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1 Introduction

The design and development of modern embedded systems 
is a complex and challenging activity that requires a careful 
and detailed analysis of all involved components. The 
system-to-be must be strictly aligned with the elements it 
needs to interact with, and with the context in which it will 
operate; strong timing constraints may further complicate 
the design. Early verification of design artifacts thus 
becomes an essen-tial activity to foster consistency, 
correctness, and integrity. However, the verification of such 
design models is challeng-ing: the adoption of formal 
methods in industry is far from widespread, and these 
models are often incomplete—which can introduce further 
challenges for automated analysis.

One of the main reasons for the scarce adoption of for-
mal methods is the lack of the necessary mathematical 
back-ground, as well as the lack of robust and user-friendly 
tool support [45]. Following [8], many existing research 
efforts (e.g., [13,28]) have tried to shield mainstream model 
design-ers from the complexity of formal methods. The 
majority of these approaches provide an automatic 
translation mech-anism from models expressed in a flavor 
of UML (which is one of the most widely used system and 
software modeling languages) to a rigorous notation 
suitable for formal analy-sis. The main limitation of the 
aforementioned approaches is that each approach typically 
only focus on a single UML diagram or on a limited subset 
of the design notation.



2 Preliminaries

2.1 MADES project

The proposed approach to model-driven formal verification,
developed in the context of the MADES project [4], aims to
improve current practice in the development of embedded
systems. The proposed approach is holistic in that it covers
all phases of the development lifecycle, from design to code
generation and deployment.

MADES makes several key contributions in the area of
model-driven development of embedded and real-time sys-
tems. First, a dedicated modeling language was developed as
a coherent subset of the OMG’s UML and MARTE. Second,
MADES supports the formal verification of key properties on
designed artifacts as well as for closed-loop simulation based
on detailed models of the environment. And third, code gen-
eration and code refactoring techniques have been devised,
with features for compile-time virtualisation [22] of com-
mon and non-standard hardware architectures. A conceptual
model of the inter-relationships between the key activities
and their components in the MADES approach is shown in
Fig. 1.

In more detail, the main contributions of MADES are the
following:

1. The modeling component of MADES proposes a dedi-
cated notation for modeling embedded systems.

2. The verification component of MADES focuses on pro-
viding formal verification and simulation support for the
development of embedded systems; the verification of

Fig. 1 MADES approach: overview of the key activities

The approach presented in this paper attempts to overcome 
the aforementioned limitations by supporting on-demand, 
automatic, and transparent model verification and closed-
loop simulation of a wide range of UML diagrams, without 
the need for comprehending the complexities of the math-
ematical formalisms behind the approach. The aim is to 
provide designers with a tool that seamlessly extends their 
preferred design notation with formal verification capabili-
ties. Automatic verification can be exploited at any stage of 
the development process, and works with the entire system 
model, a segment of it, or even a partial model implementa-
tion.

The proposed solution comprises three parts. As for the 
design notation, the MADES UML notation integrates a sub-
set of UML and elements from MARTE [32] (the UML  
profile for Modeling and Analysis of Real Time and Embed-
ded systems). This notation provides designers with a sub-
stantial and consistent set of modeling elements to model 
the system-to-be, and each element is ascribed with a for-
mal semantics that enable formal verification. The formal 
representations of designed models are obtained automati-
cally and allow the designer to verify designed models in 
isolation, through model checking, and to simulate (vali-
date) the system within a Modelica [21] specification of the 
environment.

The proposed solution combines several existing and 
mature technologies. On the verification side, it exploits 
state-of-the-art model-checking technology to provide deci-
sion procedures tailored to the project domain. By exploit-
ing domain abstractions and model fragments, designers can 
define properties at a level of abstraction close to their domain 
and they can ignore the underlying formalism. Model-to-text 
transformation via the Epsilon Generation Language [37]is 
an enabling technology that underpins our framework. The 
model-to-text transformations support the verification tasks 
by allowing system models to be mapped to the language 
required by Zot [35], the verification technology used by our 
solution. Counterexamples generated by the verification tool 
are mapped back onto the model elements to help identify 
potential sources of errors.

