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1. Introduction
Elastic strips and rods are fundamental physical 
structures that can be found in many contexts on 
many different length scales. Often, they appear in the 
theoretical description of physical phenomena where 
the interplay between physics and geometry plays a 
key role. The collapse of an elastic sheet adhered 
to a curved substrate is certainly one of them. This 
discontinuous buckling instability appears in various 
problems in biology (shapes and morphogenesis of 
the mitochondrion [1]), physics (packing of thin films 
[2], delamination of thin elastic films [3,4], design of 
stretchable electronic devices [5], buckling of colloidal 
droplets [6], elastocapillary snapping [7]) and engineering 
(collapse of buried steel pipelines [8,9]).

A simple example illustrates the physical phenomenon 
we are concerned with. Let us imagine inserting a 
rectangular piece of paper inside a rigid cylindrical 
substrate. We hold the two edges with the hands so 
that the sheet of paper is kept in contact with the 
cylinder. Subsequently, we apply an increasing tangential
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compressive force. Because of the presence of the surrounding container, the sheet of paper 
cannot freely deform to the outside. Initially, it appears to be undeformed or slightly compressed. 
However, when the applied force crosses a suitable threshold, the strip abruptly buckles and 
forms an inward hump. What is the critical force at which the collapse occurs? How are the 
geometric features of the hump at the transition related to the material constants and to the 
geometry of the container? Although the buckling of slender elastic structures is one of the oldest 
fundamental problems, nobody seems to have addressed these points. Furthermore, it is worth 
noticing that classical bifurcation analysis fails in this situation due to the confinement.

The simplified approach described here might provide a first model suited to explore the 
mechanical instabilities in many different contexts. For example, many living structures are coated 
by thin films, which have distinct mechanical properties from the substrate. These thin layers 
may grow faster or slower than the inner core. The interplay between tension and compression 
plays a critical role in enhancing the structural rigidity of certain plants [10]. In the human brain, 
recent studies show that the differential growth might be responsible for cortical folding [11]. A 
non-biological application is reported in [12], where the appearance of voids in a layered material 
confined to a V-shaped corner is attributed to the combined effect of bending stiffness, overburden 
pressure and geometric constraints. Another related problem deals with the packing of a flexible 
cylinder inside a rigid circular tube of smaller radius. This is widely explored in the literature, 
both theoretically [13] and experimentally [2]. Recent papers have also included the possibility of 
adherence by capillarity [14,15] or the extension to the spherical geometry [16].

In the usual theoretical treatment, the strip is modelled as an inextensible Euler beam, whose 
energy is only associated with the bending mode. The inextensibility assumption, first suggested 
by Rayleigh [17], is based on energetic considerations. The bending energy and the stretching 
energy scale differently with the beam thickness. When the structure thickness is diminished 
without limit, stretching is energetically prohibitively expensive and the distortion is pure 
bending. However, the validity of this assumption is challenged when the thickness becomes 
comparable to some other length scales in the problem. Moreover, axial compressibility is known 
to change the nature of the phase transition. For example, the usual supercritical bifurcation 
point in the classical inextensible Euler beam becomes a subcritical bifurcation [18,19]. In confined 
problems, the effect of finite compressibility on buckling has been studied by a number of authors 
[20–22] using the Föppl–von Kármán model.

However in our confined problem, the assumption of an axially inextensible beam shows its 
inadequacy in a more fundamental way. For instance, in the limit of an arbitrarily small hump, 
the inextensible Euler elastica model predicts the unphysical result of an infinite pressure exerted 
by the beam on the external container [13,14]. This prevents the transition to a buckled state as it 
would require an infinite force to induce buckling.

To avoid this unacceptable behaviour, in this paper, we revise this effect by allowing the 
sheet to both stretch and bend. Within this framework, the energy landscape exhibits a first-
order phase transition from a state where compression energy dominates to another where 
bending energy prevails. From the mechanical point of view, a snap through buckling occurs: as 
the sheet grows, it suddenly switches from a completely adhered solution to a buckled solution 
showing a symmetric inward hump. The transition is studied numerically and, in the limit of 
weak stretchability, we provide the analytic expressions for the main quantities at the critical point. 
Interestingly, we find that for homogeneous beams, the threshold does not depend on the material 
parameters but only on the geometric features of the problem.

