
quench and control front-end electronics [16], which provides 
the reverse bias voltage above breakdown, senses the 
avalanche current onset and then quenches it. After ignition 
and quench, the SPAD is then reset back to operation after a 
so-called dead-time. An 8-bit Linear-Feedback Shift-Register 

(LFSR) counts the quantum ignitions within well-defined time 
slots, set by a Start and a Stop synch pulses. An on-chip global 
electronics individually address the 1024 cells and provides 
the data to an external FPGA.  

III. MODULE ELECTRONICS

Once generated by the QRNG chip, the random stream is 
read-out by an FPGA and then transmitted via USB link. We 
employed a Spartan 6 Xilinx FPGA with an USB 2.0 
controller. The FPGA provides all control signals to the chip, 
for setting the LFSR integration time slots and performing the 
counters read out. A bit-selector is introduced to remove some 
of the bits from the stream according with their position in the 
LFSR counter, depending on the average number of quantum 
events detected by each array cell, in order to provide an equal 
probability of generating zeroes and ones. After this 
processing, a constant bit-rate of 200 Mbit/s of random data is 
guaranteed.  

In addition, the FPGA implements a basic PRNG, namely a 
KISS (Keep It Simple Stupid) [17], which was introduced to 
test the security level of the QRNG and, if needed, to enhance 
it even further. Such KISS PRNG is initialized once, during 
the startup of the electronics, through the quantum random 
stream, and then runs indefinitely. When the security option is 
activated, an XOR (exclusive OR) logic operation is 
performed between the QRNG stream and the PRNG one. In 
this way, the output stream remains random even in case of a 
global failure of the QRNG chip or of just few cells. Note that 
the KISS PRNG and the security option were not active for the 
validation of the QRNG generator described in the followings, 
since it proved to be effectively reliable and robust.  

Finally, the stream is sent to a FIFO register to maximize 
the transfer rate of random bits to the computer. By user 
choice, in case the USB 2.0 link is not suitable for the 
application, the FIFO data can be directed to a serial hardware 
output (HW-OUT), which provides 3.3 V LVCMOS logic 
values. 

In order to provide extremely high quantum event 
generation rates, the chip (i.e. the SPAD detectors) is 
illuminated by means of a simple light emitting diode, driven 

Fig. 1.  (A) Picture of the QRNG module and (B) microphotograph of the 
QRNG chip composed of 32 x 32 cells, with a SPAD each. 

Fig. 2.   QRNG module architecture. A single cell of the 32x32 QRNG 
array chip is shown. All 1024 independent cells contain a SPAD detector, a 
front-end electronics and a Linear Feedback Shift Register (LFSR) for 
counting the quantum events. An FPGA reads out the chip and sends the 
random binary stream to the computer, via an USB 2.0 interface. 



by a current generator controlled via a digital filter within the 
control unit. The filter monitors the total number of quantum 
generation events after several read out operations and adjusts 
the LED current to keep the mean ignition rate high enough to 
provide the desired bit rate. In this way, the QRNG always 
operates in optimal conditions, independently of variations of 
physical parameters like LED efficiency, SPAD sensitivity, 
chip tolerances and drifts, warm up at power on, aging, etc. 
This controller is not critical for the random bit generation 
process, but it is necessary to assure the performance and the 
stability of the device over long operating times. In case of 
failure of the illumination source, the system stops and 
generates an error message to the user. Since the typical dead-
time of the SPAD front-end is 60 ns, a maximum number of 
16.6·106 photons per second and per SPAD can be acquired 
when the active LED illumination is on. It follows that up to 
17·109 quantum events per second are available to generate 
the random stream with the 32x32 cell array chip. Instead, 
with no illumination, the QRNG chip can relies on the 
intrinsic thermal generation rate, that is about 4kHz per SPAD 
(the so called dark count rate), corresponding to an intrinsic 
(no photon) rate of 4·106 quantum events per second, i.e. 
about 4000 times lower a bit rate. 

