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Summary
Introduction: This article is part of 
the  Focus Theme of Methods of 
Information in Medicine on “Biosignal 
Interpretation: Ad-vanced Methods for 
Studying Cardiovascular and Respiratory 
Systems”.
Objectives: The goal of this work is to 
apply a computational methodology 
able to char-acterize mood states in 
bipolar patients through instantaneous 
analysis of heartbeat dynamics.
Methods: A Point-Process-based 
Nonlinear Autoregressive Integrative 
(NARI) model is applied to analyze data 
collected from five bipolar patients (two 
males and three fe-males, age 42.4 ± 10.5 
range 32 −56) under-going a dedicated 
affective elicitation proto-col using 
images from the International Af-fective 
Picture System (IAPS) and Thematic 

Apperception Test (TAT). The study was 
de-signed within the European project 
PSYCHE (Personalised monitoring 
SYstems for Care in mental HEalth).
Results: Results demonstrate that the 
inclu-sion of instantaneous higher order 
spectral (HOS) features estimated from 
the NARI non-linear assessment 
significantly improves the accuracy in 
successfully recognizing specific mood 
states such as euthymia and depres -
sion with respect to results using only 
linear indices. In particular, a specificity 
of 74.44% using the instantaneous linear 
features set, and 99.56% using also the 
nonlinear feature set were achieved. 
Moreover, IAPS emotional elicitation 
resulted in a more discriminant 
procedure with respect to the TAT 
elicitation protocol.
Conclusions: A significant pattern of 
in -stantaneous heartbeat features was 
found in depressive and euthymic states 
despite the inter-subject variability. The 
presented point-process Heart Rate 
Variability (HRV) non -linear 
methodology provides a promising ap-
plication in the field of mood 
assessment in bipolar patients.
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1. Introduction

Bipolar disorder is a cyclic psychiatric con-
dition in which patients experiencing epi-
sodes of either pathological depression or 
maniac or hypomaniac episodes. These 
subjects can also experience episodes in 
which depressive and maniac symptoms 
are present at the same time (mixed 
episodes). Mood states with relatively 
good affective balance are defined as 
“euthymia”. Despite the prevalence and 
high cost of mood dis-orders [1], this 
illness may go undetected for years before 
it is diagnosed and treated. Currently, the 
patient’s mood is assessed by clinician-
administered rating scales and no 
biological markers nor physiological signals 
highlighted in research studies are used 
for clinical purposes [2].

The overarching goal of this research 
study is to be able to accurately discern  
depressive and euthymic states in bipolar 
patients (BPs) from the analysis of non -
invasive physiological signals. Data were 
gathered within the European project 
PSYCHE (Personalised monitoring SYs-
tems for Care in mental HEalth) [3], which 
was funded in the Seventh Framework 
Pro-gramme. The PSYCHE system 
comprises a personal, pervasive, cost-
effective, and multi-parametric monitoring 
system based on textile platforms and 
portable sensing devices for the long term 
(i.e., up to 24 hours of recordings during 
an unstructured activity) and short term 
(i.e., up to 30 minutes of recordings 
during a struc-tured activity) acquisition of 
data from a selected class of patients 
affected by mood disorders, i.e., BPs. In 
this study, the core sensing system of the 
project, hereinafter 



referred to as the PSYCHE platform, was 
taken into account while considering short 
term acquisi- tions. The platform consists 
of a comfortable, textile-based sensorized 
t-shirt, including fabric-based electrodes. 
Several physiological signals such as ECG, 
movement and respiration activities, as 
well as behavioral parameters such as 
quanti- fiers of activity using a smartphone 
and mood agenda through the Bauer inter-
nal mood scale [4] can be gathered through 
the PSYCHE platform [3]. Our analysis fo-
cuses on the heartbeat intervals (RR series) 
extracted from the ECG, i.e. the series con-
stituted by the time intervals of two con-
secutive peaks of the ECG. Hypothesizing 
that the autonomic nervous system (ANS) 
exerts different time-varying RR dynamics 
according to the patient’s mood state, in 
fact, computational tools able to discern 
rapid dynamic changes with high time res-
olution could provide an optimal assess-
ments [3, 5]. To this extent, a point-process 
nonlinear derivative model has been ap-
plied to estimate the instantaneous auto-
spectrum and bispectrum in short term 
 recordings and under nonstationary condi-
tions [6–8, 25]. This powerful, fully-para-
metric statistical tool accounts for the 
prob abilistic generative mechanism of the 
heartbeat, further considering a quadratic 
Wiener-Volterra representation of the first 
order moment of a physiological plausible 
inverse-Gaussian statistics [9]. Spectral and 
bispectral instantaneous RR measures can 
then be derived from the linear and non-
linear coefficients, respectively. As the 
framework is defined in continuous time, it 
is possible to estimate instantaneous heart 
rate (HR) and heart rate variability (HRV) 
indices without using any interpolation 
method. Experimental results, shown in 
section 3, report on different emotional 
elicitation protocols as well as demonstrate 
how the inclusion of higher order spectral 
(HOS) features can improve the specificity 
of our system by 25.12% while reducing its 
uncertainty (variance) by 17.82% consider-
ing ANS euthymic and depressive 
patterns.