This paper builds on the work presented in [36]; it 
extends the latter by introducing new features of the MADES 
approach, most notably closed-loop simulation and the trace-
ability of the results of the verification phase back to the 
original model; in addition, it illustrates some of the formal 
details underlying the MADES approach to Verification and 
Validation of UML models.

The paper is structured as follows: Sect. 2 presents the 
background of the proposed approach. Section 3 introduces 
the verification and simulation (validation) solutions fostered 
by MADES, while Sect. 4 illustrates them on a pair of exam-
ples. Section 5 summarizes the related work, and Sect. 6 
concludes the paper.



key properties of the designed artifacts include, for exam-
ple, whether a system will meet a specified deadline, or be
able to support a specified volume of data; the simulation
of the closed-loop system is based on detailed Model-
ica models of the environment for functional testing and
early validation.

3. The software generation component provides the facili-
ties for generating platform-specific embedded software
from architecturally neutral software specifications; this
is achieved using a novel technique of compile-time vir-
tualisation to smooth the impact of the diverse elements
of modern hardware architectures and cope with their
increasing complexity.

Within the MADES project, all of the aforementioned
aspects are fully supported by prototype tools integrated in a
single framework. The intention is to have them thoroughly
validated on real-life case studies in the surveillance and
avionic domains.

More details about the MADES approach can be found
at [29]. This paper mainly focuses on the verification and
simulation aspects.

2.2 MADES notation

The MADES modeling notation was defined to simplify the
complexity of UML and MARTE, making it consistent and
usable for industrial users. In this section we provide a brief
overview of the language, focusing on the parts that are most
relevant for the verification and simulation activities.

MADES models can be built by assembling different dia-
grams. Class diagrams provide the static definitions of the
elements in the system. Attributes and method parameters
can be defined over the integers, the reals, and any of their
finite subsets. For verification purposes there are limits on
how these types are combined; more precisely, the decision
procedures that are implemented in the tools on which the
MADES verification approach is built cannot handle real
numbers and unbounded integers at the same time. Class dia-
grams can also introduce clock types to constrain the timed
behavior of components [2,32]. A class can be associated
with a clock type to indicate that there is a single clock for
all the instances of a class. Object diagrams contain all the
instances of the classes and all the clocks. Dedicated clocks
can be associated with specific objects; these associations
override those defined in the class diagrams.

State diagrams are used to describe the behavior of the
system objects to be analyzed. Each diagram comprises a set
of states linked by transitions labeled with

〈tr igger, guard, action〉
The tr igger is an event, the guard is a Boolean condition
that is evaluated when the trigger occurs, and the action is

another event happening when the tr igger if the guard is
true.

Sequence diagrams describe partial behaviors of the sys-
tem. They describe the messages exchanged among the
objects defined in the object diagram and may also define time
constraints, introduced through the �TimedConstraint�
stereotype, which state metric timing relationships between
events of the Sequence diagram. The messages should be
instances of the operations defined in the objects’ classes.
Interaction overview diagrams (IOD) constitute a high-level
structuring mechanism used to compose Sequence diagrams
through standard operators such as sequence, iteration, con-
currency or choice [6]. MADES UML uses Sequence dia-
grams to describe aspects of the system behavior and then
composes these individual diagrams using IODs.

The different diagrams share a common set of events. Sig-
nals, beginnings and ends of messages, clock ticks, execution
occurrences of Sequence diagrams, and states entered and
exited are only some examples of all the events considered
in MADES language; the reader can refer to [7] for a com-
plete discussion. Shared events allow the different views to
communicate. For example, a transition in a State diagram
can be triggered by an event originating from a Sequence dia-
gram, and the resulting action can be a signal that is sensed
by an IOD. This is the case for the simple example sys-
tem of Fig. 2. According to the IOD, the system starts from
sequence diagram SD1 of Fig. 2c. This diagram generates
event noti f y.start , which is sensed by the State diagram
and in turn activates the Reaction (a signal) of the IOD,
after remaining in state process for at least the last 2 time
units (including the current one). This signal is connected
through a control flow to SD2. In addition, the State diagram
sends an acknowledgment back to object a after triggering
the reaction. The execution of the system terminates after the
end of SD2.

Note that noti f y is a method of class B that requires an
integer (k) as parameter. The timing constraint of SD1 states
that the execution of the sequence processing on object b
takes exactly 3 time units (m Noti f y and m Ack are the names
of the two messages in Fig. 2c).