Compared to other commonly employed optical QRNG, the 
presented CMOS chip architecture has several key advantages: 
1) no complex electronic devices are required to control the
random generator; 2) it is fabricated in a standard and low-cost
CMOS technology, thus allowing the integration of any
possible digital processing; 3) it features a massive
parallelized acquisition of quantum events; 4) the array size,
i.e. number of rows and columns and SPAD dimensions, can
be tailored to match the required random number generation
rate for any specific application; 5) a simple FPGA or
microcontroller is sufficient to acquire the random bit-stream
and to transfer it to the end-user device; 6) apart from the
quantum origin of the random events (photons or spontaneous
thermal carrier generation), even the method for random bits
generation is simpler than those reported so far. In fact, the
cells are based on a simple single counter, which collects the
quantum events within constant time slots of about 20 µs.
Conversely, generators based on the photon timing (e.g. the
photon arrival time, in respect to a synch) require expensive
time-to-digital converters with accuracy of few picoseconds
[10] or anyhow high-bandwidth electronics.

IV. RANDOM GENERATION PROCESS

The QRNG chip settings can be properly adjusted in order 
to maximize the random bits throughput. The array readout 
time must be as short as possible in order to acquire the largest 
number of counter values per second. The readout of the 
whole SPAD array requires at least 1037 clock cycles, which 
with a 50 MHz master clock (20 ns clock period), corresponds 
to 20.74 µs. It follows that about 49.3 MB/s of raw data are 
generated by the chip. 

Each pixel counter accumulates the number of SPAD 
ignitions due to three different contributions: dark-counts (due 
to thermally generated carriers), detected photons (due to 

external illumination), and afterpulses. The latter is due to 
SPAD ignitions caused by avalanche carriers which get 
trapped in the high field region and that are released later, 
when the SPAD is reset again above breakdown [18]. These 
three processes are stochastic. There is also a contribution due 
to optical crosstalk among pixels, but since crosstalk for the 
presented SPAD array is in the order of 10-5, its contribution 
it’s truly negligible. The number of photons and dark-counts 
stems from Poisson processes, thus the probability pi that the 
ith counter counts N events follows a Poisson distribution of 
mean λ: 

pi N =
 λN e- λ

N!
(1) 

For Poisson processes, the standard deviation, an index of 
the dispersion (“noise”) of the values assumed by such a 
stochastic variable around its mean, is equal to √λ. These 
stochastic variables pi have mean and variance equal to λ and 
are independent and identically distributed, assuming a 
uniform generation rate (e.g. illumination) across the chip and 
constant SPAD properties.  

The resulting Poisson distributions are obviously not 
uniform and need to be whitened. We observed that for a 
Poisson distribution with a sufficiently high mean value (in 
order to make it converging to a Gaussian), the extraction of 
only the least significant bit (i.e. parity) results in a substantial 
whitening of the stream, while maintaining the other stochastic 
properties. Depending on the initial entropy of the stream, the 
extraction of the less significant bits can be extended to the 
second bit, third bit and so on. Of course a limit exists after 
which the resulting stream will return to show significant 
biasing. For a Poisson distribution with λ>>10 (converging to 
a Normal distribution of variance λ), the entropy H is about 
1/2log2(2πλe) and the min-entropy H∞ is about 1/2log2(2πλ), 
which poses a maximum limit to the number of extracted bit.  

The assumption of Poisson processes is only valid at low 
quantum ignition rates, when the effect of the SPAD dead-
time is negligible. At high rates, the statistics of the quantum 
events deviates from a Poisson distribution. The reason being 
that the dead-time alters the process statistics in this way: 

λreal= λ 
Treal
T

= 
λ
T

 T 1- λreal
tdead
T

= 

(2) 
=   

λ

1+ λ tdeadT
where T is the integration time slot and λreal is the measured 
counter mean value. For very large number of counts per 
second, λreal saturates to the value T/tdead and the variance goes 
to zero because as soon as a SPAD is triggered, quenched and 
then reset back to working condition, a new generation 
immediately triggers it again. In fact, the Poisson process is no 
longer effective in generating random bits because the counter 
has a very high probability to accumulate always the same 
value. It follows that it is not correct to maximize the number 
of generation and triggering events within the integration time 



slot, thus to increase √λ and to generate as many random bits 
as possible. Instead, an optimum detection rate should be 
reached, depending on SPAD dead-time. Moreover, also 
afterpulsing plays a role, causing a slight increase of standard 
deviation compared to the ideal Poisson process. 

The optimum of the standard deviation of the counter value 
can be assessed through the experimental setup shown in Fig. 
3. The beam of a solid-state CW laser emitting at 660 nm
(PDL 800D, Picoquant GmbH, Germany) is coupled to a
monomode fiber and attenuated by an electrically controlled
variable attenuator (DD-100-11-670-4, OZ Optics, Canada).
The collimated output beam is further attenuated by Neutral
Density (ND) filters (OD = 2.3) and focused on a single SPAD
of the array chip by a microscope objective (Plan N 10X,
Olympus, US). In our setup the beam had 9 µm diameter at the
focal plane, which is about two times smaller than the SPAD
20 µm diameter.

Firstly, we measured the average number of photons per 
second as a function of the attenuation, by using an optical 
power meter (1931-C, Newport Corporation, US) placed in 
front of the microscope objective. Then we acquired the 
counter value at different dead-time values and at increasing 

photon rates. Each measurement was repeated from 5,000 to 
60,000 times every 20.74 µs in order to compute its mean and 
standard deviation. 

Results are shown in Fig. 4. As predicted by Eq. (2), the 
mean counter value saturates at high photon rates: this is 
clearly visible at longer dead-time values (above 100 ns, with 
the measurement conditions of the experiment). On the other 
hand, the standard deviations (see Fig. 4-B) show marked 
peaks, at a value higher than expected for a pure Poisson 
distribution. 

In conclusion, the experiments show that the dead-time 
must be set to the lowest possible value (50 ns, blue curve 
with diamond * markers) in order to maximize the standard 
deviation, i.e. the entropy of the process. Furthermore, the 
number of quantum events detected by the SPADs must be 
also adjusted to be close to the peak. Assuming a 50 ns dead-
time, an illumination intensity of about 180 - 200 photons per 
integration time is required, i.e. a photon flux of about 107 
photons/s.  

In the QRNG module described in this work, such photon 
rate was provided by four LEDs controlled in closed loop by a 
current driver, with a mean value of about 200 photons per 
pixel per frame, corresponding to a measured variance of 
about 400 (see Fig. 4B). H is thus about 6.3 bits and H∞ is 
about 5.6 bits. That means that it is in theory possible to 
extract up to 5.6 bits from each 8 bits word, obtaining a stream 
with full entropy. In order to allow for a safe margin 
accounting for not considered non-idealities, we decided to 
extract only the 4 least significant bits, corresponding to an 
overall generation rate of 200Mbit/s. 

V. EXPERIMENTAL RESULTS

We tested the quality of the 200 Mbit/s random binary 
stream generated by the QRNG chip by means of two of the 
most popular test suites for random number generators, 
Dieharder [19] and TestU01 [20]. The C libraries used to 
control the QRNG chip were directly integrated in the source 

Fig. 3.   Experimental setup used to optimize the QRNG chip: a 660 nm 
CW laser is attenuated and then focused into a single SPAD by a 10x 
objective. 

Fig. 4.   (A) Measured mean values accumulated by the counter as a function of the number of photons detected by the SPAD, at different dead-time 
values. The curves saturate because many photons hit the SPAD, even during the dead-time. (B) Measured standard deviations as a function of the total 
number of detected photons. As expected, shorter dead-times cause broader dispersions of counter values around the mean value. Therefore an optimum 
can be found. 



code of both test suites, in order to prove the long-term 
stability of the QRNG in generating random numbers at high 
rates and at frequent requests of new data streams. As a further 
crosscheck, we also applied the original test suites to random 
data streams previously stored on the hard-drive and generated 
by the same QRNG chip. No differences on the test results 
were observed. 

Dieharder is an extension of the “Diehard Battery of Tests 
of Randomness” [21], a very well-known random number test 
suite developed by G. Marsaglia. In particular, Dieharder was 
extended with specific tests for checking bit-level randomness 
of sequences produced by physical RNG (Monobit, Runs and 
Serial). Furthermore, it incorporates tests from the Statistical 
Test Suite (STS) developed by the National Institute for 
Standards and Technology (NIST) [22].  

