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Time reversal is one of the most intriguing yet elusive
wave phenomenon of major interest in different areas
of classical and quantum physics. Time reversal re-
quires in principle to flip the sign of the Hamiltonian
of the system, leading to a revival of the initial state
(Loschmidt echo). Here it is shown that Loschmidt echo
of photons can be observed in an optical setting with-
out resorting to reversal of the Hamiltonian. We con-
sider photonic propagation in a binary waveguide lat-
tice and show that, by exchanging the two sublattices
after some propagation distance, a Loschmidt echo can
be observed. Examples of Loschmidt echoes for single
photon and NOON states are given in one- and two-
dimensional waveguide lattices. © 2017 Optical Society of

America
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Time reversal is one of the most intriguing yet elusive wave
phenomenon that has attracted a great attention of physicists
since more than one century. In principle, changing the sign of
a time-symmetric Hamiltonian can time reverse the evolution
of a classical or quantum system. This result seems at odd with
the irreversible dynamics observed in nature, a contradiction
which is at the heart of the so-called Loschmidt paradox [1–
3]. Several experimental demonstrations of time reversibility
have been reported for quantum dynamics or classical waves,
including spin systems [4], acoustic [5], electromagnetic [6], wa-
ter waves [7], and atom optics systems [8–11], with a wealth of
interesting technological applications. In optics, time reversal
dynamics, like the one based on optical phase conjugation, pro-
vides a powerful tool to eliminate aberrations or scattering of
optical waves in inhomogeneous or diffusive media [12–14]. A
short overview of time reversal symmetry in classical and quan-
tum optics can be found in [15].
The forward-backward evolution of an isolated quantum sys-
tem induced by changing the sign of the Hamiltonian yields a
revival or echo effect, the so-called Loschmidt echo [1–3]. Let
|ψ(0)〉 be the state of the system at initial time t = 0, which
evolves to the state |ψ(T)〉 = exp(−iĤ1T)|ψ(0)〉 at the time t =

T with the Hamiltonian Ĥ1. In the successive time interval T,
the Hamiltonian of the system is changed into Ĥ2 = −Ĥ1 + V̂,
where V̂ is generally a small perturbation that accounts for non-
perfect reversal or system-environment interaction. The final
state |ψ(2T)〉 = exp(iĤ1T − iV̂T) exp(−iĤ1T)|ψ(0)〉 at time
t = 2T reproduces the initial state |ψ(0)〉 with an accuracy
which is measured by the fidelity F = |〈ψ(2T)|ψ(0)〉|, with
F ≤ 1 and F = 1 for perfect reversal V̂ = 0. In quantum
systems with few degrees of freedom, today’ s technological
advances make it meaningful to address time reversal experi-
ments. So far most experiments on time reversal require to flip
the sign of the Hamiltonian, i.e. Ĥ2 ≃ −Ĥ1. In this Letter we
suggest Loschmidt echo of photons in optical waveguide lat-
tices without resorting to Hamiltonian reversal. We consider
light propagation in binary waveguide lattices, comprising two
sublattices A and B, and show that exchange of the two sub-
lattices after some propagation distance results in approximate
time reversal. The Loschmidt echo results from self-imaging
of the waveguide lattice, which turns out to be robust against
imperfections or disorder in the lattice coupling constants. For
high photon number states, a rapid decay of Loschmidt echo
and resolution of the Loschmidt paradox can be observed in
such a photonic simulator of time reversal dynamics.
Propagation of classical and non-classical light in waveguide
lattices has received a great interest in the past two decades
(see e.g. [16–21] and references therein). Such systems enabled
direct observation of optical analogues of many fundamental
quantum mechanical effects, such as Bloch oscillations [22–24],
Anderson localization [25, 26], quantum Zeno dynamics [27],
dynamical localization [28], and many others. Waveguide lat-
tices also provide a rather unique platform to realize quantum
interference effects, quantum walks and other sophisticated
quantum manipulations of light in a robust, decoherence-free
and integrated environment [19–21, 29, 30]. Self-imaging ef-
fects in one-band waveguide lattices, based on a sudden appli-
cation of a phase gradient to the optical wave, were proposed
and demonstrated in a few recent works [31–34]. Such a self-
imaging effect, also referred to as diffraction management or
perfect imaging, can be regarded as a kind of time reversal dy-
namics because application of a sudden phase gradient to the
optical wave is equivalent to changing the sign of the Hamilto-
nian Ĥ2 = −Ĥ1 [10, 34]. Here we consider a two-band lattice
model, i.e. a binary waveguide lattice [24, 35], and show that
self-imaging dynamics can be realized, at least approximately,
by exchanging the two sublattices A and B, which manifestly
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violates the condition Ĥ2 = −Ĥ1. We focus our analysis to a
one-dimensional binary waveguide array, however the results
can be readily extended to a two-dimensional lattice. Photons
propagating in a binary waveguide array with nearest-neighbor
coupling is described by the Hamiltonian [19, 20, 30]

Ĥ1 = ∑
n

(

κn â†
n ân+1 + H.c.

