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1. Introduction

Recently, the social claim for the reduction in the pollution/
environmental impact, originating from industrial activities, has
paved the way to new research studies in the area of sustainable
process design, optimization and real-time operation along with
sustainable corporate-scale management. The primary aims of
these new research areas consist of:
: þ39 (0)270633280.
nti).
� the development of new process configurations and the
revamping of the existing ones towards improved sustainability;

� the online or offline search for sustainable operating conditions,
limited to the single plant or extended to the whole corporate
scale.

Many authors have been testing problems belonging to these 
research fields. Their efforts have produced a huge number of 
contributions concerning sustainable process design, offline opti-
mization and corporate-scale management. For instance, studies 
concerning the optimization of supply-chain networks subject to 
additional sustainability constraints can be found in several papers. 
In detail, Giarola et al. (2014) and Ng and Lam (2013) study the 
problem limited to the field of bio-refineries while Vance et al.
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(2013) focus on a specific problem implementation based on graph 
theory. Also, a strategy for the sustainable scheduling of batch 
productions is described in Yue and You (2013). Moreover, sus-
tainable process design methods for batch units are reported in 
papers like (Halim and Srinivasan, 2009, 2008) and the application 
of a sustainability metric to the selection of the best reactive path 
for the succinic acid production is described in Pinazo et al. (2015). 
On the contrary, methodologies aimed at achieving sustainable 
real-time process operation are still at an early stage, thus being 
more suitable to be investigated. In fact, only limited work has 
already been carried out in this area: Rossi et al. (2014b) address 
the sustainable deterministic dynamic optimization and optimal 
con-trol of a batch reactor while Luo et al. (2014) and Zhu et al. 
(2014) report on the application of deterministic optimal control 
strate-gies to reduce energy costs in manufacturing processes.

In parallel to this sustainability-oriented research, the last two 
decades have widely demonstrated the effectiveness of non-linear 
model predictive control (NMPC) and dynamic real-time optimi-
zation (DRTO) techniques for optimal online process management. 
Many authors have confirmed that NMPC can be used to effectively 
and safely control even strongly non-linear systems, typical of 
chemical plants. In detail, Balasubramhanya and Doyle (1997), Joly 
and Pinto (2004), Mahadevan et al. (2001) and Vigan�o et al. (2010) 
clearly prove what is stated above limited to a distillation column, a 
nylon 6,6 production process, a fed-batch bio-reactor and a CVD 
reactor, respectively. In addition, also robust NMPC strategies, 
which can be applied to uncertain controlled systems, have been 
successfully developed for many types of manufacturing systems 
like bio-processes (Logist et al., 2011), special micro-organisms 
cultures (Santos et al., 2012) and polysilicon rods production 
(Vallerio et al., 2014). Similarly, DRTO algorithms have shown to be 
an appealing solution for the real-time optimal management of 
hard-to-operate process units: batch distillation columns (Greaves 
et al., 2003) and reactors (Arpornwichanop et al., 2005), fed-batch 
reactors (Pahija et al., 2013), polymerization autoclaves (Zavala et 
al., 2005), and so on. Limited to batch productions, detailed studies 
have also been performed on which type of control systems can be 
conveniently coupled with DRTO schemes (Pahija et al., 2014). 
However, despite a huge number of NMPC/DRTO-like schemes is 
now available, almost none of them is configured to allow for 
process sustainability in addition to process performance.

Therefore, it appears that the target of sustainable real-time 
process operation could be achieved through the development and 
application of sustainable NMPC/DRTO-like methodologies or alike 
strategies. This work addresses the theoretical and practical 
description of a framework that falls into this category. In detail, a 
robust sustainability-oriented model-based integrated optimiza-
tion & control framework for (fed-)batch processes is proposed, 
which aims at simultaneously providing its controlled system with 
profitable and clean management policies in real-time. The clean 
nature of this methodology shows up in its target of ensuring low-
cost reduction in utilities usage while its robustness is revealed in 
the capability of handling also uncertain controlled systems. 
Moreover, since it works in real-time, also the effect of any 
incoming external perturbation is considered, analysed and opti-
mally handled. To the best of the knowledge of the authors of this 
paper, no simultaneously sustainability-oriented and robust 
frameworks of this type can be found in the literature, thus the 
strategy proposed in this paper appears to be relevantly novel. 
Moreover, it also seems appealing for future real industrial appli-
cations towards a cleaner and more energy-efficient future.

In the rest of the paper, at first the aforementioned robust sus-
tainable model-based integrated optimization & control frame-
work will be described with underlying theoretical concepts. Then 
a validation case study, based on a fed-batch version of the well-
known WilliamseOtto process, will be employed to demonstrate 
its tangible benefits. Finally, some conclusions will be drawn.

2. The robust sustainable optimization & control strategy
(RSOCS)

The robust sustainable DRTO/NMPC-like strategy, proposed in 
this work, can be classified as a multi-scenario online optimization 
and control framework coupled with a suitable set of utilities-
usage-related penalty terms that are added to its objective func-
tion. The usage of the multi-scenario logic (see section [2.2] for 
further details) ensures the robustness required to manage uncer-
tain controlled systems while the employment of the set of penalty 
terms (see section [2.3] for further details) allows to balance the 
need for process performance and that for low utilities consump-
tion, i.e. low environmental impact. By ensuring the best trade-off 
between performance and environmental impact, the proposed 
strategy can be thus considered sustainability-oriented.