2.3 Formal semantics

Verification and validation of MADES models is achieved
by automatically translating them into a suitable formal rep-
resentation. The underlying formalism used to enable for-
mal verification is temporal logic. Temporal logic descrip-
tions of systems consist of sets of predicates and axioms.
The predicates correspond directly to the elements of the
MADES models. The axioms describe how different ele-
ments are related to each other, effectively representing the
actual semantics of MADES models.



Table 1 TRIO-derived temporal operators

Operator Definition

Past(F, t) t ≥ 0 ∧ Dist(F,−t)

Futr(F, t) t ≥ 0 ∧ Dist(F, t)

Alw(F) ∀d : Dist(F, d)

Lasted(F, t) ∀d ∈ (0, t] : Past(F, d)

Lasts(F, t) ∀d ∈ (0, t] : Futr(F, d)

WithinP(F, t) ∃d ∈ (0, t] : Past(F, d)

WithinF(F, t) ∃d ∈ (0, t] : Futr(F, d)

Since(F, G) ∃d > 0 : Lasted(F, d) ∧ Past(G, d)

Until(F, G) ∃d > 0 : Lasts(F, d) ∧ Futr(G, d)

the standard model of the non-negative integers N as a dis-
crete time domain. For convenience, in specifying formu-
lae, TRIO defines a number of derived temporal operators
from the basic Dist through propositional composition and
first-order logic quantification. Some of the more signifi-
cant ones, including those used in this paper, are shown in
Table 1.

TRIO specifications of systems consist of basic predicates
and arithmetic temporal terms representing elementary phe-
nomena of the system. The system’s behavior over time is
described by a set of TRIO formulae, which state how the
predicates are constrained and how they vary over time, in a
purely declarative fashion.

TRIO specifications can be analyzed through the Zot tool
[35], a bounded model/satisfiability checker1. Zot can deal
with numeric domains such as integers or reals [9], which
can appear in MADES models. The input to the Zot tool is a
script comprising a set of TRIO formulae expressed as Lisp
statements, while its output is plain text. Given an input spec-
ification, Zot checks whether it is satisfiable or not. Using
this basic mechanism, given a target model Zot can perform
both verification of user-defined properties and simulation
tasks. In fact, in the TRIO/Zot approach checking that prop-
erty R holds for system S, where the latter is formalized by a
formula � and the former by a formula ρ reduces to verifying
that formula � ⇒ ρ is valid or, equivalently, that � ∧ ¬ρ

is unsatisfiable. Zot encodes the temporal logic formulae to
be checked into the input language of third-party solvers to
achieve its task.Zot provides encodings both for SAT solvers
and for Satisfiability Modulo Theories (SMT) solvers.

To present the proposed semantics we start with the pred-
icates defined to encode UML models, and then we provide
an overview of the axioms that formalize the meaning of the
different concepts. A more comprehensive presentation can
be found in [7].

1 http://zot.googlecode.com.

Fig. 2 An example model with three diagrams [an IOD (a), a State dia-
gram (b), and a Sequence diagram (c)] communicating through shared 
events

The semantics is decoupled from the predicates that rep-
resent model elements: one can change the semantics (and 
experiment with different solutions and alternatives) whilst 
translation from UML to the predicates remains unaffected. 
The logic-based formalization can be extended in a straight-
forward manner. Adding a new diagram type only requires 
the definition of predicates that represent its elements, and 
their associated axioms. Introduction of new predicates can 
increase the amount of detail in the temporal logic repre-
sentation of the elements. Adding more detail may result in 
specifications becoming too big for automated analyses. To 
avoid this scenario, the approach supports analysis of partial 
models by translating only diagrams of interest.