)

+ δ ∑
n

(−1)n â†
n ân (1)

where â†
n is the creation operator of photons in the mode of

waveguide n, κn is the coupling constant between nearest neigh-
bor waveguides n and (n + 1), and 2δ is the propagation con-
stant offset between modes in the two sublattices A and B. The
sublattices A and B correspond to the waveguides with index
n being even or odd, respectively. Along with the Hamiltonian
Ĥ1, we consider the Hamiltonian Ĥ2 which is obtained from Ĥ1

by reversing the sign of δ. Note that Ĥ2 is not the time reversal
of Ĥ1, which would require to reverse both signs of δ and κn . In
practice, Ĥ2 is the Hamiltonian that describes photon propaga-
tion in a waveguide array where the sublattices A and B have
been interchanged. The main result of our analysis is that, if
we consider photon propagation in a sequence of two lattices
of the same length L = cT, with the two sublattices A and B
interchanged in the second lattice, then approximate time rever-
sal dynamics is realized provided that the propagation constant
detuning δ is much larger than the coupling constants κn . The
reversal (echo) effect of an initial quantum state |ψ(0)〉 exciting
the array is described by the fidelity

F =
∣

∣〈ψ(0)| exp(−iĤ2L) exp(−iĤ1L)|ψ(0)〉
∣

∣ (2)

To show the effective time reversal dynamics despite Ĥ2 6=
−Ĥ1, let us consider the Heisenberg equations for the creation
operators, which read

− i
dâ†

n

dz
= κn â†

n+1 + κn−1 â†
n−1 + (−1)nδâ†

n. (3)

For δ ≫ κn , at leading order (rotating-wave approximation) the
operators â†

2n and â†
2n+1 at even and odd lattice sites, i.e. in

the two sublattices A and B, are almost decoupled and oscil-
late rapidly according to the relations â†

2n(z) ≃ â†
2n(0) exp(iδz)

and â†
2n+1(z) ≃ â†

2n+1(0) exp(−iδz). A first-order correction in
the small parameter κn/δ, i.e. beyond the rotating wave ap-
proximation, can be obtained by standard asymptotic methods,
yielding the following evolution equations for the creation op-
erators

−i
dâ†

2n

dz
≃ κ2nκ2n+1

2δ
â†

2n+2 +
κ2n−1κ2n−2

2δ
â†

2n−2

+

(

δ +
κ2

2n + κ2
2n−1

2δ

)

â†
2n (4)

−i
dâ†

2n+1

dz
≃ − κ2n+1κ2n+2

2δ
â†

2n+3 −
κ2nκ2n−1

2δ
â†

2n−1

−
(

δ +
κ2

2n + κ2
2n+1

2δ

)

â†
2n+1 (5)

which can be derived from the effective Hamiltonian

Ĥ
(e f f )
1 = ∑

n

( κ2nκ2n+1

2δ
â†

2n â2n+2 −
κ2n+1κ2n+2

2δ
â†

2n+1 â2n+3

+ H.c.) + ∑
n

(

δ +
κ2

2n + κ2
2n−1

2δ

)

â†
2n â2n (6)

− ∑
n

(

δ +
κ2

2n+1 + κ2
2n

2δ

)

â†
2n+1 â2n+1.
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Fig. 1. (Color online) Evolution of (a) the mean photon number

〈â†
n ân〉 and (b) the fidelity F versus normalized propagation distance

κz in a binary array made of N = 10 waveguides with uniform hop-
ping rate κ and for δ/κ = 5. The array is initially excited with one
photon state in waveguide n = 3.

detuning δ/κ 

(a)

 f
id

e
lit

y
 

0 5 10
0

0.5

1

0.85

1

0 50 100
0.92

0.96

1

(b)

 f
id

e
lit

y
 

 f
id

e
lit

y
 

 δ/κ=5 

 δ/κ=8 

disorder realization 

Fig. 2. (Color online) (a) Behavior of the fidelity F at the output plane
versus the normalized detuning parameter δ/κ in a binary array made
of N = 10 waveguides with uniform hopping rate κ. (b) Behavior of
the fidelity F at the output plane in 100 binary arrays with different
realizations of disorder in coupling constants κn and for two values of
δ/κ. The coupling constant between guides n and (n + 1) is given by
κn = κ(1 + σn), where σn is a random variable with uniform distri-
bution in the range (−0.2, 0.2). In both (a) and (b) the array is initially
excited with one photon state in waveguide n = 3.