The paper is organized as follows. In §2, we derive the equilibrium equations from the theory 
of stretchable Kirchhoff’s rods. The proper mathematical formulation of the model requires the 
introduction of two global geometrical constraints due to the unilateral confinement. We find two 
kinds of equilibrium solutions: the completely adhered solution and the collapsed (or buckled) 
solution. In §3, we perform a numerical simulation of the equilibrium stored energy for different 
solutions. The collapsed solution shows a bifurcation point (a cusp) and two branches. We prove 
that for small displacements of the endpoints, the completely adhered solution is energetically 
favoured; by contrast, the collapsed solution attains the energy minimum beyond a critical



T′ + f = 0 (2.1)

and
M′ + r′ × T = 0, (2.2)

where T(S) and M(S) represent the internal forces and the internal torques, respectively. The prime
denotes differentiation with respect to S; hence, r′ = λt, where λ is the local stretch and t is the unit
tangent. The inextensibility condition corresponds to λ = 1.

Balance equations are complemented by the linear constitutive laws [23]:

T = b(λ − 1)t + Tnn (2.3)

and
M = kt × t′, (2.4)

where the positive constants b and k represent the stretching and the bending rigidity, respectively.
The quantity � =√

k/b defines an intrinsic characteristic length. Since b = EA and k = EI, where E
is the elastic modulus of the material, A is the area of the film cross-section and I is the second
moment of area of the strip cross-section, the intrinsic length � turns out to be of the order of the
strip thickness. Only the tension is given constitutively; the shear internal force Tn is related to
the derivative of the internal torque by equation (2.2). We parametrize the tangent and the normal
unit vectors by

t = cos θ (S)ex + sin θ (S)ey and n = − sin θ (S)ex + cos θ (S)ey

and, hence, ez = t × n. Consequently, equation (2.4) reduces to M = kθ ′ez.
Furthermore, we posit a symmetric equilibrium configuration of the rod and assume that

the displacement of its endpoints can be controlled: the point with referential coordinate S = L/2
undergoes a tangential compressive displacement r�α, �α ≥ 0. The strip can both stretch and
bend, therefore there are at least two equilibrium configurations with the same imposed �α:
(i) the adhered solution where the strip, uniformly compressed, totally adheres to the wall, and
(ii) the collapsed solution with an inward symmetric hump. The adhered solution is a uniformly
compressed arc of circumference with

λadh = 1 − 2r�α

L
and θ ′

adh = −λadh

r
.

On the other hand, the collapsed solution comprises two parts: a free (non-adhered) curve for
S ∈ (−S̄, S̄) and two adhered pieces for S ∈ [−L/2, −S̄] ∪ [S̄, L/2] (figure 1). The symmetry of the
strip implies that the function θ (S) is odd and allows us to restrict the study of the solution in the
range S ∈ [0, L/2].

displacement. We also provide an asymptotic approximation of the critical parameters at the 
transition. Section 4 is devoted to the analysis of the local stability of the buckled solution. We 
study the sign of the second variation of the energy functional. A first analysis based on 
Poincaré’s inequality allows us to roughly estimate the region of stability, while a more precise 
picture is obtained by a conjugate-point analysis. In §5, we reach the conclusion and add some 
final comments. A variational formulation of the problem, including the mathematical details of 
the first and the second variation of the energy functional, is given in Appendix A.

2. The model
We assume a planar configuration so that the longitudinal profile of the strip can be modelled as 
a stretchable and flexible rod. This is represented by a parametric curve r(S), with S ∈ [−L/2, L/2], 
where L denotes the length of the strip in the stress-free configuration and S is the referential 
arclength. The governing nonlinear Kirchhoff equations express the balance of linear and angular 
momentum. When an external distributed force f is applied and in absence of external distributed 
torques, they read
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Figure 1. Schematic of the strip deformation. The grey curve represents the referential configuration, while the blue curve
shows the buckled configuration with a hump due to the displacement r�α of the endpoints. (Online version in colour.)

Since the adhered part, S ∈ [S̄, L/2], is an arc of circumference with θ ′(S) = −λ/r, the internal
torque is M = −k(λ/r)ez. Therefore, the equilibrium equations for this imposed geometry
necessarily give Tn = 0 and λ′ = 0, whence λ(S) = λ̄ = const. However, the compressive tangential
force F = −Ft for a given �α is not known a priori but it is related to the stretch by F = b(1 − λ̄).