The aforementioned robust sustainability-oriented DRTO/
NMPC-like methodology is configured as a multi-step approach 
that includes an offline and online phase. The offline phase, 
referred to as PHASE I, aims at optimally computing some key 
parameters that are subsequently employed in the online phase, 
indicated as PHASE II. A simplified graphical representation of how 
the overall strategy is configured is shown in Fig. 1.

Before going ahead, a preliminary introduction on the logics on 
which these two steps (PHASE I and PHASE II) are based is 
necessary.

PHASE I can be divided into two different blocks, i.e. the iden-
tification of a suitable set of scenarios, relating to the controlled 
system, and the optimal tuning of the abovementioned penalty 
terms. The two blocks must be carried out in series since the sce-
narios selection has a strong influence on the optimal tuning of the 
penalty terms. The detailed explanation of how the scenarios set is 
computed, based on the probability density function (PDF) of the 
uncertain parameters of the controlled system, is addressed in 
section [2.2]. Then the optimal tuning procedure for the penalty 
terms will be addressed in section [2.3].

PHASE II is much simpler than PHASE I and simply consists of 
the application of the properly configured robust sustainability-
oriented DRTO/NMPC-like strategy to a controlled system in real-
time. Since no relevant difficulties can be found in this phase, no 
detailed additional explanations will be added on this topic in the 
following.

By looking at Fig. 1, the reader should notice that the proposed 
robust sustainable online optimization and control framework 
must rely on a NMPC/DRTO-like algorithm. Here, this algorithm is 
chosen to be the BSMBO&C method (Rossi et al., 2014a, 2014c). A 
brief theoretical description of how this framework works is re-
ported in section [2.1], but many more details can be found in the 
BSMBO&C-related references.

Finally, before starting to discuss the content of sections 
[2.1e2.3], let three remarks be introduced.

At first, observe that the proposed robust sustainability-
oriented DRTO/NMPC-like strategy includes relevant novel con-
tents. Indeed, it is able to provide an uncertain (fed-)batch process 
with sustainable operating conditions in real-time, allowing for the 
effect of any incoming external perturbation. This makes it unique 
up to now, at least for what concerns the authors' knowledge.

Secondly, note that the novel strategy proposed here is 
designed in a smart way as to concentrate all the computational-
demanding operations in PHASE I, that is offline, thus preserving its 
real online applicability. Moreover, almost all the operations 
included in PHASE I can be parallelized, thus further reducing 
computational times also in the offline phase.



Fig. 1. Schematic representation of the robust sustainable optimization & control strategy (RSOCS).
Finally, notice that the reported novel strategy aims at dynam-
ically and optimally balancing environmental impact and process 
performance, but the environmental impact is said to depend only 
on the level of utilities consumption. This limitation may seem 
relevant but could be theoretically removed as long as the resulting 
numerical complexity is reasonable. Indeed, the described strategy 
could be immediately generalized to measure process environ-
mental impact including several different non-utilities-related 
sources like the production of harmful sub-products and toxic/
dangerous effluents, the process energy consumption levels, etc. 
Detailed information on this generalization step will be probably 
addressed in detail in future works.

In conclusion, the proposed robust sustainability-oriented 
DRTO/NMPC-like framework is not only novel but also optimized 
in terms of computational burden and very flexible (at least in 
theoretical terms). This should make it suitable for real industrial 
applications in the near future.

2.1. The BSMBO&C algorithm: a brief theoretical insight

BSMBO&C (the acronym stands for Batch Simultaneous Model-
Based Optimization and Control) is an advanced framework for the 
all-in-one online optimization and/or optimal control of (fed-) 
batch processes. In this work it will be employed in its integrated 
optimization and control mode but it might be also used as online 
optimizer or optimal controller only.

One of its specific and unique features is the capability of opti-
mizing the performance of the controlled system by adjusting both 
its manipulated variables and its batch cycle time at the same time, 
based on a fully user-defined performance criterion (objective 
function). This typically allows it to ensure better performances 
than other existing tools for the NMPC and DRTO of (fed-)batch 
processes.

A simplified version of the algorithm, which aims at providing a 
simple but clear idea of how it is configured, is reported in Fig. 2. 
There BSMBO&C is described as a two-phase method including a 
first initialization phase and then a subsequent iterative phase. The 
initialization is executed only once and is used to provide the al-
gorithm with the required user-supplied input data:

� the controlled system model;
� the objective function (i.e. two performance indicators);
� the tuning settings;
� the lower/upper bounds on the controlled system states,
manipulated variables and batch cycle time.

The iterative phase consists of the repetition of one single iter-
ation, also called BSMBO&C basic step, until a stopping condition is
fulfilled, which implies that the optimal batch time has been
reached. The basic step is constituted of several operations that are
carried out in series:

� an optimization to evaluate the optimal values of the manipu-
lated variables and the batch time in the next control action
(optimization sub-step);

� the application of the optimal control action to the controlled
process and the update of the control horizons of the manipu-
lated variables;

� the measurement and analysis of the controlled system
response;

� the convergence condition check and the consequent decision
on whether to proceed with a new basic step.

Up to now, a simple but intuitive idea of how BSMBO&C oper-
ates has been conveyed. The interested reader can find many more 
details on the framework in its two reference papers (Rossi et al., 
2014a, 2014c). However, some additional explanations on the 
mathematical structure of the algorithm's objective function must 
be added. BSMBO&C objective function is reported in Eq. (1) in a 
simplified fashion. Notice that it is made of two user-defined per-
formance indicators (f and g) and two regulatory terms, i.e. an anti-
ringing term (ART) and a slope control term (SCT). The f and g 
functions are user-supplied data and must be defined such that the 
fg product measures the controlled system performance (the 
greater fg, the lower the controlled process performance and vice 
versa). The slope control and anti-ringing terms are introduced in 
order to prevent strong and repeated oscillations in the profiles of 
the controlled system states and manipulated variables, respec-
tively. The precise formulation of ART and SCT is not of interest for 
the purpose of this paper but can be found in the BSMBO&C 
reference papers. Instead, it is interesting to briefly describe the 
guidelines that can be used to choose f and g. The function g is the 
primary objective function and should account for the performance 
of a single batch cycle. f is the complementary objective function 
and should be used to handle multi-cycle problems as, for instance, 
scheduling-like problems. The importance of this additional



Fig. 2. Simplified graphical description of the BSMBO&C algorithm.
information on the user defined performance indicators will
become clear in the following.

f BSMBO&C
obj ¼ f ðg þ ART þ SCTÞ (1)

One last remark on BSMBO&C concerns its numerical imple-
mentation. Its coding is realized in Cþþ, relying on BzzMath library 
(Buzzi-Ferraris, 2014; Buzzi-Ferraris and Manenti, 2012) as nu-
merical engine for both integration and optimization purposes. 
Since BzzMath integrators and optimizers are very performing and 
perfectly suitable to solve strongly non-linear problems, BSMBO&C 
can be successfully applied also to processes with strongly non-
linear dynamics. This suggests its wider application range. This 
BSMBO&C feature, along with its effectiveness and efficiency, are 
the main reasons why this framework is selected as basic NMPC/
DRTO-like strategy of the robust sustainability-oriented DRTO/
NMPC-like approach.
2.2. The scenario-based approach for ensuring robustness and its 
integration into the BSMBO&C strategy

The scenario-based approach for ensuring robustness is a 
method that can be used to improve a NMPC/DRTO-like algorithm 
as to make it able to efficiently manage also uncertain controlled 
systems. In other words, it is a strategy to improve a NMPC/DRTO-
like algorithm robustness. The idea on which it is based is quite 
simple. An online optimization/optimal control problem on an 
uncertain controlled process (i.e. a process whose model contains 
uncertain parameters) is converted into a problem of the same type 
but on a proper set of exact controlled processes. This artificial set 
of controlled process units is also referred to as scenarios set, thus 
the acronym multi-scenario that is used to refer to the 
methodology.

It is clear that the scenario-based approach for ensuring 
robustness is general and can be applied to any NMPC/DRTO-like 
algorithm. However, here the discussion is only limited to its 
application to the BSMBO&C framework.
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Since the effectiveness of such a strategy is strongly influenced
by the scenarios selection logic, this is the first topic to address. The
methodology proposed here for the scenarios set evaluation is
made of three steps in series:

� definition of a finite space from where to draw scenarios;
� identification of two scenarios, referred to as the nominal and
worst case;

� definition of the additional scenarios to complete the set.

The identification of the finite space from which to draw sce-
narios can be readily done, assuming that the probability density 
function (PDF) of the uncertain parameters of the controlled system 
is known. It is only necessary to identify the region of the uncertain 
parameters space corresponding to a cumulative probability that 
equals a certain confidence threshold.

The identification of the nominal case is straightforward as it 
corresponds to the maximum of the PDF of the uncertain param-
eters. Instead, the worst case can be found via sensitivity analysis, 
performed on the controlled system uncertain parameters and 
manipulated variables. Indeed, the scenarios space can be mapped, 
using either Monte-Carlo methods or a uniform grid search, for the 
scenario that minimizes the distances between the controlled 
system states and their upper/lower bounds.

Finally, the additional scenarios can be chosen based on a 
mapping of the level surfaces of the PDF of the uncertain parame-
ters using either Monte-Carlo or a uniform grid search. The choice 
of the first or the second mapping option depends on the number 
of uncertain parameters in the controlled system model.

Once the scenarios set is completely determined, all the 
controlled system models, corresponding to the selected scenarios, 
are assembled into a pseudo controlled process model that is 
supplied to the BSMBO&C as an input data. Moreover, the 
BSMBO&C performance functions are chosen as a weighted sum of 
the f and g functions referred to the single scenarios, where the 
weighting factors are defined as the normalized probability den-
sities of the scenarios. All the concepts in this last paragraph are 
translated into mathematical expressions by Eq. (2) and Eq. (3).
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In Eq. (2) and Eq. (3), IRM is a diagonal singular/non-singular 
identity-like matrix, w, m and d represent the states, manipu-
lated variables and external perturbations relating to the controlled 
system, m identifies the uncertain parameters of the controlled 
system model and Ns is the total number of scenarios in the sce-
narios set. In addition, ps indicates the normalized probability 
density of the generic scenario while superscript/subscript s refers 
to the generic scenario and superscript R refers to the entire set of 
scenarios.

As a final remark observe that typically this scenario-based 
approach ensures the same robustness guaranteed by the worst-
case approach (i.e., the highest possible robustness) but takes to 
much higher performances of the controlled process unit. There-
fore, this methodology can be considered a smart way to overcome 
the typical problem of the strategies for ensuring robustness, i.e. 
the loss in performance. This is why the scenario-based strategy for 
ensuring robustness is chosen to be merged with the BSMBO&C 
framework to protect it against controlled process uncertainty.
2.3. The utilities-usage-related penalty terms approach and its 
application to the BSMBO&C framework

The utilities-usage-related penalty terms approach is a simple 
way to force a NMPC/DRTO-like algorithm to provide its controlled 
system with sustainability-oriented (i.e. profitable but low-
utilities-usage) online optimization/control policies. It works by 
adding a set of penalty terms to the objective function of the NMPC/
DRTO-like strategy, which depend on the utilities usage and a set of 
tuning coefficients, referred to as utilities consumption parameters. 
These parameters can be used to specify the importance of the 
penalty terms, thus imposing the user's own concept of 
sustainability.

Similarly to section [2.2], the utilities-usage-related penalty 
terms approach could be applied to any NMPC/DRTO-like frame-
work but here is addressed only limited to the application to the 
BSMBO&C.

The mathematical structure of the penalty terms to be added to 
the BSMBO&C objective function is reported in Eq. (4). There the 
arrows stand for replacement, i.e. fR is not modified and gR is 
replaced with the expression on the right of the corresponding 
arrow. Moreover, UIh is the integral of the h-th controlled system 
utility flux, lh is the h-th utility consumption parameter and Nu is 
the number of utilities accessed by the controlled system.
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Notice that the only gR function is modified. Indeed, adding 
penalties proportional to the utilities usage in this performance 
indicator is equivalent to add penalties to the overall BSMBO&C 
objective function (see the information included in section [2.1] on 
the BSMBO&C objective function and Eq. (1)).

Once the structure of the utilities-usage-related penalty terms 
has been described, the method for the evaluation of the utilities 
consumption parameters (l) must be addressed. These parameters 
affect the function gR that depends on the scenarios selected for the 
multi-scenario robustness strategy (see section [2.2]). Therefore,
the methodology for their evaluation must depend on this sce-
narios set too. The authors of this work have found that an effective
way to compute reasonably optimal values for the lh coefficients is
the following:

� A set of l guesses, including l ¼ 0, is chosen based on Monte
Carlo or a uniform grid search algorithm;

� For each l set, selected in the previous bullet, Ns multi-scenario
BSMBO&C-driven optimization& control problems are solved in
nominal conditions, i.e. no external perturbations are consid-
ered; these several simulations are performed with the same l-
dependent objective function (Eq. (4)) but different controlled 
systems that are chosen with the same features (i.e. values of the 
uncertain parameters) of the scenarios selected in section [2.2];

� Depending on the results coming from the nominal multi-
scenario BSMBO&C-based simulations, each l set is ranked
based on a proper ranking index reported in Eq. (5) and 
described below (the lower the ranking index, the better the l 
set and vice versa);

� The l set with the best ranking is the one selected as optimal set
of utilities consumption parameters.

The ranking index (RI), mentioned in the third bullet, is given by 
the combination of three different sub-indexes, each accounting for
a certain property of a l set. The first sub-index (RI1) allows for the
reduction in the utilities consumption compared to the l ¼ 0 case, 
the second (RI2) accounts for the controlled system performance
variation compared to the l ¼ 0 case and the third (RI3) measures 
how homogeneous the utilities consumption reduction is among
the Ns multi-scenario BSMBO&C-driven simulations (remind that
for each l set Ns multi-scenario BSMBO&C-based simulations are 
carried out). The mathematical representation of the ranking index 
and its three sub-indexes is reported in Eq. (5).
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Each ranking sub-index contains global information, averaged
on the results of all the Ns multi-scenario BSMBO&C-driven simu-
lations, and local information, referred to each single multi-
scenario BSMBO&C-based simulation. The rigorous mathematical
description of these global and local informations is included in Eq.
(6), Eq. (7) and Eq. (8). Inside these equations, UIhs stands for the h-
th utility consumption in the s-th multi-scenario BSMBO&C-based
simulation performed with a non-zero l set and UI0hs is the equiv-
alent of UIhs but refers to a simulation where l is null. Moreover,
(fg)s is the product of the f and g functions related to the s-th multi-
scenario BSMBO&C-based simulation performed with a non-zero l