The temporal logic description of the models—completely 
hidden from the modelers—is specified in TRIO [14], a first-
order linear temporal logic that supports a metric on time. 
TRIO formulae are built using standard first-order connec-
tives, operators, and quantifiers. In addition, TRIO defines a 
single basic modal operator, Dist, that relates the current time 
(left implicit in the formula) to another time instant. Given a 
time-dependent formula F (a term that maps the time domain 
to truth values) and a (arithmetic) term t [indicating a time 
distance (either positive or negative)], the formula Dist(F, t) 
specifies that F holds at a time instant whose distance is 
exactly t time units from the current instant. Dist(F, t) is in 
turn also a time-dependent formula, as its truth value can be 
evaluated for any current time instant so that temporal for-
mulae can be nested as usual. While TRIO can exploit both 
discrete and dense sets as time domains, MADES assumes

http://zot.googlecode.com


2.3.1 Predicates

TRIO predicates are automatically generated from
MADES design models using the tool chain described in
Sect. 3. This section outlines the most relevant predicates
associated with a MADES model.

To avoid clashes in the predicate names, we exploit the fact
that every model element x has a unique identifier, which we
indicate in the following as idx .

For every clock c in a Class diagram, a temporal logic
predicate Clockidc T ick is declared, which holds every T
time units, where T is the period of c. Similarly, given a
signal s, we declare the predicate Signalids , which is true
in those instants in which s is triggered. For every opera-
tion (resp. attribute) x belonging to an object y we declare
Boolean predicate O B Jidy O Pidx (resp. arithmetic temporal
term Objidy Attridx ). Predicate O B Jidy O Pidx holds when
operation x is invoked on object y, while Objidy Attridx rep-
resents the value of attribute x of y at the different time
instants.

In MADES models, each State diagram is drawn in a class,
but it describes the behavior of the objects of the type of that
class. Hence, the predicates associated with State diagrams
refer to objects, rather than classes. More precisely, for every
state s in the State diagram of the class of object o, we declare
predicates Objido Stateids Enter , Objido Stateids Exi t and
Objido Stateids which hold, respectively, when o is enter-
ing, exiting, or is in s. In addition, if s has an invariant we
declare predicate Objido I nvariantids , which is true when
the invariant condition is true. Table 2 shows the complete
list of predicates generated from a State diagram of an
object o.

Given a Sequence diagram x , predicates SDidx Start ,
SDidx End, and SDidx are declared, which are true, respec-
tively, at the beginning, at the end, and during the dia-
gram execution. Also, predicate SDidx Stop holds if the dia-
gram terminates before reaching its end (e.g., because it is
interrupted). For every message m we declare predicates
Msgidx Start and Msgidx End that hold at the beginning and
at the end of the message. Given an execution occurrence e

Table 2 TRIO predicates associated with a State Diagram of object o

UML entity TRIO item

State s Objido Stateids Enter , Objido Stateids Exi t ,

Objido Stateids

Invariant (of s) Objido I nvariantids

Transition t Objido T ransi tionidt

Trigger (of t) Objido T riggeridt

Guard (of t) Objido Guardidt

Action (of t) Objido Actionidt

we declare predicates Ex Occidx Start , Ex Occidx End, and
Ex Occidx , with the obvious meaning. Finally, for every time
constraint c associated with a Sequence diagram we declare
predicate Constraintidc , which holds from the beginning
until the end of the execution of the interaction.

Similarly, we generate predicates corresponding to the
elements of IODs. Readers can refer to [7] for a complete
presentation.

Finally, the M ADE S_System_Start predicate defines
the time instant in which the system starts. When M ADE S_
System_Start holds, all IODs start and all State diagrams
enter their initial state.

2.3.2 Axioms

The presentation of the axioms defining the semantics of
MADES diagrams is organized according to the different
elements of the notation. For simplicity, we only present the
elements that are relevant to the examples of Sect. 4. Further
details can be found in [7].

Clocks For each clock c with period T the following axiom
holds, which states that a clock ticks iff it did not tick during
the last T − 1 time units, which implies that it ticks at times
T, 2T, 3T, . . .2:

Lasted(¬cT ick, T − 1) ⇔ cT ick (1)

Objects that are linked to a clock c either in the Class dia-
grams or in the Object diagrams run on a time base defined
by c. All events that belong to these objects can only happen
when c ticks. Given a clock c, we define the set of predicates
running on this clock as Eventsc. For every object o linked
to clock c, if there is a Sequence diagram where o sends/re-
ceives a message, the predicate corresponding to the message
start/end event is included in set Eventsc. For every predi-
cate e in Eventsc the following axiom holds, which states
that event e can occur only in those instants in which clock
c ticks:

e ⇒ cT ick (2)

The periods of clocks in a MADES specification are all
expressed in relation to a uniform ideal discrete time that
underlies the whole model. This abstract view of time is suit-
able for high-level specifications of timed systems, and it is
not intended to capture implementation-level concepts such
as the physical hardware clocks associated with computing
devices. The notion of clock in MADES UML can be seen
as an abstraction of such concepts, in that clocks can be used
to introduce periodic behaviors in the specification.