2. Methods

In order to obtain linear and nonlinear es-
timates of ANS dynamics, we propose to 

apply a Nonlinear Autoregressive Integra -
tive (NARI) Model linked to an equivalent 
second-order input-output Volterra model 
[10, 11] (▶ Figure 1), where y(k) is the dis-
crete time series (in our case the RR inter-
val series), {y0 , y1, y2} are the autoregressive 
coefficients of the Wiener-Volterra terms, 
M is the memory of the autoregressive 
terms, and ε(k) are independent, identi -
cally distributed Gaussian random vari-
ables. The NARI representation models the 
differenced time series in order to improve 
on the stationary requirements of the time 
series by the elimination of drift. Therefore, 
the model output needs to be integrated to 
forecast the original series. A quadratic 
order of the autoregressive series in Eq. 1 
(▶ Figure 1) (i.e., n = 2) retains an impor-
tant part of the non-linearity of the system 
and allows the evaluation of the high order 
statistics (HOS), such as the dynamic bi -
spectrum [12]. Let (0, T ] denote the obser-
vation interval, the ordered set of times of 
the R-wave events recorded in (0, T ], RRj = 
uj – uj – 1 > 0, the jth R-R  interval. Then, as-
suming history depend ence, we embed the 
NARI represen -tation within the probabil-
ity distribution of the waiting time t – uj
until the next R-wave event, which fol- 
lows an  inverse-Gaussian model [9]. Thus, 
the variable   represents the 
first-moment statistic (mean) of the dis-
tribution (▶ Figure 2).

The coefficients y0 , {y1(i)}, {y2(i, j)} cor-
respond to the time-varying zero-, first-, 
second-order NARI coefficients, respec -
tively. Considering the derivative R-R 
series improves the achievement of station-
arity within the sliding time window W (in 
this work we have chosen W = 90 seconds 

by preliminary KS plots goodness-of-fit 
analysis [9, 13]. Given the proposed para-
metric model, the instantaneous nonlinear 
HRV indices will be updated as a time-
varying function of the parameters ξ(t) =  
[θ(t), y0(t), y1(1, t), . . . , y1(p, t), y2(1, 1, t), . . . , 
y2(i, j, t)] with an arbitrarily small bin size 
(milliseconds). A local maximum likeli-
hood method [9] is used to estimate the 
unknown time-varying parameter set ξ(t). 
We can determine the optimal order based 
on the Akaike Information Criterion 
AIC = –2L + 2dim(ξ), where L is the maxi-
mized value of the likelihood function for 
the estimated model. Once the order {p, q} 
is determined, the initial NARI coefficients 
are estimated by least squares. The good-
ness-of-fit of the point process model is 
based on the Kolmogorov-Smirnov (KS) 
test [9], derived from the time-rescaling 
theorem [9], between the transformed R-R 
intervals [9] and uniform probability den-
sity on interval (0,1]. The smaller the KS 
distance, the closer the agreement between 
the model and the original R-R interval 
series. Transformed quantiles’ autocorre-
lation plots are also considered to test inde-
pendence of the model-transformed inter-
vals [9]. The input-output model of a non-
linear dynamic system can be written using 
Wiener-Volterra series [6, 7] and its repre-
sentation is needed to estimate the dy-
namical spectra and bispectra of the series. 

In particular, the quadratic NARI mod-
els can be linked to the traditional input-
output Volterra models by using the rela-
tionships [14] between the Fourier trans-
forms of the Volterra kernels of order k, 
Hk ( f1, . . . , fn) , and the Fourier transforms 
of the NARI kernels, Γ1ʹ(  f1) and Γ2ʹ(  f1, f2).