set and ðf0g0Þs is the equivalent of (fg)s but derives from a simu-
lation where l is null. Notice that UIhs, UI0hs, (fg)s, ðf0g0Þs are all
computed with the data derived from the optimal operation of the
controlled systems (not the models of these controlled systems)
related to the multi-scenario BSMBO&C-driven simulations.
Moreover, the (fg)s and ðf0g0Þs terms are computed based on the
original f and g performance indicators, without the addition of the
l-based penalty terms.
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The ranking sub-indexes also contain adaptive parameters,
named uh and c. The u coefficients are a set of user-defined pa-
rameters that can be used to account for the different importance of
different utilities on the environmental impact of the controlled
process. It is essential for these parameters to be normalized, i.e.
their summust equal one. Instead, c is a coefficient that can be used
to impose how important the controlled system performance is in
terms of ranking index. In other words, by changing c it is possible
to define which operating regions of the controlled system can be
considered sustainable. The selection of the uh and c coefficients
must be carried out by the user of the robust sustainability-
oriented DRTO/NMPC-like strategy and, unfortunately, no general
rules can be defined to guide this specific choice. The best values for
these coefficients are too problem dependent.

A final remark must be added on the strategy for the evaluation
of the utilities consumption parameters. It is typically the most
computational demanding block of the entire PHASE I. However, its
configuration is such that all its operations can be executed in
parallel, thus significantly reducing the required computational
time. A precise reader might ask why the optimal l set evaluation is
not handled via optimization. The answer stands in the multi
modal-nature of the optimization problem that is, for this reason,
almost impossible to solve with reasonable effort. In the end, this is
one of the cases in which the simple beats the complex.
Fig. 3. WilliamseOtto fed-batch reactor layout (USI stands for user-supplied
information).
3. A case study: the WilliamseOtto fed-batch process

The robust sustainability-oriented DRTO/NMPC-like strategy, 
proposed in this paper and described in its theoretical concepts in 
section [2], is now applied to a case study. Observe, once again, that 
the DRTO/NMPC-like algorithm, which the strategy relies on, is the 
BSMBO&C framework. Coming back to the case study description, it 
employs a WilliamseOtto fed-batch reactor as target system, 
whose model is supposed to contain uncertainties in the refriger-
ation apparatus. The fed-batch reactor is modelled as described in 
section [3.1]. Moreover, the process performance measure is a 
user-supplied information (see section [2.1]) and is reported in 
section [3.1] too.

The test case is designed to demonstrate the effectiveness of the 
robust sustainable DRTO/NMPC-like strategy in itself and compared 
to a standard robust optimization & control strategy, which does 
not provide any sustainability guarantee. Therefore, all the test 
simulations are performed twice, once with the complete meth-
odology described in section [2] and once with the only BSMBO&C 
framework coupled with the scenario-based robustness strategy 
(multi-scenario BSMBO&C). The simulations couples are then
compared. Moreover, since the WilliamseOtto fed-batch reactor to 
be managed is subject to uncertainties, several simulations are 
performed for different real reactors, i.e. supposing different 
controlled processes.

Finally, in order to provide a reasonably accurate validation, two 
different cases are considered. In the first (2D case), two unex-
pected process perturbations are supposed to influence the 
controlled fed-batch reactor while in the second (1D case) a single 
critical perturbation is supposed to occur. These two different cases 
are used to demonstrate the effectiveness of the proposed strategy 
in both every-day and unlikely/unusual process conditions (for 
each of the two cases the whole set of simulations mentioned 
above is repeated).

The detailed description of the numerical results of the test case 
is reported in sections [3.2] and [3.3]. In detail, section [3.2] con-
tains information on both the selected scenarios for the scenario-
based robustness strategy and the selected optimal set of utilities 
consumption parameters. Instead, section [3.3] includes all the 
results concerning the case study simulations with both the 2D and 
1D perturbations set.
3.1. WilliamseOtto fed-batch reactor: modelling and related process 
performance measures

The WilliamseOtto fed-batch process is a well-known literature 
process that is commonly used to test model-based online opti-
mization and/or control systems. Here the fed-batch reactor, in 
which the process is carried out (Fig. 3), is modelled by means of 
some assumptions: single phase reacting mixture, perfectly mixed 
reactor vessel and cooling jacket, temperature-independent ther-
modynamic properties of the reacting medium. Under these as-
sumptions, the achieved model equations are those shown in Eq.(9) 
and include a complete set of component material balances (first 
ODE), a global material balance (second ODE) and the reactor and 
cooling jacket thermal balances (third and fourth ODEs). In Eq.(9):

� NR and NC are the number of chemical reactions and

components;
� Rl, nil and DHR,l are the rate of the l-th reaction, the stoichio-
metric coefficient of the i-th component in the l-th reaction and
the heat of the l-th reaction;

� U is the global heat transfer coefficient between the reacting
mixture and the jacket cooling fluid;



� Cpi, Cpj and rj are the specific heat of the i-th component in the
reacting mixture, the coolant specific heat and the coolant
density.