2 TRIO axioms are implicitly asserted for all time instants, hence for-
mula (1) is implicitly interpreted as “Alw(Lasted(¬cT ick, T − 1) ⇔
cT ick)”.



Sequence diagrams A Sequence diagram is defined as a set of
lifelines, where every lifeline is an ordered list of events (e.g.,
message start/end, execution occurrence start/end).Given a
lifeline l, we call Li f elineEvl the set of its events. For every
ordered pair of events i, j ∈ Li f elineEvl , if i holds at some
instant, then j will follow in the future if the diagram is not
stopped. This is formalized by the following axiom:

Evi ⇒ Until
(¬Evi ∧ ¬Ev j , SDx Stop

)

∨
Until

(¬Evi ∧ ¬SDx Stop, Ev j
)

(3)

where Evi and Ev j are the predicates corresponding to
events i and j . Also, the following formula defines that, if j
holds at some instant, then i was true in the past and no stop
occurred since then:

Ev j ⇒ Since
(¬Ev j ∧ SDx Stop, Evi

)
(4)

State diagrams The formalization in temporal logic of State
diagrams is fairly standard; therefore, we will only hint at
some of its features. Given a state s of the State diagram of an
object o, we call I ncomings (resp. Outgoings) the set of its
incoming (resp. outgoing) transitions. A necessary condition
to enter the state is that one of the incoming transitions holds
in the previous time instant:

Objido Stateids Enter

⇒ Past

(
∨

t∈I ncomings

Objido T ransi tionidt , 1

)

(5)

Similarly, the necessary condition to exit from a state is
that one of the outgoing transitions holds at the current time
instant:

Objido Stateids Exi t

⇒ ∨

t∈Outgoings

Objido T ransi tionidt (6)

Other formulae define that when object o enters state s pred-
icate Objido Stateids holds and that if o is in s and s is not
exited, it will also hold in the next instant. They are not shown
here for simplicity.

An invariant i associated with state s of object o holds in all
instants in which s is active, except the last ones before chang-
ing state (i.e., those in which predicate Objido Stateids Exi t
holds). This is captured by the following formula:

Objido Stateids ∧ ¬Objido Stateids Exi t

⇒ Objido I nvariantidi (7)

of State diagrams/Statecharts [18], we do not allow an object
to take multiple transitions of the same State diagram at the
same time instant. Finally, users can introduce cross-State
diagram constraints as a form of synchronization between
diagrams.

Time constraints Both Sequence diagrams and State dia-
grams can include time constraints between pairs of events
in the diagram (Fig. 2). A time constraint is an inequality
between two events. For example, for the diagram of Fig. 2c
the following formula holds:

SD1 ∧ m Ack ⇒ Past(m Noti f y, 3) (8)

The time constraint of transition T1 between states wait and
process of Fig. 2b, instead, is formalized by the following
formula, where tr iggerT1 is a predicate that holds when the
condition triggering T1 is true:

tr iggerT1 ⇔ Lasted(¬process Enter, 1) (9)

Time constraints are a powerful way to express the timed
behavior of the system, as shown in the examples of Sect. 4.

Attributes State diagrams can include constraints (e.g., invari-
ants) on the values of the attributes of classes. The constraints
allowed are currently of the form attr � c, where c is a con-
stant. Class attributes can have unbounded domains such as
the integers or the real numbers (though a MADES model
cannot include both real-valued attributes and unbounded
integer attributes, as the underlying decision procedures used
for verification do not allow it). To deal with this kind of con-
straints, we use the features offered by SMT solvers that are
able to handle decidable fragments of first-order logic such
as linear integer/real arithmetic.

3 Verification and validation

The MADES approach addresses the twin issues of formal
verification of properties of embedded systems designs and of
validation of closed-loop models that include both the system
under design and the (physical) environment with which it
interacts.