Note that in such a limit the dynamics in the two sublattices
is decoupled, their interaction being included in renormalized
photonic couplings and propagation constant offsets. From a
physical viewpoint, photon hopping between adjacent sites in
the same sublattice is a second-order tunneling process [36, 37]
mediated by the intermediate out-of-resonance sites of the other
sublattice. The resulting hopping rates, defined in Eqs.(4) and
(5), are inversely proportional to the propagation constant off-
set δ; therefore they can be reversed by flipping the sign of
δ. Second-order tunneling also introduces effective shifts of
site energies in the two sublattices, which are sensitive to the
sign of δ as well [36, 37]. Therefore, by reversing the sign of δ

from Eq.(6) it follows that Ĥ
(e f f )
2 = −Ĥ

(e f f )
1 . This means that

time reversal can be approximately obtained, even thought the
original (exact) Hamiltonian is not time reversed (Ĥ2 6= −Ĥ1).
For a homogeneous binary lattice, approximate time reversal
can be physically explained as follows. In the homogeneous
case κn = κ, the binary lattice sustains two mini bands with

dispersion curves [35] E±(q) = ±δ
√

1 + (2κ/δ)2 cos2 q, where
−π/2 ≤ q < π/2 is the Bloch wave number. For δ ≫ κ, the
Bloch eigenstates of the two mini bands correspond to occupa-
tion of either one of the two sublattices. Hence, by reversing
the sing of δ the occupation in two mini bands is flipped. Since
the dispersion curves in the two mini bands introduce opposite
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Fig. 3. (Color online) (a) Behavior of the fidelity F versus phase ϕ
at the output plane of the binary array of Fig.1 when it is excited by a
NOON state with N0 = 1 (i.e. a Bell state) and N0 = 2 photons at the
two waveguides n1 = 1 and n2 = 2. (b) Behavior of the fidelity F
for a NOON state excitation with ϕ = 0 and for increasing number of
photons N0.

phase shifts at any wave number q, time reversal is obtained.
The fidelity of the time reversal is expected to increase as the pa-
rameter κ/δ is diminished. Note that such a result holds more
generally for inhomogeneous hopping rates κn , i.e. time rever-
sal is robust against lattice truncation and structural imperfec-
tions or disorder in the coupling constants. However, disorder
in site energies, i.e. in δ, can not be time reversed and can there-
fore prevent the observation of Loschmidt echo. Disruption of
self-imaging by diagonal disorder is a detrimental effect which
is common to other time-reversal methods [34].
We checked the validity of the theoretical analysis by numerical
computation of the fidelity for different excitation conditions
of the binary lattice. Equations (3) have been integrated from
z = 0 (input or excitation plane of the array) to z = 2L (out-
put plane) assuming a sudden change of the sign of δ at z = L.
The fidelity at plane z for classical light, i.e. when the operators
â†

n in the equations are treated as c-numbers, is simply given
by F (z) = (1/N ) |∑n α∗n(z)αn(0)|, where αn(0) is the classi-
cal excitation amplitude of waveguide n at z = 0, αn(z) is the
propagated amplitude, and N = ∑n |αn|2 is the normalization
constant. The fidelity for classical fields is equivalent to the one
obtained when the array is excited by the single photon state

|ψ(0)〉 = (1/
√
N ) ∑n αn(0)â†

n|0〉. Figure 1 shows as an exam-
ple the behavior of the fidelity F (z) = |〈ψ(0)|ψ(z)〉| and of the
mean photon number 〈â†

n ân〉 (classical light intensity) at vari-
ous lattice sites versus propagation distance in an array made
of N = 10 waveguides with uniform couplings κn = κ, for
δ/κ = 5 and for a total waveguide length 2L = 50/κ. The ar-
ray is excited at the input plane by a single photon state in the
guide n = 3, i.e. |ψ(0)〉 = â†

3|0〉. The behavior of the fidelity
at the output plane versus the ratio δ/κ is shown in Fig.2(a),
clearing indicating that F increases as the normalized detun-
ing parameter δ/κ is increased. The effect of disorder in the
coupling constants κn on the fidelity F is shown in Fig.2(b) for
two values of the detuning δ/κ. The figure depicts the behav-
ior of F for 100 different realization of disorder, where we as-
sumed κn = κ(1 + σn) with σn a random variable with uniform
distribution in the range (−0.2, 0.2). The figure clearly demon-
strates that the time reversal method is robust against disorder
in coupling constants (off-diagonal disorder). However, like for
other time reversal methods in a single-band lattice [34], self-
imaging and time reversal are degraded by on-diagonal disor-
der, i.e. disorder in the propagation constants of waveguides,
which should be therefore avoided in the manufacturing of the
waveguide lattice.