Figure 1 Equation 1

Figure 2 



Given the input-output Volterra kernels 
of the NARI model for the instantaneous 
R-R interval mean  , the 
time-varying parametric (linear) autospec-
trum of the derivative series is [6, 7]:

 Q ( f, t) = Sxx(f, t) H1(f, t) H1(–f, t) (2)

where Sxx(f, t) = σ2
RR. The time-varying 

parametric autospectrum of the R-R in ter -
vals is given by multiplying its deriva tive 
spectrum Q(f, t) by the quantity 2(1 − 
cos(ω)) [13]. By integrating ▶Equation 2
in each frequency band, we compute the 
index within the LF (0.04 – 0.15 Hz) and 
HF (0.15–0.5 Hz) ranges [15]. The ratio be-
tween the LF component and the HF com-
ponent has been pointed out as an index of 
sympatho-vagal balance [15]. The bispec-
trum of a nonlinear system response sub-
ject to stationary, zero-mean Gaussian 
input [16] can be computed from the Fou -
rier transform of the second-order Volterra 
kernel coefficients H2 ( f1 , f2 , t) [6, 7].

We evaluated three bispectral measures 
by integrating in the appropriate frequency 
bands [6, 7]:

; (3)

 ; (4)

(5)

▶Equations 3 and 4 can be interpreted as
an index of nonlinear interaction between 
the sympathetic and the parasympathetic 
system, whereas ▶Equation 5 can be ex-

clusively attributed to nonlinear vagal 
 dynamics. In fact, by extending to the  
bispectra important concepts demon-
strated for standard HRV spectral analy-
sis [17], it seems reasonable to hypothesize 
that the double integration performed on 
the LF bands on the bispectral plane (i.e., 
the LL index) as well as the integration per-
formed on the LF and HF bands on the 
 bispectral plane (i.e., the LH index), pro-
vides bio markers which are affected by 
both sympathetic and parasympathetic 
nervous system activity, whereas the 
double integration per- formed on the HF 
bands on the bispectral plane (i.e., the HH 
index) provides a biomarker affected by 
parasympathetic tone exclusively.

3. Experimental Protocol
and Results

We applied our point process-based 
method to data gathered from five bipolar 
patients undergoing a dedicated affective 
elicitation protocol. The patients were re-
cruited according to the PSYCHE project 
exclusion/inclusion criteria:
• Age 18–65;
• Diagnosis of bipolar disorder with an

active episode at the moment of recruit-
ment;

• Absence of delusions and/or halluci-
nations;

• Absence of substance abuse disorder;
• Absence of relevant somatic or neuro-

logical conditions.
• Absence of suicidal risk;
• Possibility to provide a written informed

consent.

More in detail, BP1 (37 years old, female) 
was acquired during the euthymic phase, 
BP2 (36 years old, male) during the de-
pressive phase, BP3 (32 years old, female) 
underwent two sessions during the de-
pressive (first) and euthymic (second) 
phases, BP4 (56 years old, female) under-
went two recording sessions, both during a 
depressive state, whereas BP5 (52 years old, 
male) underwent five recording sessions, 
four of which during a depressive state and 
one during the euthymic (fifth) phase. All 
the patients were in treatment with mood 
stabilizers and antipsychotic medications. 
BP1, BP2, BP3 and BP4 were also under 
Selective serotonin re-uptake inhibitors 
(SSRI) antidepressant treatment. Of note, 
BP4 and BP5 underwent also electrocon-
vulsive treatment (ECT). It is worthwhile 
noting that the additional ECT treatment 
does not affect the possibility to include 
these patients into our analyses. As a 
matter of fact, the whole PSYCHE system 
has been developed to study the ANS dy-
namics in patients with bipolar disorders 
despite their clinical heterogeneity and the 
differences in treatment. Therefore, al-
though we are not able to evaluate specific 
patterns of ANS changes related to a given 
type of treatment (or of clinical pheno-
type), we are able to evaluate the common 
ANS dynamical signatures underpinning 
the pyshco-physiological changes in bi -
polar disorder.