Verification and validation (V&V) of system designs play
a key role in the development of embedded systems from
its early phases. A formal approach to these activities can
help increase designers’ confidence in the correctness of the
developed system. A key to making formal V&V techniques
appealing in the industrial practitioners is reducing the over-
all effort associated with the process. One way to achieve
this is to hide the complexity of the formal models from
the domain experts and allow them to specify the system of
interest in a notation they are familiar with. To this end, the
MADES approach uses model transformations to provide a
seamless integration between the design and the V&V tools.

An invariant is a condition on (some of) the attributes 
declared in the class of object o.

Note that, as highlighted by the Past temporal operator 
used in formula (5) we assume that one instant of time passes 
every time a transition is taken; hence, unlike other semantics



Fig. 3 Verification workflow

We have accomplished this by means of a tool chain that sup-
ports two complementary workflows, one for the verification
of system properties, and one for closed-loop simulation.

The verification workflow (Fig. 3) has four key compo-
nents. System Modeling requires the specification of design
models using the MADES notation (Sect. 2.2). Transforma-
tion produces a formal representation of the design models
as a set of formulae expressed in the TRIO language [14].
Verification uses a model checker to perform formal proofs.
In case of negative outcomes, the tool produces a counterex-
ample. These counterexamples serve as input to Traceability,
which enables the modelers to relate detected problems back
to their source (e.g. a specific model element).

The simulation workflow (Fig. 4) is essentially based on
the same components as the verification workflow. Modeling,
in this case, comprises two parts: the embedded software
system under design and the environment in which the system
needs to operate. The latter is achieved through techniques
and tools that are typical of control systems theory, and in
particular through equations (both algebraic and differential)
described in the Modelica language [21]. The transformation
tool, in addition to producing the formal model of the system,
sets up the MADES simulation tool with the necessary files
and inputs to run the simulation. Finally, Simulation, through
a co-simulation approach, produces a trace that satisfies both
models, if one can be found.

Transformation, verification and traceability, and simula-
tion take place under-the-hood, transparently to the users,
who do not have to deal with anything beyond their domain.
The simulation tool is external to the modeling one, but it is
automatically configured and launched through suitable dia-
log boxes similar to those used to set up the verification tool.
All technologies and tools are open source and available to
the general public.

3.1 Transformation

Model transformations play a key role in the proposed
approach and are used to shield system designers from the

Fig. 4 Simulation workflow

underlying complexity of the formal verification notations
used under-the-hood. Figure 5 illustrates the internals of the
transformation tools for the two aforementioned tool chains.
The architecture of the two transformation tools is identical.
In both cases the transformation tool consists of two compo-
nents: X M I 2Java and the Java2Lisp, but their implemen-
tation as well as the input and output artifacts are different.

In the former case, X M I 2Java needs a system model
(serialized in XMI), the configuration of the validation tool
(i.e. Zot), as well as the system property to be verified. The
output is an intermediate Java representation that holds the
definition of the model along with its semantics. The second
component (Java2Lisp) uses the representation generated
by the first component to generate the formal model of the
system, which is Lisp, the notation used by Zot. Then the
formal model is passed to the verification tool to perform the
verification activity.

In the latter case, X M I 2Java just needs the system model
and the output is again the intermediate Java representation,
then used by the Java2Lisp component to generate the two
outputs of the tool: the formal model and the configuration
of the simulation tool. These two artifacts, together with the
model of the environment, are then used by the simulation
tool. In both cases, the transformation tool generates trace-
ability information (Sect. 3.3).

The X M I 2Java component of both transformation tools
is implemented using the Epsilon Generation Language
(EGL) [37], a well-established and mature template-based
model-to-text transformation language. EGL is part of
the Epsilon model management framework [27], a fam-
ily of consistent and interoperable model management
languages.



(a)

(b)

can be specified in the launch configuration of the verification
tool as well.

Once the relevant information is provided to the tool, ver-
ification can be performed. Initially, the model expressed in
XMI and the set up information are used by the X M I 2Java
component to generate a Java representation of the model.
Once this representation is generated, it is consumed by
the Java2Lisp component to generate the formal model
expressed in Lisp.When the formal model is generated, Zot
performs the verification and the results are reported back
to the user. