
1 Introduction

Civil and industrial structures, exposed to aging and extreme loading conditions, are
more and more in need of real-time structural health monitoring (SHM) procedures,
immediately able to send out warnings as soon as potentially dangerous situations are
approached (Achenbach, 2009).

Towards real-time health monitoring of structural
systems via recursive Bayesian filtering and
reduced order modelling

Giovanni Capellari
Department of Civil and Environmental Engineering,
Politecnico di Milano,
Piazza L. da Vinci 32, 20133 Milano, Italy
Email: giovanni.capellari@polimi.it

Saeed Eftekhar Azam
Department of Mechanical Engineering,
University of Thessaly,
Leoforos Athinon,
Pedion Areos, 38334 Volos, Greece
Email: eftekhar@uth.gr

Stefano Mariani*
Department of Civil and Environmental Engineering,
Politecnico di Milano,
Piazza L. da Vinci 32, 20133 Milano, Italy
Fax: 02-23994300
Email: stefano.mariani@polimi.it
*Corresponding author



With a focus on lightweight composite structures and, specifically, on thin laminates
(Hull and Clyne, 1996; Reddy, 2004), relevant SHM systems can be designed exploiting
sensors of reduced size, that can be embedded in the composite itself, see e.g., Leng
and Asundi (2003), Melnykowycz and Brunner (2011) and Konka et al. (2012). But
experimental investigations indicate that such embedment can give rise to a local
inception of small-scale defects, which represent damage sources at the structural level
(Tang et al., 2011). Moving from the pioneering work of Ratcliffe et al. (2008), in
Mariani et al. (2013a, 2013c, 2014) and Caimmi et al. (2014) we then proposed a
monitoring system consisting of inertial micro-sensors (MEMS), surface-mounted on
the structure to sense changes of its response to loading caused by damage events.
Experimental results relevant to standard laboratory tests, usually adopted to estimate
the inter-laminar strength and toughness of laminates under various loading conditions,
already proved that a one-to-one relationship between the sensed motion of the specimen
and the location and amount of damage can be obtained.

Besides aspects related to the optimisation of the topology of the network of
sensors to be placed over the structure, it has to additionally be ensured that relevant
measurements can provide an online estimate of damage; in other words, the sensed
change of the structural response has to be distinguishable from noise sources. Moving
towards real-time applications, the development of a theoretical/numerical model of the
whole structure to govern the monitoring procedure is not an easy task: for instance, in
case of composites an accurate structural model needs to allow for micro-scale features
possibly causing the inception and growth of damage (see Ladevéze et al., 2006),
and so it typically entails high computational costs. Moreover, when damage evolves
the system’s stiffness and load carrying properties are affected, and so a nonlinear
dynamics problem is faced. Procedures to reduce the order of the structural model, like
the proper orthogonal decomposition (POD), see e.g., Sirovich (1987), Eftekhar Azam
(2014) and Eftekhar Azam and Mariani (2013), prove effective and robust in the
linear regime only; to exploit the strengths of POD, in Eftekhar Azam (2014) and
Capellari et al. (2016) we proposed to continuously update the sub-space upon which the
system evolution equations are projected, taking advantage of the information brought
by observations and concerning drifts from the currently estimated structural health.
This procedure is discussed in details in this work, and an intricate algorithm centred
around a particle-Kalman filter (Kalman, 1960; Arulampalam et al., 2002) and a further
Kalman filter is proposed. The former filter is used to estimate the damage pattern in
the structure, whereas the latter one is used to tune the projection sub-space.

Results are presented for a thin square plate, supported along its border, loaded by
a concentrated force and featuring a uniform damage in regions of its mid-plane. It
is reported that, if measurements are collected from sensors deployed according to the
proposed optimisation scheme, an accurate estimate of the evolving damage state can
be obtained, even when only three degrees-of-freedom are retained in the POD-based
reduced-order model governing the filtering procedure.

As the two main topics of sensor deployment and damage identification are here
framed within a general approach to SHM, the remainder of the paper is organised
as follows. In Section 2, we discuss the optimal deployment of inertial sensors to
feel the variation of the local rotation of the mid-plane of the plate, and maximise
the overall sensitivity to a damage located anywhere. In Section 3, the estimation of
damage location and amount is discussed within an approach driven by the mentioned
hybrid particle-Kalman filter. To move towards real-time SHM procedures, in Section 4



a POD-based reduced-order modelling procedure for nonlinear structural dynamics is
proposed, and the role of an additional Kalman filter that governs the adaption of
the reduced-order model to the changing structural health is detailed. In Section 5,
results are reported in terms of optimal placement of the sensors and identification of
the partially observed reduced-order system. Finally, some conclusions are provided in
Section 6 together with a discussion on possible topics to be addressed in future works.

2 Smart sensing for lightweight structures

As extensively reported in the scientific literature, composite materials are nowadays
adopted for lightweight structures thanks to their high stiffness to weight and strength
to weight (sometimes also toughness to weight) ratios, see e.g., Hull and Clyne (1996).
The other way around, as a mixture of separate materials with different mechanical
and thermal properties, the behavioural mismatch at the interfaces between the phases
may easily turn into damage processes causing the ultimate failure of the whole
structure. Such subtle phenomena are difficult to monitor in case of laminates, made
of composite layers stacked one atop the other (Abrate, 1998; Nemat-Nasser and Hori,
1993; Reddy, 2004; Zhuang et al., 2003). As each layer behaves anisotropically due
to the specific orientation of elongated inclusions or fibers, a further mismatch of
mechanical properties emerges along the inter-laminar surfaces; if layers are differently
oriented in the mid-plane of the plate, this latter mismatch may lead to delamination
(Allix et al., 1995; Allix et al., 1998; Caiazzo and Costanzo, 2000; Costanzo and Walton,
2002; Yu et al., 2002; Corigliano and Mariani, 2001a, 2001b, 2002; Corigliano and
Mariani, 2002; Mariani and Corigliano, 2005). All the resulting damage mechanisms
are basically hidden inside the structure; monitoring schemes, able to sense divergence
of the current structural response with respect to the perfectly elastic one, are therefore
necessary for an effective estimation of damage, see e.g., Bruggi and Mariani (2013)
and Mariani et al. (2013a, 2014).