In the non-adhered region, S ∈ [0, S̄], there is no applied distributed load (f = 0). Furthermore,
since θ (S) is odd, the vertical component of the tension vanishes, while the horizontal component,
denoted by Tx, is constant and satisfies the equation

b(λ − 1) = Tx cos θ . (2.5)

The balance of the torque yields the second-order differential equation for the free part

θ ′′ + λτ sin θ = 0, (2.6)

where τ = −Tx/k.
The deflection angle θ (S) should satisfy the Dirichlet boundary conditions θ (0) = 0, θ (S̄) = θ̄ .

Further boundary conditions are provided by requiring the continuity of the tangential
component of the internal force and the continuity of the torque at the detachment point S = S̄.
These yield

Tx cos θ̄ = −b(1 − λ̄) (2.7)

and

θ ′(S̄) = −λ̄r−1, (2.8)

respectively. One more constraint translates the geometrical condition that the detachment point
must lie on the circumference of radius r

∫ S̄

0
λ cos θdS = −r sin θ̄ . (2.9)

On the other hand, the displacement of the endpoint, r�α, is related to λ̄, S̄ and θ̄ by (figure 1)

r�α = rθ̄ + (1 − λ̄)
L
2

+ λ̄S̄. (2.10)

This geometrical identity is simply obtained by requiring that the total length is the sum of the
hump length and the adhered length.



W = k
2

∫L/2

−L/2
(θ ′)2 dS + b

2

∫L/2

−L/2
(1 − λ)2 dS. (3.1)

Equation (3.1) assumes a particularly simple analytic form when evaluated in the
adhered solution

Wadh = 1
2

kL
r2 + 2

k
r
�α

[
−1 + r

L
(1 + ξ−2)�α

]
, (3.2)

where ξ = �/r > 0 measures the compressibility strength at fixed radius.
On the other hand, the energy associated with the collapsed solution, Wcol, is not amenable for

a simple analytical approximation and is best calculated with a numerical simulation. Figure 2
shows the comparison between the energies associated with each branch as a function of �α, for
fixed ξ = 0.01. The adhered branch depends quadratically on �α (equation (3.2)). The collapsed
solution comprises two branches. The upper branch, with higher energy, corresponds to small
humps, whereas the lower branch corresponds to equilibrium solutions with larger humps.
Finally, it is worth noticing that for sufficiently small values of �α only the adhered solution
is admissible.

Figure 2 clearly shows the first-order transition that occurs between the two solutions. For
small displacements of the endpoints, the adhered solution is energetically favoured. However,
when the displacement crosses a critical value r(�α)cr, the energy attains its absolute minimum
at the collapsed solution with a larger hump. Therefore, as �α is increased, the strip undergoes a
discontinuous transition, abruptly passing from an adhered configuration to a buckled solution
with an inward hump. The presence of compressibility implies a lower bound for the hump size:
humps whose dimensions are small compared to the characteristic length � cannot be observed
and the strip is simply compressed. The critical threshold increases as the strip becomes softer
(figure 3). In particular, in the inextensible limit, the critical threshold vanishes as expected.

In the nearly unstretchable regime (ξ � 1), one can estimate the critical threshold analytically.
Indeed, at low ξ and close to the critical point, it has been observed numerically that the collapsed
solution is nearly equivalent to the buckled profile of a perfectly inextensible strip. Figure 2 clearly
shows this agreement in terms of elastic energies. From the analytic approximation, we also learn
that the relevant variable for scaling the critical threshold is the reduced compressibility, defined as

ξ0 := ξ

√
L
2r

.

This indicates an unexpected non-trivial dependence on the geometrical and material parameters.
For homogeneous materials, ξ0 is just a geometrical dimensionless parameter, since both the
compression and the bending rigidity are linear functions of the Young modulus. By contrast,
the material moduli could play a role in the case of composite materials where the dependence of
b and k on the Young modulus is more complex.

When the compression modulus is large (ξ � 1), compression becomes energetically
prohibitively expensive for small �α. The strip then prefers to buckle and pay some bending
energy provided it can relax its compression energy. Therefore, it is natural to approximate the
collapsed strip as inextensible. The advantage of this approximation is that it is now possible

3. Results
We start by observing that for a perfectly unstretchable strip, the compression modulus diverges 
and the intrinsic length vanishes, � = 0. The tangential component of the internal force, Tt, 
then becomes a Lagrange multiplier associated with the inextensibility constraint λ = 1 and the 
adhered solution is admissible only for �α = 0.