Table I shows the results of 10 complete and independent 
executions of the Dieharder test suite. In most cases, the 

obtained p-values are above 0.01 and below 0.99 and only few 
exceptions are obtained outside these boundaries, producing a 
warning message. However, the number of suspect p-values is 
within the expected statistical failure rate, assuming a 1% 
significance level, and thus perfectly normal for a good 
generator, as explained in Dieharder documentation [19]. In 
addition, the p-values are well uniformly distributed within 0 
and 1. The mean values, computed over single test types and 
executions, are sufficiently close to 0.5. Only the 
diehard_sums test produces undesired results, but this is due to 
some unsolved bugs in the test code [19], that it is thus 
considered not reliable even by the test suite author. As a 
comparison, cryptographically secure random number 
generators, as the Advanced Encryption Scheme (AES), and 
the XOR between the QRNG and the KISS PRNG 
(implemented into the FPGA of our QRNG module) gave 
similar p-value distributions (data not shown). 

TABLE I 
SUMMARY OF THE RESULTS OF TEN EXECUTIONS OF THE DIEHARDER STATISTICAL TEST SUITE. THE P-VALUES ARE LISTED FOR EACH TEST FAMILY. 

Test 1 2 3 4 5 6 7 8 9 10 Mean 

diehard_birthdays 0.3076 0.3885 0.8915 0.0920 0.2119 0.0421 0.6225 0.6221 0.6560 0.9465 0.4781 
diehard_operm5 0.6092 0.7151 0.9232 0.3270 0.3980 0.4632 0.9970 0.9085 0.5261 0.4593 0.6327 
diehard_rank_32x32 0.7586 0.0148 0.3911 0.2398 0.0673 0.4608 0.4535 0.9969 0.3683 0.2394 0.3991 
diehard_rank_6x8 0.2750 0.4677 0.3459 0.9769 0.4058 0.9870 0.5612 0,8559 0.8352 0.1099 0.5821 
diehard_bitstream 0.0664 0.6368 0.1847 0.8392 0.3445 0.3888 0.3830 0.3433 0.9891 0.4336 0.4609 
diehard_opso 0.4493 0.9904 0.2566 0.7402 0.8743 0.4962 0.3230 0.9607 0.9712 0.0681 0.6130 
diehard_oqso 0.1313 0.6521 0.9631 0.9070 0.9346 0.5601 0.5631 0.0604 0.7495 0.8364 0.6358 
diehard_dna 0.1121 0.4518 0.3289 0.1370 0.0001 0.3805 0.1516 0.7131 0.3625 0.9875 0.3625 
diehard_count_1s_str 0.9560 0.7377 0.2618 0.8614 0.2909 0.4300 0.0870 0.9520 0.2478 0.9515 0.5776 
diehard_count_1s_byt 0.2358 0.7591 0.7140 0.1464 0.4822 0.4741 0.1418 0.4085 0.0355 0.0617 0.3459 
diehard_parking_lot 0.8727 0.1671 0.9570 0.5313 0.6291 0.9717 0.3695 0.3190 0.7734 0.2540 0.5845 
diehard_2dsphere 0.7778 0.8088 0.4922 0.9094 0.8781 0.1495 0.7450 0.7547 0.9576 0.8871 0.7360 
diehard_3dsphere 0.6588 0.9591 0.5813 0.9995 0.9444 0.1866 0.2974 0.4312 0.8888 0.4421 0.6389 
diehard_squeeze 0.5869 0.4116 0.7330 0.7908 0.6881 0.2039 0.7038 0.2007 0.2033 0.7529 0.5275 
diehard_sums  ** 0.0097 0.0717 0.0359 0.2323 0.0091 0.0053 0.3168 0.1191 0.6860 0.0201 0.1506 
marsaglia_tsang_gcd 0.5372 0.9716 0.5264 0.1508 0.1409 0.0160 0.4270 0.4694 0.9310 0.7774 0.4948 
marsaglia_tsang_gcd 0.8496 0.8879 0.1440 0.8815 0.3175 0.9092 0.2900 0.0506 0.3872 0.9979 0.5715 
sts_monobit 0.0232 0.9088 0.8883 0.8851 0.8387 0.3365 0.4675 0.8459 0.9966 0.5923 0.6783 
sts_runs 0.6791 0.7988 0.6423 0.8294 0.7319 0.1705 0.2974 0.6352 0.9967 0.7853 0.6567 
rgb_kstest_test 0.9513 0.8005 0.5268 0.2059 0.6548 0.6139 0.5529 0.1210 0.4686 0.3972 0.5293 
dab_bytedistrib 0.5512 0.0672 0.3609 0.6737 0.5163 0.3615 0.3049 0.4640 0.3203 0.0973 0.3717 
dab_dct 0.1387 0.3679 0.5654 0.1441 0.1231 0.0406 0.4712 0.2342 0.8333 0.9845 0.3903 
dab_monobit2 0.0425 0.2548 0.1360 0.9773 0.6560 0.1601 0.7439 0.5859 0.3931 0.6717 0.4621 
sts_serial * 0.4584 0.4807 0.5967 0.5733 0.6404 0.5538 0.6001 0.5897 0.6433 0.5137 0.5650 
rgb_bitdist * 0.6155 0.3641 0.5680 0.5508 0.5550 0.5925 0.6804 0.6519 0.5825 0.4730 0.5634 
rgb_minimum_distance * 0.1913 0.2326 0.4021 0.4785 0.3705 0.3996 0.6690 0.5090 0.7495 0.4966 0.4499 
rgb_permutations * 0.5470 0.6697 0.4188 0.5457 0.3954 0.4412 0.5461 0.8310 0.6045 0.6972 0.5697 
rgb_lagged_sum * 0.4910 0.5497 0.6195 0.5459 0.5702 0.5379 0.4864 0.4917 0.5671 0.6088 0.5468 
dab_filltree * 0.2873 0.8643 0.8436 0.6482 0.7891 0.5431 0.1971 0.5901 0.7201 0.4563 0.5939 
dab_filltree2 * 0.2854 0.8174 0.4092 0.2859 0.3400 0.2796 0.1865 0.1648 0.7603 0.7939 0.4323 
diehard_runs * 0.5100 0.3717 0.8628 0.4501 0.8081 0.9790 0.6927 0.4991 0.1212 0.6766 0.5971 
diehard_craps * 0.2298 0.8773 0.2641 0.7589 0.2988 0.5364 0.6011 0.3626 0.4948 0.3664 0.4790 
Mean 0.4436 0.5787 0.5261 0.5724 0.4970 0.4272 0.4666 0.5232 0.6194 0.5574 0.5212 