Before addressing the specific problem of damage estimation through the
measurements gathered by a network of sensors, a review of some recent results
on the optimisation of the topology of the network itself is reported. Exploiting
micro-technologies, currently providing cheap commercial off-the-shelf (COTS) inertial
MEMS sensors, in Mariani et al. (2013c) and Caimmi et al. (2014) it was proposed to
surface-mount such devices so as to avoid any detrimental interaction between them and
the composite microstructure, see also Ratcliffe et al. (2008). In fact, when the laminate
is produced fibers or other types of sensors (Leng and Asundi, 2003; Mieloszyk et al.,
2011; Orlowska et al., 2011; Tang et al., 2011; Minakuchi et al., 2011; Sohn et al.,
2011) can be embedded inside the resin-enriched inter-laminar regions between adjacent
laminae, but the composite microstructure gets locally distorted, causing defect inception
and a reduction of the overall load-carrying capacity or life-time of the structure, see
Tang et al. (2011), Butler et al. (2011) and Konka et al. (2012). Surface-mounting the
sensors might be dangerous for the SHM system, which is exposed to external agents
and to the environment; on the other hand, this approach does not induce any failure
mode additional to those caused by loadings only.

The goal of the aforementioned network optimisation approach is thus the
deployment over the structure of a given set of inertial sensors, so as to maximise
the sensitivity of the SHM system to drifts in the response to loads caused by the



development of damage. In Bruggi and Mariani (2013) and Mariani et al. (2013a),
moving from the space-discretised (e.g., through finite elements) model, it was proposed
that the topology of the sensor network is optimal if the solution of the following
problem is attained:

max
xi

ψ =
n∑

j=1

n∑
i=1

xi∥wji − wi∥
maxi xi∥wji − wi∥

s.t. 0 ≤ xi ≤ 1 and
n∑

i=1

xi ≤ N

(1)

In equation (1): ψ is the objective function to be maximised; i = 1, · · · , n is an index
running over all the finite elements used in the discretisation of the composite plate;
j = 1, · · · , n is an additional index running once again over all the elements, and used to
denote the element where damage is located; wi is the structural response to the loading
in the undamaged case and at the ith element (since such solution, for computational
convenience, is handled in an element-wise fashion), and wji is the response to the
same loading if damage is located inside the jth element only; ∥2∥ indicates the norm
of vector 2; N is the a-priori defined number of sensors to be deployed; xi is a discrete
variable field, constant inside each element, adopted to denote the presence (xi = 1) or
absence (xi = 0) of the sensor on the element itself.

Some of the details of the reasoning to obtain the formulation in equation (1) are
discussed now. First of all, the two indices i and j are necessary to decouple where
damage is sensed (in the ith element) and where it is located (in the jth element).
Although it looks time-consuming to compute the n+ 1 structural responses wji and
wi, the first n ones linked to damage located in one element only (as said, the jth one)
and the last one linked instead to the undamaged case, this turns out to be compulsory
to assure that the placement of the sensors is optimal no matter what the (unknown)
location of damage is. The non-dimensional form of each term summed up in the
objective function ψ has been devised to enhance the reliability of the optimisation
approach, independently of the loading condition (see Bruggi and Mariani, 2013):
without the term at the denominator, which scales all the contributions so that they
amount at most to one at assigned damage case, the sensor placement would be moved
towards regions maximising extremal values of the contributions xi∥wji − wi∥, and
not the relevant average. From a statistical viewpoint, this result has been considered
dangerous for the placement of the sensors, as the overall network sensitivity can be
largely smaller than the optimal one if damage gets incepted in a region not providing
the mentioned extreme values. Therefore, the approach leading to equation (1) allows
to attain a balanced sensitivity to all the foreseen damage events. Concerning the
magnitude of damage handled in the analyses providing terms wji, in Mariani et al.
(2013b) it was also shown that it marginally affects the outcome of the optimisation
procedure.

As far as the discrete density field xi is concerned, it has been assumed constant
inside each element, which in turn is considered as the smallest portion of the structures
that can be monitored. This field can take real values, not only integer ones, in
compliance with the constraint 0 ≤ xi ≤ 1; hence, the number N of devices to be
deployed does not necessarily turn out to be linked to N locations only. Usually, such
locations are more than N as (at least) some xi values are smaller than one. In Bruggi



and Mariani (2013), some algorithmic strategies were discussed to add a penalisation
for the intermediate densities, and so tend to almost purely 0-1 solutions; readers are
referred to that paper for all the computational details and relevant theoretical setting.

As stated here above, the characteristic element size is considered to be the smallest
possible resolution of the optimisation scheme and, therefore, of the SHM approach
to be detailed in what follows. In the analysis, it must be anyway borne in mind that
three length-scales should be accounted for: the first scale, to be considered as the
macroscopic one, is linked to the structural geometry and the spatial variation of the
loadings, and can be for instance assumed coincident with any in-plane dimension L
of the composite plate; the second scale, the mesoscopic one (see Ladevéze et al.,
2006), is linked to the size of the region where damage can be incepted and so,
granted that a coarse-grained discretisation of the structure proves sufficient for the SHM
purposes, to the characteristic size l of the finite elements; the third, microscopic scale
is finally linked to the size ℓ of the MEMS devices to be placed over the laminate. In
standard situations, L and ℓ can differ by two-three orders of magnitude; a multi-scale
approach thus looks necessary to catch all the mesoscopic details of the structural health,
and to also provide an effective placement of the micro-sensors. Along this line, a
decoupled multi-scale approach was proposed in Mariani et al. (2013b) and will be
further developed in future investigations.