By contrast, when both compression and bending are allowed, the energy must attain its 
absolute minimum in the observed solution, either adhered or collapsed, which is then expected 
to be stable. The other possible solution is either non-existing, unstable or metastable, depending 
on the energy landscape. The total elastic energy consists of two terms, related, respectively, to 
the bending mode and to the stretching (or compression) mode:
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Figure 2. Plot of the equilibrium free energyW for the adhered solution (red) and the collapsed solution (blue) with L= 3
2π r

and ξ = 0.01. Solid lines represent solutions with least energy; dashed lines represent metastable states or maxima. For small
�α, only the adhered solution is admissible. The dotted line represents the energy of a perfectly inextensible strip as given in
equation (3.10). (Online version in colour.)
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Figure 3. Critical threshold (�α)cr as a function of the reduced compressibility. The solid line represents the numerical results,
while the dotted line represents the analytical approximate result as given in equation (3.11). Typical shapes are shown in the
inset. (Online version in colour.)

to perform an analytic treatment. In particular, equation (2.6) simply reduces to the nonlinear
pendulum equation with first integral

(θ ′)2 = 2τ (cos θ − cos θ0), (3.3)

where θ0 = θ (S0) ∈ [0, π ] is the maximum value of θ (S) in (0, S̄). The boundary condition for θ ′ at
S̄ becomes θ ′(S̄) = −1/r. This is used together with the first integral to eliminate τ in favour of θ0.
Thus, we arrive at the first-order differential equation

θ ′ = ±1
r

√
cos θ − cos θ0

cos θ̄ − cos θ0
, (3.4)



¯

¯

2F(q0) − F(q̄) = S̄
2r

√
1 − cos θ0

cos θ̄ − cos θ0
, (3.5)

where F denotes the incomplete elliptic integral of first kind [24] and, for ease of notation, we set

q0 :=
{

θ0

2
, csc2

(
θ0

2

)}
and q̄ :=

{
θ̄

2
, csc2

(
θ0

2

)}
.

Similarly, we simplify equation (2.9) (with λ = 1) as follows:

2E(q0) − E(q̄) = − S̄ cos θ0 + r sin θ̄

2r(1 − cos θ0)

√
1 − cos θ0

cos θ̄ − cos θ0
, (3.6)

where E represents the incomplete elliptic integral of second kind. Equations (3.5), (3.6) and the
inextensible version of equation (2.10), r�α = rθ̄ + S̄, provide S̄, θ0 and θ̄ as functions of �α. In
the limit �α � 1, after some tedious but straightforward calculations which we omit for brevity,
it is possible to find the asymptotic expansions of θ0 and θ̄ [14]

θ0 ≈ 2.3454(�α)1/3 − 0.78762�α + 0.68361(�α)5/3 (3.7)

and

θ̄ ≈ −2.2894(�α)1/3 + 0.83072�α − 0.62489(�α)5/3. (3.8)

The energy of an inextensible buckled solution has a particularly simple expression when it
is written in terms of θ0, θ̄ and S̄. To this end, we insert equations (3.4), (2.9) and λ = 1 into
equation (3.1) to get

Wcol = k
∫ S̄

0
(θ ′)2dS + k

∫L/2

S̄
(θ ′)2dS = k

r2

∫ S̄

0

cos θ (S) − cos θ0

cos θ̄ − cos θ0
dS + k

r2

(
L
2

− S̄
)

= 1
2

kL
r2 − k

r2
S̄ cos θ̄ + r sin θ̄

cos θ̄ − cos θ0
. (3.9)

The asymptotic expansions of θ0 and θ̄ are then inserted into equation (3.9) to yield the
approximate expression for the energy of the collapsed solution

Wcol ≈ 1
2

kL
r2 + k

r
(w0(�α)1/3 + w1�α + w2(�α)5/3), (3.10)

where w0 ≈ 23.113, w1 ≈ −18.532 and w2 ≈ 1.6131. Thus, we are able to give an approximate
analytic solution of the transition equation Wcol = Wadh, which to leading order reads

(�α)cr ≈ 6.5813ξ
6/5
0 . (3.11)

As shown in figure 3, this expression provides a very good account of the numerical results, in
the range of compressibility considered.

Figure 4 sketches the critical behaviour of the detachment angle. This angle is directly related
to the hump dimension and is easily accessible experimentally. For a given ξ , |θ̄cr| represents
the minimum stable detachment angle. Lower values of θ̄ corresponds to metastable or unstable
solution. Thus, we can conclude that there is a limiting size below which the hump cannot
develop. The dotted line in figure 4 represents the asymptotic approximation |θ̄cr| ≈ 4.29 ξ

2/5
0 .

The lower bound for the blister size corresponds to a higher bound for the applied tangential
force and thus for the pressure exerted on the delimiting container. Figure 5 reports the behaviour

where the sign + (respectively, −) is to be used in the interval S ∈ (0, S0) (respectively, S ∈ (S0, S)). 
By symmetry, θ (0) = 0 and equation (3.4) evaluated at S = 0 shows that cos θ̄ − cos θ0 > 0. This
gives a restriction on the possible values of θ̄ : |θ̄ | < θ0. Furthermore, equation (3.4) is an ordinary 
differential equation which can be solved by separation of variables in (0, S) ([14, §3])
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Figure 5. Tangential compressive force at the transition in the adhered solution (red line) and collapsed solution (blue line) as 
a function of ξ . The tangential force has a finite jump at the transition. The dotted lines show the asymptotic approximations.
(Online version in colour.)

at the transition of the tangential force for the adhered (red line) and collapsed (blue line) 
solutions, as functions of the reduced compressibility. Since at the transition the solution passes 
from one to the other, the tangential force undergoes a discontinuous jump. This is consistent with 
the idea of buckling as the mechanism through which the system relaxes its internal stress. For 
fixed ξ0, the correspondent value of the red line shows the maximum internal force acceptable 
by the system under pure compression. The critical load at which the buckling occurs is given 
by Fcr = 2br(�α)cr/L. Furthermore, when �α is below its critical threshold, the internal force is 
simply proportional to the strain and hence it vanishes as �α tends to zero.

4. Local stability
We now consider the local stability of the equilibrium solutions in more detail. The second 
variation of the stored energy functional is calculated in the appendix and it is reported here



below for ease of reading

δ2W = 2k
∫ S̄

0

[
h′2 − τh(λ∗ cos θ∗h + 2 sin θ∗u) + u2

r2ξ2

]
dS, (4.1)

where θ∗(S) and λ∗(S) are the equilibrium solutions, h(S), u(S) are their small perturbations
and ξ2 = k/(br2). Standard results in the calculus of variations [25,26] show that the positive
definiteness of the second variation is a necessary condition for the stability and a sufficient
condition for the existence of a weak minimum of the total energy. For a given h(S), the minimum
of the integrand (and thus that of δ2W) is achieved when u(S) is a stationary value: u(S) =
τ r2ξ2h(S) sin θ∗(S). Therefore, if δ2W is positive for this u(S) we know that it is positive for all
other possible variations. On the other hand, if δ2W is negative for this u(S) there may be some
u(S) which make the second variation positive, but nevertheless we have been able to show that
the second variation is not always positive and the equilibrium is unstable. This allows us to
simplify the problem and consider the reduced second variation in the sole variable h(S)

δ2W(r) = 2k
∫ S̄

0
[h′2 − τ (cos θ∗ − r2ξ2τ cos(2θ∗))h2] dS. (4.2)

Taking into account the boundary conditions h(0) = 0 and h(S̄) = 0 for admissible variations,
we can use the Poincaré inequality

∫ S̄

0
h′2dS ≥ π2

S̄2

∫ S̄

0
h2 dS, (4.3)

to find a lower bound for the second variation

δ2W(r) ≥ 2k
∫ S̄

0

[
π2

S̄2
− τ cos θ∗ + r2ξ2τ 2 cos(2θ∗)

]
h2 dS

≥ 2k
∫ S̄

0

[
π2

S̄2
− τ (1 + r2ξ2τ )

]
h2 dS. (4.4)

Hence, the second variation is positive-definite, and the equilibrium is stable, provided that the
compressive force is limited by

τ (1 + r2ξ2τ )S̄2 < π2. (4.5)

It is worth remarking at this point that the lower branch of the buckled solution in figure 2 
corresponds to nearly uncompressed states (and therefore τ is generally small). By contrast, 
the highly compressed states (high τ ) are represented by the upper branch. Equation (4.5) thus 
suggests that the lower branch is stable, while the upper branch is unstable.

(a) Conjugate-point analysis
To get a more precise picture of the stability and to show that the above crude analysis is indeed 
qualitatively correct, we now study the Jacobi accessory problem associated to (4.2). We refer 
to the standard literature on the calculus of variations for details (e.g. [25,26]). The presence of 
the global (or ‘isoperimetric’ in the calculus of variations parlance) constraint (2.9) introduces 
some mathematical subtleties into the formulation of the accessory equation (see [27,28] for  a  
fuller discussion). The key point is that the second variation has to be positive with respect to all 
variations tangent to the constraint. In our case, the linearized constraint is derived in appendix 
(equation (A 10)). Its reduced form is

∫ S̄

0
(1 − 2r2ξ2τ cos θ∗) sin θ∗h dS = 0, (4.6)

and this poses a global restriction on the admissible variations h(S).



We say that S = σ is a isoperimetric conjugate point to S = 0 if there exist a constant κ and a
function h(S) not identically zero which are solution to the following system (0 ≤ S ≤ σ ):

h′′ + τ (cos θ∗ − r2ξ2τ cos(2θ∗))h = κ(1 − 2r2ξ2τ cos θ∗) sin θ∗,

h(0) = h(σ ) = 0

and
∫ σ

0
(1 − 2r2ξ2τ cos θ∗) sin θ∗h dS = 0.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.7)

The homogeneous differential equation associated to the ODE in (4.7) is simply the Euler–
Lagrange equation of the functional (4.2) with respect to h(S). Standard theorems in the classical
calculus of variations say that the energy has a weak minimum (and the equilibrium is stable)
if there is no point conjugate to S = 0 in (0, S̄]; there is a bifurcation point if σ = S̄ (and the
equilibrium is unstable); finally when σ < S̄, the equilibrium is unstable.

The linearization of (4.7) suffices to correctly capture the main features of the problem, as can
be checked numerically, and at the same time provides neat analytical results on the bifurcation
condition. To this end, we use the fact that the linearized equilibrium solution is θ∗(S) = A sin(ωS),
with A a suitable constant, and approximate (4.7) with

h′′ + ω2h = κ sin(ωS), ω =
√

τ (1 − r2ξ2τ ),

h(0) = h(σ ) = 0

and
∫ σ

0
sin(ωS)h(S) dS = 0,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.8)

where on the right-hand side all the constants have been absorbed into κ . The solution to this
problem is easily found to be

h(S) = C
(

sin(ωS) + 2ωS cos(2ωS)
2ωσ − sin(2ωσ )

2ωσ cos(2ωσ ) − sin(2ωσ )

)
, (4.9)

with C an arbitrary integration constant. The condition h(σ ) = 0 yields an equation for ωσ which
is solved numerically to give

ωσ ≈ 4.60. (4.10)

The bifurcation point, and thus the critical stress τc, is obtained by imposing σ = S̄ as the conjugate
point. Specifically, we have the following equation for τc

(ωcS̄)2 = τc(1 − r2ξ2τc)S̄2 ≈ (4.60)2, (4.11)

which shows a remarkable agreement with the numerical simulation: the numerical value 
obtained at the cusp point of figure 2 is ωc S̄ ≈ 4.57. The solution is unstable if σ < S̄ and this 
corresponds to ω = ωc S̄/σ > ωc, i.e. τ > τc. Finally, when τ < τc, the solution is stable.

5. Concluding remarks
In many applied contexts, it is useful to study the slightly different problem where the sheet is 
closed, i.e. the lateral ends of the strip are glued together. For instance, the elastic sheet can be 
made of a growing biological membrane confined by a rigid cylinder of radius r. In this case, 
the circumferential growth, suitably measured by ε := (L − 2πr)/(2πr), may trigger the instability. 
For moderate growth, the excess material can simply result in a uniform compression of the 
adhered strip and in an increase of the hoop stress. By contrast, a further increase of the growth 
(when the critical threshold has been crossed) leads to the buckling of the membrane and the 
sheet is then only in partial contact with the container. Our results can be simply adapted to this 
closed problem. As expected we again find that there is a critical growth εcr above which the 
delamination is preferred with respect to the adhered solution. Indeed, the equations governing



λ
λS

the post-buckling behaviour are the same except for equation (2.10) that is to be replaced with

πrε = rθ̄ + 
(1 − ¯ )L + ¯ ¯ .2

It is worth noticing explicitly that even the energy expression (3.1) remains unchanged.
By contrast, the adhered solution is characterized by a uniform stretch λadh = 1/(1 + ε) and its  
elastic energy is

Wadh = πkr−1(1 + ε)−1(1 + ε2ξ−2).