(*) Several tests are repeated more than once in the test suite with different parameters. Thus, only the average p-value is reported. 

(**) diehard_sums generates p-values which are not uniformly distributed. Similar p-value distributions were obtained by executing the test suite with 
AES and making the XOR between the QRNG output and the KISS PRNG (data not shown). The results confirm that diehard_sums is not a reliable test, as 
already stated in the Dieharder documentation [19]. 



The second test suite applied to the QRNG was Big Crush 
from TestU01 [20] that requires a much larger number of 
random data compared to Dieharder in order to remove 
suspicious (i.e. too close to 0 or 1) p-values, which are due to 
less probable (although not impossible) data streams and not 
to failures of the generator under test. As shown in Table II, 
the QRNG chip successfully passed all TestU01 tests. 

In addition to the statistical test suites, we tested correlation 
and bias of the output bit stream in a more severe way. In fact, 
physical RNG might suffer from correlations for short lags 
and bias due to either limitations of the used instrumentation 
or the random bit extraction process (see Ref. [11] and 
references therein). The probability of ‘1’ was computed from 
200 binary streams of 32 Gbit each in order to stress the 
presence of bias of the random bit generation process. The 
distribution of the computed bias from each stream is shown 
in Fig. 5. As predicted by the central limit theorem, we obtain 
a Gauss-shaped distribution, peaked at about λt = 0 and with a 
standard deviation of σt = 0.5/√N = 2.8·10-6, for N = 3.2·1010 
bits. 

The measured distribution of the bias was compared against 
the expected normal distribution, using a Kolmogorov-

Smirnov test [23]. The null-hypothesis, i.e. the bias is 
normally distributed with mean (λt) and variance (σt) as given 
by the theory, was verified and led to a p-value of 0.89. 
Therefore, we can claim that the dispersion of the measured 
bias is dominated by statistical fluctuations for streams up to 
32 Gbit. 