As for the type of sensors to be adopted in the SHM procedure to sense the responses
wji and wi to loading, the kinematics of thin composite plates has been accounted for,
and so both translational and rotational degrees-of-freedom can be handled in the said
vectors. Assuming that load can only induce small deformations of the structure, the
kinematic variables in wji and wi turn out to be the out-of-plane deflection, and the
two rotations about the in-plane axes of any reference frame. Concerning the inertial
sensors to be deployed over the structure, in Mariani et al. (2013a, 2014) it was
already reported that a sensing of the rotation about the in-plane axes is preferable
to the sensing of the out-of-plane deflection for two main reasons. First, close to the
borders of the plate, where the motion is typically constrained, the deflection is zero
or so small that it cannot be detected with COTS sensors; these regions are on the
other hand extremely dangerous as for the mentioned delamination events, since the
heterogeneity and anisotropy of the composite can lead to local stress intensifications,
see O’Brien (1984) and Corigliano (2003). Second, if rotations are handled both
accelerometers and gyroscopes can be adopted as sensors: gyroscopes are targeted to
sense rotational motions, but accelerometers can be also used since they are designed to
feel their orientation relative to the vertical (gravity) direction. Hence, rotations inducing
a variation of the sensed components of the gravity field can be exploited in statics
(not only in dynamics) to monitor the health of thin plates.

3 Dual estimation of partially observed nonlinear systems

We discuss now a general scheme for the estimation of quantities of interest in a
structural system, driven by data brought by the sensors deployed over the structure.
As damage indices and further model parameters are not directly measurable, an
appropriate signal processing method is required to extract meaningful information from
the measurements. Due to economical and also technical reasons, it is often desirable to
use as few measurement devices as possible; the entire state of the system is accordingly



hidden, or only partially observable. Furthermore, a physical model is needed to relate
the whole state of the system to its observable part; it often turns out that inaccuracies
of the physical model and of the measurements cannot be neglected, and the signal
processing procedure has to systematically account for them.

Within a stochastic frame, the full state of a partially observed system is
here estimated through a recursive Bayesian filter. Making reference to a linear
discrete system, after having partitioned the time interval of interest according to
[t0 tend] = ∪Nt

k=1[tk−1 tk] its state-space model reads:

xk =A(ϑ,φ)xk−1 + Buk−1 + vxk (2)
yk =C(φ)xk + Duk−1 + vyk (3)

where xk stands for the whole state of the system at time instant tk; yk is the observation
process at the same time tk; uk−1 denotes the known input to the system at tk−1; terms
vxk and vyk define the uncertainties in the process and observation equations, respectively
featuring time-invariant covariances Vx and Vy; vectors ϑ and φ are two sets of model
parameters in need of estimation; A(ϑ,φ) maps the state of the system within the
discrete time interval [tk−1 tk], and is a function of the parameters of the physical
model gathered in ϑ and φ; B links the input to the system and its state, and so does the
transmission matrix D as far as observations are concerned; C(φ) stands for the relation
between the state of the system and the observation process, and is here supposed to be
a function of the vector φ. In equation (2), system parameters are arranged into the two
different sets ϑ and φ to allow for a specific physical interpretation: while parameters
in ϑ represent uncertainties in the model related to the real behaviour of the structure,
which is typically known up to a few parameters in need of fine tuning, parameters in φ
are supposed to come from a possible reduced-order modelling procedure (as described
in Section 4). Accordingly, the parameters are handled in a disjoint fashion, as the latter
set is related to the computational SHM approach and not explicitly to the material or
structural behaviour.

Table 1 Kalman filter algorithm

1 Initialisation at time t0:
x̂0 = E[x0]
P0 = E[(x0 − x̂0)(x0 − x̂0)T]

2 At time tk, for k = 1, ..., Nt:
a Prediction stage

1 Evolution of state and prediction of covariance
x−k = Axk−1 + Buk−1

P−
k = APk−1AT + Vx

b Update stage
1 Calculation of Kalman gain
Gk = P−

k C
T(CP−

k C
T + Vy)−1

2 Improve predictions using the latest observations
x̂k = x−k +Gk(yk − Cx−k − Duk−1)

Pk = P−
k −GkCP−

k



If the process and observation noises vxk and vyk are white and Gaussian, the Kalman
filter provides an optimal online estimate for the state of the system, upon availability of
the observation process yk (Kalman, 1960; Gelb, 1974). Table 1 collects the algorithmic
details of the Kalman filter. It can be seen that the algorithm is started with an initial
guess for the expected values of mean and covariance of the state; after this initialisation
step, the filter consists in a prediction stage, which is simply an evolution of the state
over time, and in an update stage. In the latter stage, through the Kalman gain Gk the
filter enhances the currently predicted value of xk.

In what precedes, it has been assumed that the mapping matrices of the system are
time-invariant due to the linear (namely, elastic) structural behaviour. In a general case
featuring damage evolution, the parameters in ϑ and φ can also evolve in time. In such
a case the state of the system is augmented according to zk = {xk ϑk φk}T, and
a recursive Bayesian filter is still adopted to improve the estimates of the whole state
when new observations become available. In doing so, the following equation is further
considered in the state-space model:{