However, it turns out that the two problems are mathematically equivalent provided we 
substitute �α with πε. We finally find the following approximation for the critical growth:

εcr ≈ 41.0912 ξ6/5.
As an application of our results, we look at the experiment on the packing of flexible films 

reported in Boué et al. [2]. In the first part of their paper, the authors studied the pressure 
exerted by the sheet on the external container as a function of ε, here named the confinement 
parameter. Their experimental data exhibit an increasing pressure as the confinement parameter ε 
is decreased. Numerical studies of the elastica model indicate indeed a divergent pressure in the 
limit of ε → 0. This is also consistent with the theoretical results [13,14], which in addition show 
an asymptotic dependence of the internal forces, and hence the pressure, on ε−2/3. However, 
the thickness of the sheet used in the experiment is h = 0.1 mm, while the container radius is 

r = 26 mm. Since for a rectangular section � = h/
√

12, we obtain that ξ = 1.11 × 10−3 and εcr = 
1.17 × 10−2. Unfortunately, the smallest experimental value of ε reported in figure 3 of Boué et al.
[2] is just above this critical value and hence they are not able to see the transition experimentally. 
On the one hand, this justify the validity of the Elastica model above the critical threshold. On the 
other hand, our results predict that, by further decreasing ε, the hump should suddenly disappear. 
At the transition, the pressure (per unit length) on the container undergoes a jump to Pcr ≈ br−1εcr, 
while below εcr the pressure is proportional to ε, hence it goes to zero as ε → 0. This solve the 
apparent paradox, described in Cerda & Mahadevan [13], De Pascalis et al. [14] and Boué et al. [2], 
of a diverging pressure in the low confinement regime.

In conclusion, the present analysis recognizes the key role played by stretchability for a 
correct description of the mechanical collapse of a loaded or growing elastic thin sheet adhered 
to a curved substrate. Even when the sheet is nearly unstretchable, the energetic contribution 
of compression cannot be neglected when the length scales in the problem are comparable 
with the sheet thickness (i.e. small humps). Our model yields analytic approximations for 
the critical threshold and the minimum size for the humps. This threshold depends on the 
reduced compressibility that, for homogeneous materials, is a purely geometrical dimensionless 
parameter. Furthermore, it sets an upper bound to the exerted pressure on the container. Future 
works can consider the effects of other physical quantities (i.e. capillary adhesion, intrinsic 
curvature and gravity) or the coupling of growth with internal stress [29] on the morphology 
and the critical parameters.
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Appendix A. Variational formulation
In this section, we derive the first and the second variation of the energy functional of the 
collapsed solution. This energy consists of two parts: the energy of the detached region Wf and 
the energy of the adhered region Wa. The effective energy for the detached beam comprises the



bending energy, the compression energy and a term that enforces its endpoints to lie on the
delimiting container:

Wf =
∫ S̄

0
[kθ ′2 + b(λ − 1)2] dS − 2Tx

(
r sin θ̄ +

∫ S̄

0
λ cos θ dS

)
, (A 1)

where Tx, that represents the horizontal component of the internal force, have the meaning of a
Lagrange multiplier. Both Tx and S̄ have to be determined in the minimization process.

In the adherent region, the sheet is in contact with the circular container and, therefore, the
bending energy can be written as a function of the stretch. Furthermore, a geometrical constraint
establishes an appropriate relation between the length of the adhered region and the other
geometrical parameters of the problem,

∫L/2

S̄
λ(S) dS = L

2
− r(�α − θ̄ ), (A 2)

thus the effective energy for the adhered curve is

Wa =
∫L/2

S̄

[
k
λ2

r2 + b(λ − 1)2

]
dS + 2μ

(∫L/2

S̄
λ dS − L

2
+ r(�α − θ̄ )

)
, (A 3)

where μ is a Lagrange multiplier related to the constraint (A 2).
Let us introduce the varied quantities

