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An arbitrarily-shaped optical potential on a discrete photonic lattice, which transversely drifts at a speed larger

than the maximum one allowed by the light cone of the lattice band, becomes reflectionless. Such an intriguing

result, which arises from the discrete translational symmetry of the lattice, is peculiar to discretized light

and does not have any counterpart for light scattering in continuous optical media. A drifting non-Hermitian

optical potential of the Kramers-Kronig type is also an invisible potential, i.e. a discrete optical beam crosses

the drifting potential without being distorted, delayed nor advanced. c© 2018 Optical Society of America

OCIS codes: 130.3120, 290.5839, 000.1600

Reflection is ubiquitous in wave physics and is ob-
served for a wide class of waves such as electromag-
netic and particle waves [1]. In optics, reflection generally
arises from a sharp change of the refractive index on a
spatial scale of the order of the optical wavelength. How-
ever, it is known since long time that reflection can be
avoided in certain dielectric media with specially-tailored
refractive index profiles [2,3], even though the refractive
index changes over a subwavelength spatial scale. A class
of such special graded-index profiles was introduced by
Kay and Moses in a pioneering work in the middle of the
past century [2]. Recently, wave reflection in engineered
photonic structures has received a renewed interest, and
new kinds of reflectionless potentials have been intro-
duced, such as those based on parity-time (PT ) symme-
try [4–8], supersymmetry [9–12], and spatial Kramers-
Kronig relations [13–18]. In such structures, the refrac-
tive index is allowed to become complex, i.e. spatial re-
gions with optical loss or gain are introduced. As com-
pared to Kay and Moses potentials, non-Hermitian po-
tentials can be designed to be unidirectionally or bidi-
rectionally invisible rather than simply reflectionless.
Integrated photonic structures provide a platform of ma-
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Fig. 1. (Color online) Schematic of light scattering on a
waveguide lattice by a transversely drifting potential. The
waveguide array is excited at the input plane z = 0 by a tilted
beam with positive group velocity. The scattering potential
(dark areas) drifts on the lattice with a transverse velocity v
opposite to the group velocity of the injected beam. n is the
waveguide number, κ the coupling constant between adjacent
waveguides.

jor interest for molding the flow of classical and quantum

light in unprecedented ways [19–22]. Here light propaga-
tion is generally described by discrete equations, such
as the discrete Schrödinger equation in lattice struc-
tures [19–21], and it is generally referred to as discretized
light [19]. Reflectionless potentials on a lattice, synthe-
sized by a discrete version of supersymmetric quantum
mechanics (also known as discrete Darboux transforma-
tion), have been introduced and experimentally demon-
strated in a few recent works [9,23–26]. In discrete optics,
the continuous translational symmetry is broken and re-
flection is analogous to scattering by impurities in a pe-
riodic potential [21]. Like in a crystal, discrete transla-
tional symmetry drastically affects the linear propaga-
tion of optical beams, with the appearance of allowed
and forbidden energy bands and a wealth of related ef-
fects, such as anomalous refraction [27], diffraction re-
versal and self-collimation [27, 28], Anderson localiza-
tion [29, 30], negative Goos-Hänchen shift [31], etc.
In this Letter we disclose a rather intriguing property of
wave scattering in discrete optics, namely the absence of
reflection for discretized light by any arbitrarily-shaped
moving potential on a photonic lattice. The transparency
effect is observed whenever the potential transversely
drifts on the lattice faster than the largest speed al-
lowed by the light cone of the lattice band. Such a re-
sult does not have any counterpart in continuous optical
media, where a transverse shift of the potential at con-
stant speed does not change its scattering properties. We
also show that a drifting non-Hermitian potential of the
Kramers-Kronig type [13] on a lattice is invisible, while
it is reflective at rest.
Let us consider propagation of discretized light waves
in a waveguide lattice, which are scattered off by a
transversely-moving optical potential (Fig.1). In the
nearest-neighbor and tight-binding approximations, the
evolution of mode amplitudes cn along the propagation
distance z in the lattice is described by the discrete
Schrödinger equation [19–21]

i
dcn
dz

= −κ(cn+1 + cn−1) + V (n+ vz)cn (1)
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where n = 0 ± 1,±2, .. is the waveguide number, κ
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Fig. 2. (Color online) Left panels: Energy dispersion curves
(solid lines) of a lattice in the moving reference frame X =
n + vz, Z = z for (a) v = 0, (b) v = 0.4κ < vc, and
(c) v = 2.1κ > vc, where vc = 2κ is the largest velocity
of propagative waves allowed by the light cone of the lat-
tice band. For a given energy E determined by the incoming
wave (dashed horizontal line), elastic scattering can couple
waves with the same energy E (circles). Distinct waves cor-
respond to wave numbers q which are not integer multiplies
than 2π each other. In (a) there are two distinct waves, in
(b) five distinct waves, in (c) one wave solely. Central pan-
els: numerically-computed evolution of a discretized Gaussian
beam in the laboratory reference frame (n, z) (snapshot of
|cn(z)|) for the three values of the drift velocities v of left pan-
els and for a rectangular scattering potential V (n+ vz) = V0

for |n + vz| < d, V (n + vz) = 0 for |n + vz| > d (V0 = 3κ,
d = 4). The waveguide lattice comprises 50 waveguides and
its length is L = 15/κ. The array is excited by a discretized
Gaussian beam of spot size w tilted at half the Bragg angle,
i.e. cn(0) ∝ exp[−(n+ n0)