ϑk

φk

}
=

{
ϑk−1

φk−1

}
+

{
vϑk
vφk

}
(4)

where it is assumed that both ϑ and φ can evolve in time following random walks,
with relevant fictitious noise contributions vϑk and vφk . The theoretical background
for equation (4) was extensively discussed in Eftekhar Azam (2014) and Capellari
et al. (2016); basically, it implies that even if damage evolves, and so the system
response and the parameters describing it evolve as well, such evolution is smooth and
slow enough so that it can be considered a piece-wise constant process. Accordingly,
also the reduced-order model, coming into play through the vector φk, has to be
progressively updated in a piece-wise constant mode. Such reasoning is linked to a kind
of time-scales separation principle: if the characteristic times corresponding to system
evolution (the fast one) and to damage evolution (the slow one) are well-separated,
within each time step the damage state and the corresponding parameters in ϑk and φk

can be assumed constant.
By gathering all the state-space equations together, the following dual formulation

is arrived at: xk
ϑk

φk

 =

A(ϑk−1,φk−1) 0 0
0 I 0
0 0 I


 xk−1

ϑk−1

φk−1

+

Buk−1

0
0

+

vxk
vϑk
vφk

 (5)

yk =
[
C(φk) 0 0

] xk
ϑk

φk

+ Duk−1 + vyk (6)

where nonlinearities stem first of all by the (either implicit or explicit) dependence of
the mapping matrices A and C on vectors ϑ and φ. In the cases here envisioned, one
has to deal with further sources of nonlinearities linked to the inception and subsequent
evolution of damage.

An optimal estimation of the whole state zk of nonlinear systems is in general not
possible, and a recursive Bayesian filter [like e.g., the extended Kalman filter (EKF),
the unscented Kalman filter (UKF) or a particle filter] must be employed to obtain



sub-optimal estimates, see e.g., Eftekhar Azam (2014). In fact, with the so-called EKF
the Kalman filtering scheme is used at each recursion for a linearised version of the
nonlinear model equations (Gelb, 1974; Mariani and Corigliano, 2005). In the presence
of severe nonlinearities, the EKF can lead to substantial errors. To alleviate such issue,
in Julier et al. (1995, 2000) the use of the so-called unscented transform was proposed
to generate a set of deterministic, particle-like realisations of the system, to be evolved
in time according to the actual nonlinear model; this approach provided the basis of the
UKF.

The aforementioned methods use the Kalman filter as back-bone, and perform
well as long as the basic assumptions of the Kalman filter are not violated much.
For instance, the EKF can deliver relatively accurate estimates when the probability
distribution function (PDF) of the state vector is close to a Gaussian one. The UKF
was designed to outperform the EKF in the presence of skewness in the PDF of
the state but, in case this turns out to be bimodal, also this filter fails to deliver
accurate estimates. In response to such shortcomings, particle filtering was proposed
in order to deal with problems with general PDFs, and so to attack cases featuring
nonlinearly evolving non-Gaussian distributions (Arulampalam et al., 2002). Within such
frame, a Monte Carlo method is used to numerically handle the Chapman-Kolmogorov
integral equation; but, when dealing with high-dimensional multivariate problems, the
computational demand of this approach prevents its real-time application. To mitigate all
the mentioned issues, in Eftekhar Azam and Mariani (2012) an EKF-enhanced particle
filter scheme was adopted wherein the drawn particles are pushed towards the regions
(in the PDF space) of high probability by an EKF, see Table 2. At variance with what
reported in Table 1, with this approach a set of Np particles x(i)k is drawn from the
beginning of the filtering procedure, each one associated with a covariance matrix P(i)

k

and a weight ω(i)
k . Information brought by all the particles are merged at the end of each

time step to move forward the estimate x̂k of the state (and the relevant covariance,
although not reported for brevity in Table 2). The drawing of the particles and the
evolution of the relevant weights can thus account for the mentioned non-Gaussianity
of the system PDF. Due to the nonlinear evolution of the system, mappings A and C
become time- and state-dependent, so they are reported in Table 2 with the index k
referring to the time instant tk.

The variance of the importance weights ω(i)
k is known to increase stochastically

over time (Doucet et al., 2000), so that after a few time steps most of them or even
all but one tend to zero. This issue is referred to as sample degeneracy. To alleviate
it, a resampling stage may be used to eliminate samples with low importance weights
and duplicate samples with high importance. Several methods have been proposed to
cope with that, like e.g., multinomial, stratified, systematic and residual resampling
schemes; differences among them lie on the criterion adopted to distinguish high and
low importance weights. In Chatzi and Smyth (2009) and Chatzi and Smyth (2013)
a Gaussian mixture sigma-point particle filter and a particle filter with mutation were
respectively adopted; here, systematic resampling is instead exploited, due to its low
computational complexity in comparison with the above mentioned methods, see Hol
et al. (2006). It must be noted that such approach is sensitive to the order in which
particles are sorted; switches among them changes the particle distribution, and therefore
an analytical study of the algorithmic performance becomes difficult, see Douc and
Cappe (2005).



Table 2 Hybrid particle-Kalman filter algorithm

1 Initialisation at time t0, for i = 1, ..., Np:
x̂0 = E[x0]
P0 = E[(x0 − x̂0)(x0 − x̂0])T]
x(i)0 = x̂0
ω

(i)
0 = p(y0|x0)

P(i)
0 = P0

2 At time tk, for k = 1, ..., Nt and i = 1, ..., Np:
a Prediction stage

1 Draw particles
x(i)−k ∼ p(x̂k|x(i)k−1)

2 Push particles toward the region of high probability through an EKF
P(i)−
k = AkP(i)

k−1A
T
k + Vx

G(i)
k = P(i)−

k CT
k(CkP(i)−

k CT
k + Vy)−1

x(i)k = x(i)−k +G(i)
k (yk − Ckx(i)−k − Duk−1)

P(i)
k = P(i)−

k −G(i)
k CkP(i)−

k

b Update stage
1 Evolve weights

ω
(i)
k = ω

(i)
k−1p(yk|x

(i)
k )

2 Resampling, see Eftekhar Azam (2014) and Capellari et al. (2016)
3 Compute expected value and other required statistics
x̂k =