The proposed experimental paradigm 
took place in a visiting room of the Santa 
Chiara University Hospital, Pisa (Italy). 
The room was illuminated with artificial 
neon-light. In order to avoid surrounding 
noise, the acquisitions were taken during 

Figure 3  
Block scheme of the 
experimental proto-
col for emotion 
elici-tation in 
bipolar  patients



the afternoon while the normal routine ac-
tivity in the other rooms were over. At hos-
pital admission a “mood label” (i.e. “euthy-
mia” or “depression”) was assigned and 
used as a class label for further evaluations. 
ECG signals were acquired, with sample 
frequency of 250 Hz, by having the subject 
wear a sensorized shirt. Patients were asked 
to sit in a comfortable position. Each visit/
recording session of the dedicated affective 
elicitation protocol started with two five 
minutes lasting phases of resting state, with 
eyes closed and open respectively. Sub -
sequently, a passive (IAPS), and an active 
(TAT) visual stimuli were administered. 
IAPS stands for International Affective Pic-
ture System [18]. The IAPS protocol 
implies a slideshow of pictures, presented 
on a laptop screen (17 inch) at a distance of 
about 20 cm, having two classes of arousal, 
either minimum or maximum, and ran-
dom valence, ranging from unpleasant to 
pleasant. IAPS were presented in blocks of 
two minutes each of high arousal negative 
pictures alternated with two minutes high 
arousal neutral pictures. Two cycles of 
negative and neutral pictures were pres-
ented. After the IAPS elicitation, patients 
were asked to describe several TAT images. 
TAT stands for Thematic Apperception 
Test, a projective psychological test. The 
TAT is supposed to tap a subject’s uncon-
scious to reveal repressed aspects of per-
sonality, motives and needs for achieve -
ment, power and intimacy, and problem-
solving abilities. However, in this protocol 
the pictures were only used to elicit spon -
taneous comments from the patients. Of 
note, as there is no stand ardization of the 
use of the texts/pictures according to the 
subjects clinical state, text/picture stimuli 
were always proposed in the same order. A 
schematic timeline of the  experimental 

Figure 4 Instantaneous HRV statistics com-
puted from BP1 (top) and BP2 (bottom) during 
the euthymic and depressive state, respectively. 
The estimated  is superimposed on the 
recorded RR series. Following below, the in-
stantaneous heartbeat standard deviation, the 
in-stantaneous heartbeat spectral Low 
frequency (LF) and High frequency (HF) powers 
and their ratio. Finally, bottom rows report the 
three Bispec-tral statistics (Eqs. 5, 6, and 7).



protocol is shown in ▶ Figure 3. The NARI 
model was applied to RR series detected 
from the recorded ECG. The optimal 
model was chosen by means of the Akaike 
Information Criterion (AIC) [9] applied to 
the first 5-min RR recordings. The AIC 
analysis indicated 6 ≤ p ≤ 8 and 1 ≤ q ≤ 2 as 
optimal orders. The obtained KS distances 
were no greater than 0.04. Seven out of the 
eleven KS plots were inside the 95% con -
fidence intervals and four had only 4% 
points outside. No less than 97% of the 
autocorrelation points were inside the 
boundaries. The linear and nonlinear in-
dices were evaluated for all of the patient’s 
acquisition. The instantaneous identifica-
tion (5 ms resolution) was averaged within 
a time window of 1 second. About 1200 
multiple feature points along the time were 
obtained for each visit/acquisition. Repre-
sentative tracking results are shown in 
▶ Figure 4 for Subject 1 (Euthymic phase, 
top) and Subject 2 (Depressed phase, bot-
tom). Of note, the depressed phase is as-
sociated to a reduced RR variability as well 
as spectral and bispectral power. An inter-
subject analysis was  performed to reveal 
the common mood pattern among pa-
tients. Discrimination of the mood states 
was performed using the well-known 

Multilayer Perceptron (MLP) Neural Net-
work [19]. In this work, the MLP imple-
mentation included three layers of neur-
ons: input, hidden, and output layers. The 
input layer was formed by 8 neurons, one 
for each of the feature space dimension. 
The hidden layer was constituted by an 
empirically estimated number of neurons. 
Specifically, we chose this number as the 
upper limit of the half difference between 
the number of the input and output neu -
rons, i.e. 3. The output layer was  formed by 
2 neurons, one for each of the considered 
classes to be recognized. All the results are 
expressed in the form of confusion matrix, 
after 40-fold cross validation [20]. The fea-
ture dataset was a matrix with a number of 
rows of about 11 × 1200, i.e. number of ac-
quisitions × number of repeated measures 
for each acquisition, and up to 8 columns 
(see details below on the α and β sets). The 
training phase was carried out on 80% of 
the feature dataset while the testing phase 
was on the remaining 20% with the con-
strain that each acquisition can be either 
considered as belonging to the training or 
test set. In particular, for each of the 40 
validation steps, the examples associated to 
the training and testing set are randomly 
chosen among all the avail-able examples 

and results are described as mean and stan-
dard deviation among the 40 confusion 
matrices obtained. This procedure allows 
to obtain unbiased results on the recog -
nition accuracy. We compared the MLP 
 accuracy by creating two feature sets. The 
first set, α, is composed by all  
the linearly-derived features such as 

, σRR , and the spectral in-
dices LF, HF, and LF/HF. The second set, β, 
concatenates the non linear LL, LH, and 
HH indices to ones defined within the 
α set.

Experimental results are shown in 
▶ Tables 1– 4, always comparing the use of
linear and nonlinear features gathered 
from the point process NARI model. Con-
cerning the two emotional elicitation 
protocols, i.e., IAPS and TAT, ▶ Table 1
shows the results for the inter-subject eu-
thymia-depression discrimination using 
data from patients BP1, BP2, and BP3, i.e., 
the three patients having the same treat-
ment which did not involve electroconvul-
sive therapy, whereas ▶ Table 2 shows the
results considering the five BPs. These re-
sults indicate the importance of the inclu-
sion of nonlinear dynamics in assessing 
BPs’ reactions to affective stimuli. The use 
of LL, LH, and HH, in fact, not only im-
proved on the linearly- derived classifi-
cation accuracy, but also provided con -
sistent and very satisfactory classification 
accuracy when considering patients who 
underwent the electroconvulsive therapy. 
Accordingly, the specificity calculated 
using the á set on BP1, BP2, and BP3 sig-
nificantly decreased from 93.26% to 
74.44%, while the specificity calculated 
using the â remained unaltered (about 
99%). Concerning all of the misclassified 
samples, a plausible interpretation can be 
related to either algorithmic/mathematical 
artifacts or physiological outliers, i.e. events 
not related to mood markers for whatever 
reason. In order to investigate the contribu-
tion of the IAPS and TAT emotional elici-
tation, we performed two further classifi-
cations considering feature points exclus-
ively related to either a IAPS or TAT 
session. Results shown in ▶ Table 3 and
▶ Table 4 indicate that the use of IAPS
elicitation allows to better discriminate de-
pressive from euthymic states than the use 
of TAT images. In fact, the specificity using 

Table 1 Results for the inter-subject Euthymia-Depression Discrimination in patients BP1, BP2, 
and BP3 using linear and nonlinear features gathered from the point process NARI model during the 
emo-tional elicitation protocol, i.e., IAPS and TAT.

MLP-3 Patients

Euthymia

Depression

Bold indicates the best classification accuracy for each mood class.

Dataset IAPS-TAT

α

β

α

β

Euthymia

93.26 ± 2.98

99.33 ± 0.46

6.74 ± 2.98

0.67 ± 0.46

Depression

5.88 ± 1.99

2.41 ± 0.94

94.12 ± 1.99

97.59 ± 0.94

Table 2 Results for the inter-subject Euthymia-Depression Discrimination in patients BP1, BP2, 
BP3, BP4, and BP5 using linear and nonlinear features gathered from the point process NARI model 
during the emotional elicitation protocol, i.e., IAPS and TAT.

MLP-5 Patients

Euthymia

Depression

Bold indicates the best classification accuracy for each mood class.

Dataset IAPS-TAT

α

β

α

β

Euthymia

74.44 ± 18.21

99.56 ± 0.39

25.56 ± 18.21

0.44 ± 0.39

Depression

1.09 ± 1.92

0.02 ± 0.06

98.91 ± 1.92

99.98 ± 0.06



feature points related to the TAT emotional 
elicitation was only 84.4% using the β set. 
This finding is in agreement with the cur-
rent literature reporting that a IAPS session 
is able to elicit a more discerning-capable 
significant sympathetic activity (evaluated 
through the electrodermal activity) in bi-
polar patients than TAT elicitation [21, 24].

4. Discussion and
 Conclusion

Along the conceptual framework behind 
the PSYCHE project, we here present an 
application for the assessment of ANS pat-
terns of depression in bipolar patients. 
Data from five participants undergoing a 
dedicated affective elicitation protocol were 
acquired during the depressive and eu-
thymic phase. A comfortable, textile-based 
sensorized t-shirt was used to perform 
noninvasive recordings of physiological 
variables, and a point-process NARI model 
was implemented and applied to the RR 
series derived from the ECG in order to 
produce instantaneous features of HRV. In 
particular, standard features from both the 
time (i.e.  and σRR), and fre-
quency domain (i.e. LF, HF, and LF/HF) 
along with HOS nonlinear features, i.e. LL, 
LH, and HH, were extracted from the pro-
cessed RR series. The NARI model allows 
for the instantaneous estimation of all these 
HRV measures without any interpolation 
method and providing also goodness-of-fit 
measures. Pattern recognition algorithms 
(MLP) were then applied to the estimated 
features to classify the mood state of the 
patients (i.e. “euthymia” or “depression”), 
and two feature sets were compared. The 
first set, α, was composed by only the 
stand ard HRV feature set, whereas the 
nonlinear indices were added to the α set to 
create the second set, β. In conclusion, a 
discerning pattern of instantaneous heart-
beat features (i.e., statistically significant 
differences of linear and nonlinear features 
derived from the NARI modeling of the RR 
intervals) was found despite the inter-sub-
ject variability. Our results show that the 
inclusion of the nonlinear indices, β set, 
gives higher accuracy and smaller variance 
with respect to the classification performed 
by using only the α set (i.e. the standard 

linear features). Moreover, these results 
suggest that a IAPS emotional elicitation 
can be more effective in discriminating dif-
ferent mood states of the bipolar disorder. 
One could speculate that the higher dis-
crimination might be due to higher IAPS 
arousal effects in key central autonomic 
network areas such as the prefrontal cortex 
and amigdala. Given their preliminary na-
ture, these results are very promising. The 
point-process HRV nonlinear analysis, in 
fact, represents a new approach in the field 
of mood assessment in bipolar patients. We 
are aware that this preliminary study does 
not provide clinical diagnostic value. How-
ever, our aim is to propose a methodology 
based on the point-process HRV nonlinear 
analysis which allows for consideration of 
the underlying information of the auton-
omic nervous systems time-varying dy-
namics. We have also demonstrated that 
our methods are able to characterize in-
stantaneous reactions by bipolar patients 
while subjected to emotional stimuli such 
as IAPS and TAT images. Accordingly, in 
order to ensure the reliability of the pro-
posed approach and avoid false positive 
findings, further studies will consider a 
higher number of patients. We will also ex-
plore additional aspects of the linear and 

nonlinear identification as related to de-
pression/bipolar states. Moreover, we will 
explore more carefully the physiological 
meaning of the dynamic autonomic signa-
tures both in the context of the underlying 
mood state, and as a result of the different 
stimuli administered within the dedicated 
protocol. Our approach will be also further 
extended to the wider framework of the 
PSYCHE project [3, 21–24], which con-
siders several other variables (e.g voice, ac-
tivity index, sleep pattern alteration, elec-
trodermal response, biochemical markers).
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Table 3 Results for the inter-subject Euthymia-Depression Discrimination in patients BP1, BP2, 
BP3, BP4, and BP5 using linear and nonlinear features gathered from the point process NARI model 
during the IAPS emotional elicitation protocol.

MLP-5 Patients

Euthymia

Depression

Bold indicates the best classification accuracy for each mood class.

Dataset IAPS

α

β

α

β

Euthymia

86.33 ± 2.60

98.17 ± 2.59

13.67 ± 2.60

1.83 ± 2.59

Depression

0.86 ± 0.73

1.89 ± 2.67

99.14 ± 0.73

98.11 ± 2.67

Table 4 Results for the inter-subject Euthymia-Depression Discrimination in patients BP1, BP2, 
BP3, BP4, and BP5 using linear and nonlinear features gathered from the point process NARI model 
during the TAT emotional elicitation protocol.

MLP-5 Patients

Euthymia

Depression

Bold indicates the best classification accuracy for each mood class.

Dataset TAT

α

β

α

β

Euthymia

70.64 ± 15.57

84.40 ± 1.30

29.36 ± 15.57

15.60 ± 1.30

Depression

0.52 ± 0.73

0.34 ± 0.49

99.48 ± 0.73

99.66 ± 0.49
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