2/w2 + i(π/2)n] (n0 = 20, w = 4).
The dashed lines in the plots schematically show the drifting
rectangular potential. (c) Detailed beam intensity profiles at
the output plane z = L of the waveguide array (circles). The
open circles show, for comparison, the beam intensity dis-
tributions that one would observe in the homogenous lattice,
i.e. in the absence of the scattering potential.

is the coupling constant between adjacent waveguides,
V = V (n) is the localized scattering potential, with
V (n) → 0 as n → ±∞, and v is the transverse drift ve-
locity of the potential. In the following, we will assume
v > 0 and a forward-propagating optical wave incident
from the left side of the scattering potential. The poten-
tial V (n) can be either Hermitian, i.e. real and describing

propagation constant offset of the waveguide mode, or
non-Hermitian, i.e. complex and describing optical am-
plification or loss in addition to propagation constant off-
set of the mode. The continuous limit of Eq.(1), in which
the discrete translation invariance of the lattice is lost,
is obtained from Eq.(1) by considering n as a continuous
variable and by letting cn+1+cn−1 ≃ 2c(n, z)+∂2

n
c(n, z).

Apart from an inessential constant potential, this yields
the continuous Schrödinger equation for the amplitude
c(n, z)

i
∂c

∂z
= −κ

∂2c

∂n2
+ V (n+ vz)c(n, z). (2)

Note that Eq.(2) also describes optical wave scattering
from an inhomogeneous graded-index interface at graz-
ing incidence [14, 32]. In such a continuous limit, wave
scattering from the potential V is independent of the
transverse drift velocity v. This means that a potential
at rest which is not reflectionless can not be made re-
flectionless by just drifting it, and that in the continu-
ous limit a reflectionless potential remains reflectionless
when it drifts at an arbitrary speed. Such a general re-
sult readily follows from the Galileian invariance of the
non-relativistic Schrödinger equation [33], i.e. when con-
sidering the scattering problem in the reference frame

X = n+ vz , Z = z (3)

where the potential is at rest. However, owing to break-
down of continuous translational symmetry the dis-
crete Schrödinger equation (1) is not invariant under a
Galileian transformation, and thus the invariance of the
scattering process for a drifting potential is broken. In
fact, in the new variables X and Z, defined by Eq.(3),
Eq.(1) takes the form

i
∂c

∂Z
= −κ [c(X + 1, Z) + c(X − 1, Z)]−iv

∂c

∂X
+V (X)c.

(4)
Unlike for the continuous Schrödinger equation [33],

the drift term −iv(∂c/∂X) on the right hand side of
Eq.(4) can not be removed by a gauge transformation,
so that the scattering properties of the potential V are
modified by the drift term. In particular, for a veloc-
ity v larger than the critical velocity vc = 2κ one can
show that the potential V becomes reflectionless. Note
that vc = 2κ is the largest velocity for propagative dis-
cretized waves allowed by the light cone of the lattice
band. To prove such a general property, let us notice
that in the reference frame (X,Z) the scattering poten-
tial is at rest, so that scattering is elastic, i.e. it con-
serves the energy (i.e. propagation constant in the opti-
cal language). The value of the energy E is determined
by the incoming wave, which is scattered off by the po-
tential. A solution to Eq.(4) can be then searched in the
form c(X,Z) = a(X) exp(−iEZ), where E is the en-
ergy eigenvalue and a = a(X) satisfies the differential-
difference equation

Ea = −κ[a(X + 1) + a(X − 1)]− iv
da

dX
+ V (X)a (5)
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Fig. 3. (Color online) Scattering from a discrete Kramers-
Kronig potential with drift velocity v. (a) Potential profile
(behavior of the real and imaginary parts of V (n)). (b-d)
Scattering of a tilted Gaussian beam for different drift ve-
locities of the potential: (b) v = 0, (c) v = 0.4κ, and (d)
v = 2.1κ. The left panels in (b-d) show the numerically-
computed evolution of the discretized beam in the laboratory
reference frame (n, z) (snapshot of |cn(z)|), whereas the right
panels show the detailed beam intensity profiles at the output
plane z = L of the waveguide array (circles). The open circles
show, for comparison, the beam intensity distributions that
one would observe in the absence of the scattering potential.
Other parameter values are as in Fig.2. The sharp features
in colormap arise from the discreteness of n.

with V (X) → 0 as X → ±∞. Far from the scattering
potential, i.e. for X → ±∞, the scattering solutions to
Eq.(5) are plane waves a(X) ∼ exp(iqX) with wave num-
ber q and energy

E(q) = −2κ cos(q) + vq. (6)

The associated group velocity in the moving reference
frame is given by vg = (dE/dq) = 2κ sin q + v, whereas
in the laboratory reference frame (n, z) it is given by
−2κ sin q. Note that in the moving reference frame
(X,Z) the lattice dispersion curve, as given by Eq.(6),
acquires a linear (ramped) term vq in addition to the
ordinary sinusoidal (periodic) term. For a drift velocity

v smaller than the critical velocity vc = 2κ, one can find
rather generally linearly independent plane waves with
the same energy E of the incoming wave and with wave
numbers q that are not integer multiplies than 2π each
other. Some of these distinct waves may correspond, in
the laboratory reference frame (n, z), to a group veloc-
ity opposite than the one of the incident wave [see, for
example, the left panels of Figs.2(a) and (b)]. The scatte-
ring potential V generally couples such waves, so that a
reflected wave is typically observed in the laboratory ref-
erence frame. However, for a drift velocity v larger than
the critical velocity vc, regardless of the energy E of the
incoming wave there is only one wave number q satisfy-
ing the relation (6); see left panel of Fig.2(c). Therefore
reflection is here forbidden for energy conservation [34],
and the potential V becomes reflectionelss. However, as
compared to the case V = 0, the scattering potential
generally introduces an additional q-dependent phase
shift to the transmitted plane wave, which results in
beam distortion after potential crossing. In other words,
an arbitrarily-shaped potential V transversely drifting
along the lattice at a speed v > vc becomes reflectionless
but rather generally it is not invisible. As an example,
Fig.2 shows the numerically-computed propagation of a
discrete optical beam in an array made of 50 waveguides
for a rectangular scattering potential [V (X) = V0 for
|X | < d, V (X) = 0 for |X | > d] and for a few values
of the transverse drift velocity v. In the laboratory ref-
erence frame (n, z) the initial beam is Gaussian shaped
and tilted at half the Bragg angle (q ≃ π/2) from the
entrance facet of the array, so as far from the scatte-
ring potential it propagates at the highest group velocity
vc = 2κ. For the potential at rest [v = 0, Fig.2(a)] the
wave packet is almost completely reflected, and the re-
flected wave packet has the same group velocity than the
incident wave packet but reversed in sign. For a slowly-
drifting potential [v = 0.4κ, Fig.2(b)], the wave packet is
partially transmitted and partially reflected. Note that
both reflected and transmitted beams break into some
wave packets which propagate at different group veloci-
ties. Such a result can be readily explained by consider-
ing the energy diagram shown in left panel of Fig.2(b):
for elastic scattering there are five distinct plane waves
with the same energy E = −2κ cos q+qv = πv/2 defined
by the incoming wave packet, three with positive and the
other two with negative group velocities (in the labora-
tory reference frame). The scattering potential transfers
power from the incoming wave to the other four waves,
resulting in break up of reflected and transmitted wave
packets after the interaction. For a fast-drifting poten-
tial [v = 2.1κ, Fig.2(c)], there is clearly no reflection
and the wave packet fully crosses the scattering poten-
tial. However, as compared to the propagation in the
homogenous lattice, i.e. with V = 0, the transmitted
wave packet is slightly distorted and delayed, as one can
see from the right panel of Fig.2(c). Such a result in-
dicates that, while the fast-drifting potential is reflec-
tionless, it is not invisible. Note that in the continu-
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ous limit of the Schrödinger equation, i.e. for long wave-
lengths (q → 0), the dispersion relation (6) is replaced by
E(q) ≃ κ(q+ v/2κ)2 − 2κ− v2/4κ, which is obtained by
letting cos q ≃ 1−q2/2. Note that the dispersion curve is
now parabolic, like in the stationary case v = 0, the drift
of the potential corresponding to a shift of the minimum
of the parabola. Since the elastic scattering condition
E(q) = E shows two roots, corresponding to waves with
opposite group velocities, reflection of the drifting poten-
tial is thus restored in the continuous (long wavelength)
limit.
Given the fact that any rapidly drifting potential (either
Hermitian or non-Hermitian) on a lattice becomes reflec-
tionless, a natural question arises, namely: are there po-
tentials on a lattice that are also invisible? For wave scat-
tering in continuous media, recent works have shown that
a wide class of non-Hermitian potentials that satisfy the
spatial Kramers-Kronig relations can behave as unidi-
rectionally or bidirectionally invisible potentials [13–17].
The reflectionless property of Kramers-Kronig optical
potentials stems from the fact that a complex poten-
tial V (X), for which the real and imaginary parts are
related each other by a Hilbert transform, has a one-
sided Fourier spectrum, and thus for one incidence side
any scattered wave, at any order, has a wave number
which can not become smaller than the one of the inci-
dent wave. In a continuous medium, this implies the ab-
sence of reflection. Regrettably, in a lattice with broken
continuous translation symmetry and a periodic energy
band the reflectionless property of Kramers-Kronig po-
tentials at rest fails, because an increase of wave number
can correspond to a sign change of the group velocity
(Bragg scattering assisted by the crystal momentum).
We now prove that, when the Kramers-Kronig potential
drifts with a velocity v > 2κ, it becomes invisible. To
this aim, let us consider a drifting potential at a speed
v > 2κ, so that there are not reflected waves. The asymp-
totic solution to Eq.(5) is thus of the form