The meaning of all the other symbols can be directly and clearly 
inferred from Fig. 3.
8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

dCi
dt

¼ FIN

VR

�
CIN
i � Ci

�
þ
XNR

l¼1

nilRl ci ¼ 1:::NC

dVR

dt
¼ FIN

dTR
dt

¼ 4U

DR

XNC

i¼1

CiCpi

�
TOUTj � TR

�
þ
FIN

XNC

i¼1

CIN
i Cpi

VR

XNC

i¼1

CiCpi

�
TIN � TR

�
�
PNR

l¼1 DHR;lRlPNC
i¼1 CiCpi

dTOUTj

dt
¼ Fj

Vj

�
TINj � TOUTj

�
þ 4UVR

DRVjrjCpj

�
TR � TOUTj

�

(9)
Some essential complementary information to Eq. (9) must be 
added. The WilliamseOtto process initial conditions, operational 
constraints (lower/upper bounds) and kinetic scheme are the first 
of these additional data and are summarized in Table 1. Another 
essential information that is needed is the nature of the uncertainty 
located in the heat transfer apparatus. Here this uncertainty is
8>>>>>>>>>>>><
>>>>>>>>>>>>:

f ¼ 1

g ¼

2
666664
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�
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�
CBC
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G PMGEVG þ CBC

P PMPEVP

�
þ

3
777775

C0
AV

0
R ðPMCEVC � PMAEVA � PMBEVBÞ

(10)
supposed to be concentrated into the heat transfer coefficient, thus 
being the only uncertain parameter of the fed-batch reactor model. 
In detail, U is considered normally distributed with assigned mean 
and variance. All the U-related statistical data can be found in Table 
1 too. Finally other essential miscellaneous data consist of the 
required thermodynamic properties, the fed-batch reactor vessel 
sizing and so on. All these remaining information is, once again, 
included in Table 1.

As a last remark on the WilliamseOtto fed-batch reactor, 
observe that the only two independent variables that can be used 
to influence its operation are the coolant flow (Fj) and the feed flow 
(FIN) while its only utility flux is Fj. Therefore, the proposed robust 
sustainability-oriented optimization and control strategy will use Fj
and FIN as the only adjustable inputs and will consider the coolant
fluid as the only process utility.

Once the model and the features of the WilliamseOtto fed-
batch reactor have been conveyed, it is necessary to define the
performance indicators with respect to which the reactor must be
optimally managed. Here a set of economic f and g functions is
chosen, since g is set to the inverse of the dimensionless net in-
come per batch cycle (see Eq. (10)). Inside this equation, the 
subscripts/superscripts BC are applied to a variable to identify its 
value at the end of a batch cycle, i.e. in tBC. The meaning of all the 
other symbols can be either inferred from Table 1 or has already 
been explained.
In conclusion, notice that the function f is set to one in Eq. (10). 
This means that the users, i.e. the authors of the paper, want the 
performance of the WilliamseOtto fed-batch reactor to be opti-
mized on the single batch cycle. No scheduling-like problems are 
addressed in this case study.

3.2. The scenarios and utilities consumption parameters selection: 
numerical results

Thanks to the previously conveyed information on the Wil-
liamseOtto process/fed-batch reactor, PHASE I of the proposed 
robust sustainability-oriented optimization & control approach 
(see Fig. 1) can be performed. Notice that the confidence



Table 2
Principal numerical results coming from the scenarios and utility consumption parameters selection.

Selected scenarios Nominal case Worst case Other scenarios
U ¼ 0.8 U ¼ 0.48 U ¼ 0.58667

U ¼ 0.69333
U ¼ 0.90667

Optimal utilities consumption coefficients
Units of measure

U ¼ 1.01333 
U ¼ 1.12

lj ¼ 4.122E�4 (there is only one utility consumption parameter and it relates to Fj)
See Table 1 for further information

Table 1
WilliamseOtto process/fed-batch reactor data.

Kinetic scheme A þ B / C (1)
R1 ¼ k01 exp

�
� E1

TR

�
CACB

k01 ¼ 1.3833Eþ5
E1 ¼ 6.45Eþ3

B þ C / P þ E (2)
R2 ¼ k02 exp

�
� E2

TR

�
CBCC

k02 ¼ 6.0098Eþ7
E2 ¼ 8.7785Eþ3

C þ P / G (3)
R3 ¼ k03 exp

�
� E3

TR

�
CCCP

k03 ¼ 2.2288Eþ11
E3 ¼ 1.1155Eþ4

Heats of reaction DHR,1 ¼ �1.8510Eþ5; DHR,2 ¼ �2.5765Eþ5; DHR,3 ¼ �5.053Eþ5
Specific heats and densities

(reacting mixture and coolant)
CpA ¼ 321.204; CpB ¼ 127.14; CpC ¼ 352.288; CpE ¼ 166.212; CpG ¼ 844.132; CpP ¼ 426.617; Cpj ¼ 4.186; rj ¼ 1Eþ3