∑Np

i=1 ω
(i)
k x(i)k

A further computational problem is considered next. One challenge, affecting all the
schemes dealing with parameter identification, is the so-called curse of dimensionality:
if the number of parameters to be estimated becomes large, the accuracy of the results
is decreased and the filters can furnish biased estimates. To alleviate this issue, the
parameter identification task is split into two stages. As mapping C is assumed to be
a linear function of its argument φk, the observation equation (3) is reformulated as
follows:

yk = Cφ(xk)φk + Duk−1 + vyk (7)

Equations (42) and (7) then provide a set of linear state-space equations; in a first stage
such linearity is exploited to provide a nearly optimal solution for the vector φk through
a Kalman filter. In a second stage, the state-space equations dealt with by the hybrid
particle-Kalman filter become:{

xk
ϑk

}
=

{
A(ϑk−1, φ̂k−1) 0

0 I

}{
xk−1

ϑk−1

}
+

{
Buk−1

0

}
+

{
vxk
vϑk

}
(8)

yk =
[
C(φ̂k−1) 0

]{ xk
ϑk

}
+ Duk−1 + vyk (9)

where φ̂k−1 stands for the estimated value of the vector at the beginning of the time
step, i.e., just before the new update.



 4 Towards real-time SHM of complex structures

It has been already emphasised that local damage processes in lightweight composite
structures need accurate models to be identified through the envisioned SHM procedure.
Therefore, the number of degrees-of-freedom typically adopted in relevant space
discretisations prevents any procedure to work in real-time. We now exploit the
formulation provided in Section 3, where two different sets of parameters to be
identified were retained in the expanded state vector zk, to propose an adaptive
reduced-order modelling procedure formerly developed for linear systems only.

The formulation is tailored to locate and quantify a damage in the structure.
Following a rather standard approach, damage parameters are associated to a local
reduction of the structural stiffness only; for simplicity, damage is also supposed to
develop isotropically. By subdividing the whole structure into Nz non-overlapping
sub-domains, each one is associated with a damage index di that scales the
corresponding Young’s modulus E as follows:

Ei = (1− di)E i = 1, ..., Nz (10)

The assumption of a homogeneous reduction of the mechanical stiffness in each region
does not represent a limitation of the procedure; in fact, like in the network optimisation
procedure, each zone may consist of one element only, whose characteristic size
becomes the resolution scale of the SHM system. More complex damage models can be
obviously allowed for, within the present framework.

The algorithm has been devised to apply to any kind of structure, and for any type of
discretisation. Exploiting keywords and user interfaces of the commercial finite element
code Abaqus, the structural mass and stiffness matrices are obtained and further handled
to build the reduced-order model. To properly account for the stiffness contribution
coming from each single zone where damage can develop, the overall stiffness matrix
K is assembled according to, see Zienkiewicz and Taylor (2000):

K = ANz

i=1

1− di
1− d̄

(Kund −Ki) (11)

where A is the assemblage operator; Kund is the whole structural stiffness matrix in
the undamaged configuration; and Ki, i = 1, ..., Nz , is an appropriate auxiliary stiffness
contribution relevant to the i-th zone only and linked to a fictitious damage index d̄,
constant and different from zero only in the said region. Accordingly, the vector ϑk of
model parameters to be identified gathers the damage indicators di, namely:

ϑk =
{
d1,k ... dNz,k

}T (12)

where the index k is adopted to signify that in the SHM procedure the estimations of
the damage indices vary in time, as provided by the hybrid particle-Kalman filter of
Table 2.

It has been already pointed out that the main drawback of any identification
method based on standard recursive Bayesian filters is represented by the excessive
computational costs for real-life situations. To move towards real-time applications, a
model order reduction procedure is adopted to reduce the dimensionality of the model,



still maintaining a proper level of accuracy concerning the state variables to be compared
with the data coming from measurements. The reduced-order model is obtained through
a Galerkin projection of the original, full-order one onto a sub-space provided by
POD in its snapshot version (Sirovich, 1987). The bases to perform such projection
are the so-called proper orthogonal modes (POMs), set to mimic the experimentally
(or pseudo-experimentally, as in Section 5) collected sensor signals.

POD requires an initial training stage of the reduced-order model, whose time
duration can be set on-the-fly according to some convergence criteria for the POMs
and for the relevant energy content, see Corigliano et al. (2013a, 2013b, 2015). In the
said training stage, snapshots of the structural response to the loading are collected;
as the structural system is supposed to be only partially observed (see Section 3), the
deployment of the sensors has thus to be optimised, e.g., as proposed is Section 2.
Depending on the target accuracy of the model, the number o of POMs to be retained
can be obtained, see e.g., Eftekhar Azam and Mariani (2013). Within the proposed
procedure, these POMs are handled through the vector φk, and can therefore be online
updated during monitoring if drifts from the initial health condition are detected by the
deployed sensors.

Having defined the order o of the reduced-order model, the structural mass M and
stiffness K matrices governing system evolution of the linear comparison model, are
then projected onto the sub-space spanned by POMs according to:

Mk = ΦT
kMΦk Kk = ΦT

kKΦk (13)

where Φk is a matrix gathering the current (vector-valued) values or estimates of the
retained POMs. Additional details concerning the reduction of the order of the structural
model can be found in Eftekhar Azam (2014) and Capellari et al. (2016).

Moving now to the state-space formalism, the state vector xk is assumed to read:

xk =
{
wk ẇk ẅk

}T (14)

where not only the kinematic nodal (or elemental, see Section 2) variables wk are
gathered to define the current configuration of the structure, but also the corresponding
time rates ẇk and ẅk. This shape of the state vector was already reported in Mariani
and Ghisi (2007) to be a condition to properly track the evolution of the statistics of the
whole system, once nonlinear phenomena take place.

The filter of Section 3 and the reduced-order modelling here detailed have now to
be joined together; the mapping and covariance matrices of Table 2 are accordingly
affected by the algorithmic procedure adopted. In Figure 1, the proposed algorithm is
summarised as a flow chart, where the exogenous input uk−1 has been disregarded
for simplicity. The method can be conceptually subdivided into two stages. In the first
stage (red box of Figure 1), once the measured signals yk are given the state vector
is estimated through the hybrid particle-Kalman filter. As system health may evolve in
time due to damage development, state equations become nonlinear and do require a
linearisation step: mapping A(i)

k acts here as A in equation (8) to evolve the (i)th particle
within the reduced-order setting. With a similar notation: X (i)

k is the current realisation
of the reduced-order state vector provided by the (i)th particle, and gathers all the state
contributions but φk (handled separately in stage 2); P(i)

k is the relevant covariance
matrix; and Vx is the covariance of the noise in the projected state evolution equations.



Since observations yk are linked to the full-oder state vector xk, see equation (9), when
the reduced-order vector X (i)

k is evolved a matrix Lk is necessary to return back to
the original, full-order observation equation. In accordance with the definition of X (i)

k

reported here above, matrix Lk reads:

Lk =


Φk

Φk

Φk

0

 (15)

where the last pivotal (matrix-valued) zero entry means that damage parameters cannot
be observed. Weights ω(i)

k are then evolved in time through the following multivariate
Gaussian distribution:

p(yk|X
(i)
k ) =

1√
(2π)n∥P(i)

k−1∥
×

exp
{
−1

2
(yk − CkLk−1X (i)

k )TP(i)−1
k−1 (yk − CkLk−1X (i)

k )

}
(16)

Figure 1 Flow chart of the procedure used for dual estimation of the reduced-order model
and sub-space update (see online version for colours)Towards real-time health monitoring of structural systems

X
(i)−
k = p(X̂ k|X

(i)
k−1)

P
(i)−
k = A

(i)
k P

(i)
k−1A

(i)
k

T
+V

x

G
(i)
k = P

(i)−
k LTkC

T
k(CkLkP

(i)−
k LTkC

T
k + Vy)−1

X
(i)
k = X

(i)−
k +G

(i)
k (yk − CkLkX

(i)−
k )

P
(i)
k = P

(i)−
k −G

(i)
k CkLkP

(i)−
k

ω
(i)
k = ω

(i)
k−1p(yk|X

(i)
k )

X̂ k =
∑Np

i=1 ω
(i)
k X

(i)
k

P
ϕ−

k = Pϕ

k−1 + V
ϕ

G
ϕ

k = Pϕ−k C
ϕ

k

T(Cϕ

kP
ϕ−

k C
ϕ

k

T + Vy)−1

ϕk = ϕk−1 +G
ϕ

k (yk − C
ϕ

kϕk−1)

P
ϕ

k = Pϕ−

k −Gϕ

kC
ϕ

kP
ϕ−

k

k = 1, ..., Nt

Flow chart of the procedure used for dual estimation of the reduced-order model and

In the second stage (green box of Figure 1), the sub-space formed by the retained POMs
collected in the vector φk is estimated by the Kalman filter. Here, the innovation in the
update stage of the filter provides the way to catch the drift from the current structural
health, and Vφ is the covariance of a fictitious noise added to allow POMs to evolve.



5 Results

Results are presented for a thin square plate, simply supported along its border
and featuring a sidelength/thickness ratio L/th = 40. The structure is loaded by a
sinusoidally varying force perpendicular to the mid-plane of plate, acting at its centre.
The force is bounded to alleviate any damage inception and growth due to the pad
itself; damage events are thus supposed to be due to other (possibly environmental)
causes. Moreover, the frequency of variation of the load has been defined to avoid high
frequency oscillations of the plate, but not necessarily to excite its fundamental vibration
mode only.

The plate is made of a material behaving isotropically in its mid-plane, with Young’s
modulus E = 70 GPa in the virgin state and Poisson’s ratio ν = 0.3. As already reported
in the paper, this assumption does not mean that a homogeneous and isotropic material is
considered; thinking of laminated structures, this in-plane isotropy can be e.g., obtained
through a wise stacking sequence of all the laminae.

In the analysis, a reference space discretisation featuring 33 finite elements along
each side of the plate has been adopted. This mesh density was already proved in
Mariani et al. (2015) to provide accurate results as for the whole plate kinematics, and
also for the stress state if specifically designed finite elements are adopted.

In what follows, we first show the optimal deployment of the sensors, obtained
thanks to the topology optimisation scheme discussed in Section 2. Next, the capability
of the filtering procedure detailed in Sections 3 and 4, is checked as for the simultaneous
tracking of the partially observed structural state, and identification of the local residual
structural stiffness.

5.1 Optimal sensor placement

In line with the proposed topology optimisation strategy, we assume that damage can
be located anywhere over the mid-plane of the plate. Such damage consists in a local
reduction of the structural stiffness, which can be linked to a degradation of the material
Young’s modulus or to a delamination process changing the sectional moment of inertia.
In the examples here shown, we have assumed that the former damage event can take
place inside the structure. To understand the effectiveness of the proposed strategy, it is
worth recalling that the provided placements for the sensors turn out to be well-balanced,
not necessarily with the highest sensitivity to damage in the exemplary case to be
considered in Section 5.2, which cannot be obviously envisioned beforehand.

Some relevant results were already reported in Bruggi and Mariani (2013) and
Mariani et al. (2013a, 2014, 2015) for rectangular and square plates, with various
boundary conditions along their borders. The black shaded elements in Figures 2 and 3
are those where sensors are to be placed, so where the discrete variable field in
equation (1) is xi = 1. For symmetry reasons and because no specific actions have
been taken to penalise intermediate xi values in the range 0− 1 (see Section 2), it may
happen that some elements are grey shaded due to xi < 1. Accordingly, they can be
thought of as less important placements or, from a statistical viewpoint, as positions
with a probability less than one to provide an optimal structural observation.