The serial autocorrelation function was also estimated 
according to the following equation [24]: 

𝜌! =
1

𝑀 − 𝑘
∗

𝑏! ∗ 𝑏!!! − 𝜇!!!
!!!

𝜎!!

where bi is the ith bit of the binary stream,  µb and σb
2 are the 

mean and variance of the random bi which are assumed to be 
independent and identically distributed. These quantities are 
unknown, but they can be estimated from the data using the 
sample mean and variance formula.  

Fig. 6 shows the first 1024 coefficients of the serial 
autocorrelation obtained from a 160 Mbit stream. The 
autocorrelation coefficients are clearly randomly distributed 
around 0 and their standard deviation is about 0.79·10-4, as 
expected for a random stream of 160 Mbit [6]. Furthermore, 
no spikes   are observed in the function, which might be a hint 
for correlations in the data streams.  

TABLE II 
RESULTS FROM THE EXECUTION OF THE BIG CRUSH TEST SUITE (TESTU01). 

THE SUITE WAS EXECUTED TWICE. ALL TESTS WERE PASSED IN BOTH CASES. 

Test Result 

SerialOver PASSED 
CollisionOver PASSED
BirthdaySpacings PASSED 
ClosePairs PASSED 
SimpPoker PASSED 
CouponCollector PASSED 
Gap PASSED 
Run (sknuth) PASSED 
Permutation PASSED 
CollisionPermut PASSED 
MaxOft PASSED 
SampleProd PASSED 
SampleMean PASSED 
SampleCorr PASSED
AppearanceSpacings PASSED 
WeightDistrib PASSED 
SumCollector PASSED 
MatrixRank PASSED 
Savir2 PASSED 
GCD PASSED 
RandomWalk1 PASSED 
LinearComp PASSED 
LempelZiv PASSED 
Fourier3 PASSED 
LongestHeadRun PASSED 
PeriodsInStrings PASSED 
HammingWeight2 PASSED 
HammingCorr PASSED 
HammingIndep PASSED 
Run (sstrings) PASSED 
AutoCorr PASSED 

Fig. 5.    Measured bias for 200 binary streams of 32 Gbit each. No 
correlation of the data is visible. As expected, the bias has a mean equal to 
zero and standard deviation below 3·10-6. 

Fig. 6.   Serial autocorrelation coefficients evaluated for a sequence of 160 
Mbit; the first 1024 coefficients show no correlation of the data. The 
horizontal lines define the ±3σ range; 



VI. CONCLUSIONS

We presented a very effective and reliable optical quantum 
random number generator, implemented into a single standard 
CMOS chip. The device is made of an array of independent 
cells (1024 in our implementation), each containing a single 
photon avalanche diode, a sensing front-end and a digital 
counting electronics. By counting quantum events like 
detected photons or electron-hole thermal generations, the 
QRNG produces very high-quality random bit streams, up to 
200 Mbit/s.  

Future works will be focused in pushing the generation rate 
to higher values, up to the theoretical limit as predicted by 
Shannon’s entropy. 

REFERENCES 
[1] N. Gisin, G. Ribordy, W. Tittel and H. Zbinden, “Quantum

cryptography”, Rev. Mod. Phys., vol. 74, pp. 145-195, March 2002. 
[2] I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré and N.

Gisin, “Distribution of Time-Bin Entangled Qubits over 50 km of
Optical Fiber”, Phys. Rev. Lett. vol. 93, pp. 180502, Oct. 2004.

[3] P. P. Boyle, “Options: a Monte Carlo Approach”, J. Fin. Econ., vol. 4,
pp. 323-338, 1977. 

[4] G. Winkler, Image Analysis, Random Fields and Markov Chain Monte
Carlo Methods: A Mathematical Introduction, Berlin, Germany,
Springer, 2002. 

[5] T. Saito, K. Ishii, I. Tatsuno, S. Sukagawa, and T. Yanagita,
“Randomness and Genuine Random Number Generator With Self-
testing Functions”, presented at Joint International Conference on
Supercomputing in Nuclear Applications and Monte Carlo, 2010.
Hitotsubashi Memorial Hall, Tokyo, Japan, edited by K. Todani and T.
Takeda.