Molecular weights (reacting mixture) PMA ¼ 142; PMB ¼ 60; PMC ¼ 202; PME ¼ 81; PMG ¼ 383; PMP ¼ 181
Reactor structure DR ¼ 1; HR ¼ 3.5; Vj ¼ 0.8236
Global heat transfer coefficient Uave ¼ 0.8; Ustd dev ¼ 0.1 (U is normally distributed)
Relevant lower/upper bounds FIN,MAX ¼ 1E�3; FMAX

j ¼ 1E�2; TMAX
R ¼ 335; VMAX

R ¼ 2.15
Initial conditions C0

A ¼ 1.5; C0
B ¼ 0.25; C0

isA;B ¼ 0; V0
R ¼ 1; T0R ¼ 308; TOUT ;0j ¼ 308

Feed conditions and coolant
inlet temperature

CIN
B ¼ 1; CIN

isB ¼ 0; TIN ¼ 298; TINj ¼ 308

Reactants/products price EVA ¼ 25; EVB ¼ 75; EVC ¼ 200; EVE ¼ 0; EVG ¼ 0; EVP ¼ 40
Units of measure amount of substance [kmol]; mass [kg]; length/area/volume [m]/[m2]/[m3]; time [s]; temperature [K]; energy [kJ]; prices [V]
threshold, required for the first step of the scenarios selection 
procedure (see section [2.2]), is set to 99.9%. Moreover, both for the 
third step of the scenarios selection procedure and for the utilities 
consumption parameters mapping the uniform grid search option 
is preferred to Monte Carlo method. This choice appears reasonable 
because there is only one uncertain parameter in the fed-batch 
reactor model and only one utility flux to be considered in this 
version of the WilliamseOtto process. Finally, it has to be 
highlighted that the scenario selection procedure is limited to 
choose only seven scenarios, in order to preserve the online 
applicability of the proposed robust sustainability-oriented DRTO/
NMPC-like strategy.

The numerical results, achieved through the aforementioned 
operations, are summarized in one table (Table 2) and two figures 
(Figs. 4 and 5). Some interesting remarks can be added based on 
these results. These comments are detailed in the following lines.

Dealing with the outcomes coming from the scenarios selection 
procedure, observe that:
Fig. 4. Graphical representation of the scenarios selection step output (p(U) identifies
the heat transfer coefficient probability density function (PDF) while the black, dark
grey and light grey circles stand for worst case, nominal case and additional scenarios).
� the worst case scenario corresponds to the minimum allowed
value of the heat transfer coefficient based on the 99.9% confi-
dence threshold (this is expected and reasonable);

� The selected confidence threshold (for the first step of the
scenarios selection procedure) and number of scenarios seem 
to guarantee a reasonably accurate description of the uncer-
tainty in the WilliamseOtto process model (see the chart in 
Fig. 4).

As a last comment, note that the two aforementioned bullets
suggest that the scenarios selection procedure appears to require
only a limited number of scenarios to ensure reasonable robustness
in PHASE II. This indirectly confirms that the proposed robust
sustainability-oriented DRTO/NMPC-like method can be applied in
real-time not only in paper but also in real life.

Coming now to the results of the evaluation of the optimal
utilities consumption parameters, the following comments can be
made:
Fig. 5. Trends of the ranking index and sub-indexes for the only employed utility
consumption parameter (lj).



Fig. 6. External perturbations imposed in the 2D and 1D cases.
are multimodal as already anticipated in section [2.3] (lj refers 
to the WilliamseOtto fed-batch reactor cooling medium);

� Fig. 5 also suggests that different lj values might take to very 
similar RI values, i.e. several lj might take to similar effects (the
lj value reported in Table 2 is evidently that corresponding to 
the minimum RI).

These remarks convey the idea that the identification of the best 
values for the utilities consumption parameters is not trivial and 
might require a very fine (uniform/random) search grid. However, 
this is not a serious problem since PHASE I of the proposed robust 
sustainability-oriented DRTO/NMPC-like methodology has to be 
executed offline and could take up to relevant time to be completed 
without negatively affecting the real-time applicability of PHASE II 
(the only online phase).

3.3. The simulations results: a sustainability comparison

By employing the results belonging to PHASE I, PHASE II can be 
carried out (see the beginning of section [3] for details on the

� Fig. 5 confirms that the ranking index (RI) and sub-indexes (RI1, 
RI2, RI3) trends for the only utilities consumption parameter (lj)
Fig. 7. WilliamseOtto fed-batch reactor optimal operation with (lj s 0) and withou
(Ureal ¼ 0.7125 kW/m2/K).
simulations performed here). The only additional information that 
is needed is the nature of the external perturbations affecting the 
WilliamseOtto fed-batch process unit. These data are shown in Fig. 
6. Notice that the only coolant inlet temperature is used as external 
disturbance. This choice is reasonable because this vari-able is the 
most influential on the fed-batch reactor operation.