θε(S) = θ (S) + εh(S) and λε(S) = λ(S) + εu(S). (A 4)

The variational procedure must explicitly include the fact that the endpoints S = 0 and S = L/2
are fixed, while the detachment point S = S̄ is not. We assume that θε(S̄ + εδS̄) and λε(S̄ + εδS̄) are
regular functions of ε. Therefore, each degree in their ε-expansion must agree when ε approaches
zero from below or above, i.e. when S → S̄− or S → S̄+. We thus obtain the following compatibility
(or jump) conditions:

θ (S̄−) = θ (S̄+) = θ̄ , λ(S̄−) = λ(S̄+) = λ̄, (A 5a)

θ ′(S̄−)δS̄ + h(S̄−) = θ ′(S̄+)δS̄ + h(S̄+), (A 5b)

λ′(S̄−)δS̄ + u(S̄−) = λ′(S̄+)δS̄ + u(S̄+) (A 5c)

and 1
2 θ ′′(S̄−)δS̄ + h′(S̄−) = 1

2 θ ′′(S̄+)δS̄ + h′(S̄+). (A 5d)

(a) The first variation
The functional can be recast in the form

W =
∫ S̄

0
wf dS +

∫L/2

S̄
Wa dS − 2Txr sin θ̄ + 2μ

(
−L

2
+ r(�α − θ̄ )

)
, (A 6)

where wf := k(θ ′)2 + b(λ − 1)2 − 2Txλ cos θ and Wa := kλ2/r2 + b(λ − 1)2 + 2μλ. Thus, the first
variation of W can be written as

δW =
∫ S̄

0

{[
∂wf

∂θ
−
(

∂wf

∂θ ′

)′]
h + ∂wf

∂λ
u

}
dS +

∫L/2

S̄

∂Wa

∂λ
u dS

+
(

∂wf

∂θ ′

)
S=S̄

h(S−) − 2μrh(S+) + (wf − Wa − 2rTxθ
′ cos θ )S=S̄δS̄. (A 7)

The request that the first term of (A 7) vanishes for any arbitrary choice of h(S) and u(S), leads
to equilibrium equations (2.5) and (2.6) for the buckled part of the beam. On the other hand, the



vanishing of the second integral of (A 7) for any u(S) yields the equation

k
λ

r2 + b(λ − 1) + μ = 0, (A 8)

whence we deduce that λ is constant in the adhered part. The Lagrange multiplier μ is then
determined from (A 2), which reduces to (2.10) if λ = λ̄. Finally, we set h(S̄+) = 0 and θ ′(S̄+) = −λ̄/r
in (A 5) so that the compatibility conditions can be used to simplify the boundary terms of (A 7) to

− k
r2 (λ̄ + rθ ′(S̄−))2δS̄, (A 9)

which yields the transversality conditions (2.8). Thus, in agreement with the first Weierstrass–
Erdmann condition, θ ′(S) is continuous in S = S̄.

(b) The second variation
Before embarking on the calculation of the second variation, we first need to establish some 
identities in order to be able to simplify the final expression. The geometrical constraint (2.9) 
must be satisfied also by the varied configurations. To first order in ε this implies

∫ S̄

0
(cos θ∗u − λ∗ sin θ∗h) dS = 0, (A 10)

where θ∗(S) and λ∗(S) are the equilibrium solutions and we have used the (first order)
compatibility conditions (A 5) and the continuity of θ ′(S).

The second-order conditions (A 5), which are needed for the second variations, can be
simplified by assuming h′(S̄+) = 0, θ ′′(S̄+) = 0 and θ ′′(S̄−) = −λ̄τ sin θ̄ where this last identity
comes from the equilibrium equation (2.6). We are now ready to calculate the second variation
of the free part which, after some algebraic manipulations, can be written as

δ2Wf = 2k
∫ S̄

0

[
(h′)2 − τh(λ∗ cos θ∗h + 2 sin θ∗u) + b

k
u2
]

dS. (A 11)

The second variation of the functional related to the adhered part is

δ2Wa = 2
k + br2

r2

∫L/2

S̄
u2 dS. (A 12)

¯This is positive definite and can always be set to zero by choosing u(S) ≡ 0 in S ∈ (S, L/2) so that 
its contribution to the stability of the system can be neglected.
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