[6] C. R. S. Williams, J. C. Salevan, X. Li, R. Roy and T. E. Murphy, “Fast
physical random number generator using amplified spontaneous
emission”, Opt. Express, vol.18, no. 23, pp. 23584-23597, 2010.

[7] B. Sunar, W. J. Martin and D. R. Stinson, “A Provably Secure True
Random Number Generator with Built-In Tolerance to Active Attacks”,
IEEE Trans. Com., vol. 56, pp. 109-119, Jan. 2007. 

[8] A. Stefanov, N. Gisin, O. Guinnard, L. Guinnard and H. Zbinden,
“Optical quantum random number generator”, J. Mod. Opt., vol. 47, no.
4, pp. 595-598, Jul. 2000. 

[9] M. A. Wayne and P. G. Kwiat, “Low-bias high-speed quantum random
number generator via shaped optical pulses”, Opt. Express, vol. 18, no.
9, pp. 9351-9357, 2010. 

[10] M. Wahl, M. Leifgen, M. Berlin, T. Rohlicke, H.-J. Rahn and O.
Benson, “An ultrafast quantum random number generator with provably
bounded output bias based on photon arrival time measurements”, Appl.
Phys. Lett., vol. 98, pp. 171105, 2011. 

[11] M. Fürst, H. Weier, S. Nauerth, D. G. Marangon, C. Kurtsiefer and H.
Weinfurter, “High speed optical quantum random number generation”
Opt. Express, vol. 18, no. 12, pp. 13029-13037, 2010.

[12] F. Zappa, S. Tisa, A. Tosi, S. Cova, “Principles and features of single-
photon avalanche diode arrays,” Sensors and Actuators A, vol. 140, pp.
103–112, 2007. 

[13] S. Tisa, F. Zappa, A. Tosi, S. Cova, “Electronics for single photon
avalanche diode arrays”, Sensors and Actuators A, vol. 140, pp. 113-
122, 2007. 

[14] M. Ghioni, A. Gulinatti, I. Rech, F. Zappa, and S. Cova, “Progress in
Silicon Single-Photon Avalanche Diodes”, IEEE J. Select. Topics
Quantum Electron., vol. 13, pp. 852-862, 2007. 

[15] S. Tisa, A. Tosi and F. Zappa, “Fully-integrated CMOS single photon
counter”, Opt. Express, vol. 15, pp. 2873-2887, 2007. 

[16] S. Tisa, F. Guerrieri and F. Zappa, “Variable-Load Quenching Circuit
for single-photon avalanche diodes”, Opt. Express, vol. 16, pp. 2232-
2244, 2008. 

[17] G. Marsaglia and A. Zaman, “Monkey tests for random number
generators. “, Comp. Math. Appl., vol. 26, pp. 1-10, 1993. 

[18] A. Giudice, M. Ghioni, S. Cova and F. Zappa, “A process and deep level
evaluation tool: afterpulsing in avalanche junctions”, presented at IEEE

Conf. on European Solid-State Device Research, 2003, Estoril, Portugal, 
edited by J. Franca and P. Freitas. 

[19] Dieharder documentation [Online].  Available:
http://www.phy.duke.edu/~rgb/General/dieharder.php

[20] P. L'Ecuyer and R. Simard, “TestU01: A C library for empirical testing
of random number generators”, ACM Trans. Math. Softw. , vol.33, no.
4, pp. 22, 2007.

[21] G. Marsaglia, “The Marsaglia random number cdrom including the
diehard battery of tests of randomness”, 1995. [Online] Available:
http://www.stat.fsu.edu/pub/diehard/

[22] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M.
Levenson, M. Vangel, D. Banks, A. Heckert, J. Dray and S. Vo, A
Statistical Test Suite for Random and Pseudorandom Number
Generators for Cryptographic Applications. Special Publication 800-22,
Revision 1a, Gaithersburg, USA, NIST, 2010.

[23] F. J. Massey, “The Kolmogorov-Smirnov test for goodness-of-fit”, J.
Am. Stat. Assoc., vol. 46, pp. 68-78, 1951. 

[24] D. E. Knuth, The Art of Computer Programming: Semi-numerical
Algorithms, 3rd edition, Boston, USA, Addison-Wesley Professional,
1998), p. 64.