Figure 2 Damage in one element only; effect of the number N of sensors to be deployed on
the optimal placement, (a) N = 5 (b) N = 50

(a) (b)

Figure 3 Damage of varying size, N = 16; effect of damage size on the optimal placement,
(a) damage in one element only (b) damage in a patch of 4× 4 contiguous elements

(a) (b)

Figure 2 shows results at varying value N of the sensors to be placed, a-priori defined
in the analyses. Damage has been assumed to be localised in a single element, so in
a region whose size corresponds to the smallest resolution of the used discretisation.
Outcomes relevant to N = 5 and N = 50 are reported, but it could be shown that the
deployment pattern would progressively and smoothly evolve for the values in between.
It can be neatly seen that mid-points along the plate sides are a kind of accumulation
points: they thus represent the best possible placement for the inertial sensors measuring
the rotation of the normal to the mid-plane, induced by the loading and affected by the
damage state. If N gets increased, all the sensors tend to be placed along the borders, as
closer as possible to the mentioned mid-points. When the number of sensors is instead
held fixed at N = 16, the sensor placement is depicted in Figure 3 for the two cases
of damage in a single element (like in Figure 2) or in a patch of 4× 4 elements. It is
shown that, by increasing the size of the damaged area by a factor 4 (or by increasing its
area by a factor 16), the optimal placement provided by the method is only marginally
changed. This is somehow expected, since handling damage on a element-by-element
basis or in patches of elements, only slightly modifies the objective function ψ in
equation (1), which has been actually designed to account for all the damage pattern
effects and maximise the sensitivity of the sensor network.

Independently of the damage location and amount, solutions are never given by
sensors evenly spaced over the whole plate. This represents a striking strength of the



offered procedure, which is therefore able to define by itself the best regions where
to place the sensors and enhance the overall sensitivity to damage of the collected
measurements.

5.2 Online state tracking and damage identification

According to the problem setting depicted in Figure 4, we have assumed the plate to be
sub-divided into four regions, with the damage state characterised by indices d1, ..., d4.

Figure 4 Plate geometry and notation adopted (see online version for colours)

For all the analyses, only Np = 10 particles have been used. In comparison with other
Monte Carlo-like approaches, this strikingly low number of realisations necessary to
model the evolution of statistics for the whole state vector can be already considered
a strength of the proposed method. As far as the process noise covariance matrix Vx

is concerned, it has been assumed diagonal, with pivotal values on the order of 10−10

and 10−1 for components related to the reduced-order version of the state vector xk
and to the damage parameters in ϑk, respectively. Both values are dimensionless, as
extensively discussed in Capellari et al. (2016): in fact, the former value is referred to
the evolutions in time of the POMs retained in the reduced-order model, and to their
time derivatives; the second one is instead linked to the range of variation [0 1) of
damage indices, see also Bazant and Cedolin (1991).

To assess the performance of the proposed intricate filtering procedure, we start by
considering a plate affected by a time-invariant damage state with d2 = 0.5, while all
the other zones are damage-free. Assuming that the rotation of the plate is monitored
at the four mid-points along its sides, as suggested by the maps of Section 5.1,
outcomes are respectively reported in Figures 6 and 7 in terms of the tracked structural
state and of the identified Young’s moduli in the four regions. In the analysis,
pseudo-experimental (i.e., numerically generated, fictitious) data have been adopted
as structural observations at the mentioned locations; a low (almost negligible) noise
level featuring Vy = diag[10−14] (with dimensionless matrix entries, as rotations are
measured in radians) has been handled in this case. Results are provided at increasing
number of POMs retained in the reduced-order model during the filtering, up to o = 3.
As far as the system evolution is concerned, in accordance with what reported in
Eftekhar Azam (2014) and Capellari et al. (2016), the method is able to track with
high fidelity the true, or target solution even for o = 1, due to the effects of the two
filters that also improve the accuracy of the reduced-order model. Remarkably, not only
the estimates of the observed components of the structural kinematics (the rotation at



point 5 in Figure 6), but also of the unobserved ones (the displacement and rotation at
point 1, i.e., at the centre of the plate) do accurately match the target system evolution.
As a result, the filter outputs are totally superposed to each other at varying o, and
so plots cannot be distinguished at the scale of variation considered in the figure.
Concerning the time evolution of the estimates of the stiffness parameters, Figure 7
shows instead some deficiencies of the models linked to o = 1 and o = 2. After a
short transient stage moving from the initial guess (whose effect on the final results
is indeed rather weak, see Capellari et al., 2016), the parameters converge towards a
steady state-like solution for o = 1, and instead diverge after a while for o = 2. In the
former case, the estimates provided by the filter are not accurate (the target values of Ei
being represented by the dashed lines in these plots), since the reduced-order model is
incapable of describing the plate kinematics in the damage state with a proper accuracy,
and of distinguishing the effects of the stiffness of each region on the measured response
to loading. In the latter case, the solution initially converges to the correct one, but
then error cumulation induced by the measurement noise, although small, triggers the
divergence of the estimations. For o = 3 the solution is instead very accurate; only some
small fluctuations are shown around the target values, as induced by the noise and by
the particle filtering approach (see Eftekhar Azam and Mariani, 2012), but they do not
lead to divergence or bias phenomena.

Figure 5 Time-invariant damage case d2 = 0.5 and d1 = d3 = d4 = 0, high noise level
(see online version for colours)
Towards real-time health monitoring of structural systems
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Notes: Comparison between the target system evolution and the relevant forecasts provided by
the SHM procedure, at varying number of POMs retained in the reduced-order model,
in terms of (from top to bottom): out-of-plane displacement at the centre of the plate;
rotation about the x axis at the centre of the plate; rotation about the x axis at
mid-point 5 along the plate border.



By increasing the noise level to Vy = diag[10−8], results are reported in Figure 5
in terms of the tracked system evolution. It is shown that only the out-of-plane
displacement at the centre of the plate, where load is applied, is always accurately
provided by the filter, even if unobserved. Rotations are instead not well tracked with
o = 1 or o = 2; if o = 3 the solution almost perfectly matches the target one, with an
accuracy that is progressively improved over time by the filter.