a(X) ∼

{

exp(iqX) X → −∞
t(q) exp(iqX) X → ∞

(7)

where t = t(q) is the transmission coefficient. An invisi-
ble potential corresponds to t(q) = 1. For an Hermitian
potential |t(q)| = 1 for power conservation, however the
phase of t can vary with q, leading to beam distortion,
delay or advance [see for example Fig.2(c)]. Let us now
assume that V (X) is holomorphic in a half part of the
complex plane X = ξ + iδ (either upper δ ≥ 0 or lower
δ ≤ 0 half plane), i.e. V (X) does not have poles nor
branch cuts in a half part of the complex plane. This
is equivalent to say that the real and imaginary parts
of V (X) are related each other by a Hilbert transform,
i.e. by spatial Kramers-Kronig relations. For a meromor-
phic function, we assume that the sum of residues of
V (X) vanishes. Such a condition ensures that the po-
tential vanishes at infinity sufficiently fast and the scat-
tering states are plane waves [14]. The transmission co-
efficient can be determined by the method of imaginary

displacement, i.e. by integration of Eq.(5) on the hor-
izontal line Γ of the half complex plane of analyticity
of the potential. The parametric equation of the line Γ
is X = ξ + iδ0, with δ0 fixed and −∞ < ξ < ∞. The
method is illustrated in Ref. [17]. Since the transmission
coefficient t does not depend on δ0, one can take the
limit |δ0| → ∞. For large displacement |δ0| the potential
V (X = ξ + iδ0) on the line Γ vanishes uniformly over ξ,
so that there is not scattering at all and t(q) = 1. This
proves that the drifting Kramers-Kronig potential is in-
visible. We checked the above theoretical prediction by
direct numerical simulations of coupled mode equations
(2) in the laboratory reference frame. As an example,
Fig.3 shows numerical results of beam propagation on
a waveguide lattice scattered off by a Kramers-Kronig
potential described by a meromorphic function with a
fourth-order pole, namely V (n) = V0/(n + iα)4 with
V0 = 3κ and α = 1. The real and imaginary parts of
the potential are depicted in Fig.3(a). Note that the real
and imaginary parts of the potential have opposite par-
ity and the potential is PT symmetric, with balanced
gain and loss regions around n = 0. A discretized Gaus-
sian beam, tilted at half the Bragg angle, excites the
array at the entrance plane z = 0 like in Fig.2. For a
stationary potential, i.e. for v = 0, the beam is almost
completely reflected [Fig.3(b)], indicating that, contrary
to what happens in continuous media [13], in a lattice
a stationary Kramers-Kronig potential is not reflection-
less. A similar behavior is found for a drifting potential
at a velocity smaller than the critical velocity [Fig.3(c)].
For a drift velocity v > 2κ, the potential does not reflect
anymore the incident beam, which is transmitted as if
there were not at all any potential [Fig.3(d)]: this is a
clear signature that the potential is invisible.
In conclusion, scattering of discretized light in pho-

tonic lattices by a drifting optical potential shows a very
intriguing behavior which is related to the broken con-
tinuous translational invariance of the lattice. Unlike for
scattering in a continuous medium, in which Galileian in-
variance ensures that a transverse drift does not modify
the scattering properties of the potential, any arbitrar-
ily shaped potential transversely drifting on a lattice at
a speed larger than the maximum one allowed by the
light cone of the lattice band becomes reflectionless. We
also showed that non-Hermitian Kramers-Kronig poten-
tials [13] drifting on the lattice behave as invisible poten-
tials, while they are reflective at rest contrary to what
happens in a continuous medium. Our results disclose a
very different behavior of light scattering in continuous
versus discrete optical media and provide a new twist for
the synthesis of reflectionless and invisible potentials on
an integrated photonic platform.
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