While single photon state excitation basically reproduces the

classical light propagation in the waveguide array, the fidelity
decreases for photon number state excitation with a high pho-
ton number. In fact, indicating by F1 the fidelity correspond-
ing to single photon excitation at waveguide n1, i.e. |ψ(0)〉 =
â†

n1
|0〉, it can be readily shown that the fidelity FN0

correspond-
ing to the excitation with the N0 photon number (Fock) state

|ψ(0)〉 = (1/
√

N0!)â†N0
n1

|0〉 at guide n1 is given by FN0
= FN0

1 ,
thus rapidly degrading as the photon number N0 increases. A
similar behavior is found when the array is excited with other
non-classical states of light. Figure 3(a) shows, as an example,
the behavior of the fidelity at the output plane for the same ho-
mogeneous binary lattice of Fig.1 but when it is excited by by

a NOON state |ψ(0)〉 = (1/
√

2N0!)(â†N0
n1

|0〉+ exp(iϕ)â†N0
n2

|0〉)
with N0 = 1 (i.e. a Bell state) and N0 = 2 photons at waveg-
uides n1 = 1 and n2 = 2. The behavior of the fidelity for the
NOON state excitation with ϕ = 0 and for increasing photon
number N0 is shown in Fig.3(b). The result clearly indicates
that, as the photon number increases, the revival to the initial
state (Loschmidt echo) is rapidly degraded like for the Fock
state excitation. This result provides a kind of resolution of the
Loschmidt ’paradox’: for a ’macroscopic’ (many-body) system
, i.e. for a state with a large photon number, even a small de-
viation of Ĥ2 from −Ĥ1 makes it the backward dynamics to
largely deviate from the forward one, and thus reversibility of
the dynamics unlikely. Note that, since interaction of photons
with the environment is negligible, the decay of Loschmidt echo
arises here because of imperfect time reversal rather than from
decoherence effects [2], and can be fully controlled by varying
the offset δ.
The previous analysis can be readily extended to a two-
dimensional binary array, i.e. for a rectangular lattice com-
prising (N × M) waveguides with propagation constant offset
(−1)n+mδ at lattice site (n, m). As an example, Fig.4 shows
the Loschmidt echo (self-imaging) dynamics in a binary array
made of N = 7 × M = 10 waveguides which is initially ex-
cited by a single photon in a W state [38] that reproduces the
alphabetic letter E on the right top of the lattice [see Fig.4(a)],

i.e. |ψ(0)〉 = (1/
√

8) ∑(n,m) â†
n,m|0〉, where the sum is extend

over the eight indices (n, m) that identify the letter E [the cir-
cled sites in the lattice of Fig.4(a)]. Figure 4(b), upper panels,
show the numerically-computed evolution of the mean photon
number (classical light intensity) for a few values of the nor-
malized propagation distance κz, wheres the behavior of the
fidelity F (z) is depicted in the lower panel. Note that the bidi-
mensional lattice realizes an approximate self-imaging with a
fidelity of ∼ 0.94 for the single photon state. Like for the
one-dimensional case, the self-imaging turns out to be robust
against disorder or imperfections in the lattice coupling con-
stants. However, the fidelity rapidly degrades for excitation
with high photon number states.
In conclusion, Loschmidt echo of photons propagating in bi-
nary waveguide lattices has been theoretically suggested. The
revival does not require to reverse the full Hamiltonian of the
system, since time reversal is approximately obtained by ex-
changing the two sublattices of the array after some propaga-
tion distance, but not the sign of the coupling constants. Exam-
ples of Loschmidt echoes for single photon and NOON states
have been given in one- and two-dimensional waveguide lat-
tices. While high fidelity of time reversal can be observed for
single photon excitation, that reproduces the fidelity of revival
at the classical level, the fidelity is rapidly degraded when the
lattice is excited by a state with a large number of photons,
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Fig. 4. (Color online) (a) Schematic of a bidimensional binary waveguide lattice made of N = 7 × M = 10 waveguides. The lattice is initially
excited by a single photon W state that reproduces the letter E (the eight circled waveguides on the top right side of the lattice). (b) Numerically-

computed evolution of the mean photon number 〈â†
n,m ân,m〉 (classical light intensity) for a few values of normalized propagation distance κz (upper

panels) and of the fidelity F (z) (lower panel) for homogeneous coupling constants and for δ/κ = 10, L = 10/κ.

such as Fock or NOON states. Our results indicate that pho-
tonic transport in engineered waveguide lattices is an interest-
ing platform to investigate decoherence-free time reversal dy-
namics at the quantum level [2] and Loschmidt echo decay
when the degrees of freedom of the system (i.e. the number of
photons) is increased. Integrated quantum photonics, a rapidly
emerging research area [20, 21, 38], is expected to provide an
experimentally accessible platform to test Loschmidt paradox
and its resolution with photons.
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