Figure 6 Time-invariant damage case d2 = 0.5 and d1 = d3 = d4 = 0, low noise level
(see online version for colours)
G. Capellari et al.
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Notes: Time evolution of the estimates of the Young’s moduli in the four plate regions, at varying
number of POMs retained in the reduced-order model: from top to bottom o = 1, o = 2
and o = 3 (for colour codes, see Figure 4).

A case featuring a time-varying health state is finally considered: up to t = 0.0375 s
the damage pattern is the same considered before; afterwards, it is assumed that damage
in region #2 is suddenly increased to d2 = 0.7, and that region #3 gets damaged with
d3 = 0.2. Such case is exemplary, and very similar results can be obtained for any
other possible health evolution history. For a low noise level, Figure 8 shows the
time evolution of the estimates of the Young’s moduli in the four regions. At variance



with what reported in Figure 7, now the estimates do not diverge with o = 1 and
o = 2; anyway, convergence towards the target values is not reported for all the four
parameters. The other way around, if o = 3 the estimates promptly move towards the
target ones and then slightly fluctuate in time. Accuracy of the results concerning state
tracking turns out to be very similar to the one reported for the time-invariant damage
state, and so additional plots are not reported here for brevity.

The shown fast convergence of the estimates of the local structural stiffness values
towards the target ones, soon after the damage pattern has been varied, proves the
capability of the proposed procedure to track in real-time the possible changing health
of the structure, without delays.

Figure 7 Time-invariant damage case d2 = 0.5 and d1 = d3 = d4 = 0, low noise level
(see online version for colours)Towards real-time health monitoring of structural systems
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Notes: Comparison between the target system evolution and the relevant forecasts provided by
the SHM procedure, at varying number of POMs retained in the reduced-order model,
in terms of (from top to bottom): out-of-plane displacement at the centre of the plate;
rotation about the x axis at the centre of the plate; rotation about the x axis at
mid-point 5 along the plate border (see Figure 4).



Figure 8 Time-varying damage case d2 = 0.5 and d1 = d3 = d4 = 0 up to t = 0.0375 s,
d2 = 0.7, d3 = 0.2 and d1 = d4 = 0 afterwards, low noise level (see online
version for colours)
G. Capellari et al.
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Notes: Time evolution of the estimates of the Young’s moduli in the four plate regions, at varying
number of POMs retained in the reduced-order model: from top to bottom o = 1, o = 2
and o = 3 (for colour codes, see Figure 4).

6 Conclusions

In this paper, we have discussed a general framework for the health monitoring
of lightweight structures like thin composite plates. Due to their light weight, such
structures can take advantage of the adoption of micro-sensors to sense their structural
response to loadings. While for massive concrete or steel structures the added mass of
the SHM system does not represent an issue, developing a network of sensors, whose
inertia under dynamic excitations proves negligible if compared to the structural one,
would be beneficial for the considered class of structures. Besides inertial MEMS, other
types of sensors feature this low weight requirement; for instance, fiber sensors, to be
embedded into composite laminates, may also prove efficient in this sense, but they
lead to a distortion of the microstructure of the composite material that results in a
possible trigger of damage events. From a reliability point of view, that would represent



a weakness of the SHM approach; we then proposed to surface-mount the micro-sensors,
so as to avoid any mechanical interaction between the composite and the SHM system.

Here, we have reviewed a methodology to optimally deploy a set of inertial sensors,
feeling the change of the local rotation of the plate induced by the loading and by the
presence of a damage incepted anywhere in the structure, and maximising the sensitivity
of the whole sensing system to the damage itself. As for the sensor placement over thin
rectangular plates either simply supported or clamped along their borders, this procedure
was already shown to provide outcomes independent (within reasonable bounds) of
damage amplitude and loading conditions. For the specific case here considered of a
square plate supported all over its border, it has been also reported that a network of
evenly spaced sensors would not be optimal, as some of the devices would be placed
where rotations are small due to the boundary conditions; instead, accumulation-like
points have been reported close to the mid-points along plate edges.

With the goal of moving towards a real-time SHM strategy, a recursive Bayesian
filter has been adopted as engine of the identification procedure, aimed to locate and
quantify a possible structural damage, soon after it has been incepted. While the filter
is able by itself to effectively handle the measurements gathered, and progressively
improve the estimation of the damage pattern, good results can be obtained only if
a sufficiently accurate model of the structure (able to capture the links between the
damage process and the overall mechanical response) is used. Such model accuracy
entails computational costs that almost surely prevent a real-time monitoring of real-life
structures. Hence, a proper orthogonal decomposition-based reduced-order modelling of
the structural system has been adopted, in conjunction with Bayesian filtering.

As already reported in some preliminary studies, see Eftekhar Azam (2014), this
joint use of a filtering technique and of a reduced-order model is beneficial for SHM
purposes. If features of the reduced-order model, like e.g., the proper orthogonal modes,
are handled by a further Bayesian filter, the accuracy of the said reduced-order model
gets increased while the damage state estimation is improved.

Results have been reported for a thin square plate, simply supported along its border.
It has been assumed that damage is uniform, already present from the beginning in
one quarter of the mid-plane of the plate, and can evolve in time due to some external
causes, not necessarily linked to the considered loading conditions. The SHM procedure
has been shown to promptly react to such evolving structural health, and to provide
an accurate assessment of the damage pattern even when measurements are affected by
environmental and system noises.

In future investigations, the proposed framework will be improved by accounting
for additional uncertainties linked to the external excitations, now handled in a purely
deterministic way, see e.g., Eftekhar Azam et al. (2015). Furthermore, an enhanced
optimisation scheme allowing also for the power consumption of the whole sensor
network will be proposed, so as to minimise the number of sensors to be deployed over
the structure.
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