The results achieved in the execution of PHASE II are 
summarized in several different charts, shown in Figs. 7e10. In 
detail, Fig. 7 contains the optimal WilliamseOtto fed-batch reactor 
operation supposing its heat transfer coefficient (Ureal) to equal 
0.7125 kW/m2/K. Figs. 8 and 9 show the same data included in Fig. 
7 but for different Ureal values, i.e. 0.8 kW/m2/K and 0.8875 kW/m2/
K, respectively. By looking at these three figures, important 
remarks can be drawn:
� in all the three circumstances the proposed robust
sustainability-oriented DRTO/NMPC-like strategy is able to
significantly reduce the coolant consumption (Fintj ) while
limited changes can be observed in the optimal temperature
profile (and in the optimal composition profiles, even though
not explicitly reported) of the fed-batch reactor;

� the trend highlighted in the previous bullet is preserved both in
the case of every-day process perturbations (2D case) and in the
case of unexpected critical disturbances (1D case);

� the application of the utilities-usage-related penalty terms
approach does not introduce significant additional oscillations
in the optimal profiles of the manipulated variables (Fj and FIN)
(the oscillations in Fj and FIN optimal trajectories might seem
important but it is only a false impression due to the charts
abscissa scale);

� the application of the utilities-usage-related penalty terms does
not take towards easier bounds violations (no bounds violations
are observed with and without the employment of these pen-
alty terms).

All these remarks bring to several conclusions. First, the pro-
posed robust sustainable optimization & control framework seems
t (lj ¼ 0) the employment of the utilities-usage-related penalty terms approach



Fig. 8. WilliamseOtto fed-batch reactor optimal operation with (lj s 0) and without (lj ¼ 0) the employment of the utilities-usage-related penalty terms approach (Ureal ¼ 0.8 kW/
m2/K).
to be able to significantly reduce the process coolant consumption
(i.e. the environmental impact) per batch cycle without seriously
affecting the process performance in each batch cycle. On the one
hand, it means that the proposed framework seems effective in
itself because it seems to be able to optimally manage a process
aiming at its maximum sustainability. On the other hand, it means
Fig. 9. WilliamseOtto fed-batch reactor optimal operation with (lj s 0) and withou
(Ureal ¼ 0.8875 kW/m2/K).
that the proposed framework can provide its controlled system
with much better management policies, in terms of process sus-
tainability, than a standard robust optimization & controlled
strategy. Second, no harmful effects (increased instability, increased
probability of bounds violations, increased risk of control losses,
etc.) are introduced through the application of the proposed
t (lj ¼ 0) the employment of the utilities-usage-related penalty terms approach



Fig. 10. Effect of the employment of the utilities-usage-related penalty terms approach on the performance and sustainability in the optimal operation of the WilliamseOtto fed-
batch reactor.
strategy. Third, the proposed strategy seems to fairly operate even 
in the case of critical process disturbances. This means that no 
safety hazards, e.g. thermal runaways, explosions, etc., can be 
promoted even in the case of huge process perturbations.

The first conclusion is supported by the data shown in Fig. 10. 
There the variation in the coolant consumption (Fj

int) and net 
income (NI) per cycle, with respect to the situation achieved when 
a standard robust optimization & control framework is applied, is 
reported as a function of Ureal. Indeed, observe that almost for any 
possible controlled fed-batch reactor the coolant consumption is 
significantly reduced while the net income per cycle is almost 
unchanged. Unfortunately, Fig. 10 also highlights that the 
proposed robust sustainability-oriented optimization & control 
framework is not always effective in the case of critical unexpected 
perturbations affecting the controlled system. Indeed, in the 1D 
case, the coolant consumption is significantly increased in 
correspondence with about one fourth of the map-ped values of 
Ureal. This ineffectiveness depends on the method employed for 
the selection of the utilities consumption param-eters, which is 
based on nominal multi-scenario BSMBO&C simulations. Future 
works will be aimed at removing this weakness.

Nevertheless, the proposed robust sustainability-oriented opti-
mization & control framework demonstrates to be effective in 
promoting process sustainability in itself and compared to a stan-
dard robust optimization & control strategy in the case of standard 
process operation. Moreover, it shows the same effectiveness, in 
about 75% of cases (on a statistical basis), even when critical dis-
turbances are encountered. Finally, it shows to be reliable and safe 
since it does not promote oscillations in the controlled system in-
dependent inputs, easier bounds violations, etc.

In the end, the proposed robust sustainable optimization & 
control framework seems a well-performing approach that would 
deserve to be tested on real lab scale/industrial equipment in the 
future.
4. Conclusions

In this work, a robust sustainability-oriented online optimi-
zation & control framework for fed-batch processes is proposed, 
described and tested on a well known benchmark for this type of
algorithms, a WilliamseOtto fed-batch process. The framework is 
designed to provide its uncertain controlled system with an
online management policy aimed at the best trade-off between 
process performance and utilities consumption, i.e. process
environmental impact. In simpler words, it is aimed at ensuring 
real-time process sustainability under uncertainty. This latter
capability represents the real novelty of the proposed approach. 
The results coming from the validation case study suggest that
the framework is very effective in case of typical process oper-
ation while it is partially effective in the case of unusual/unlikely
critical process disturbances (future works will go towards the 
removal of this weakness). As a consequence, the proposed
robust sustainability-oriented online optimization & control 
framework probably deserves to be applied to lab scale/indus-
trial processes to check its real effectiveness in real life 
applications.
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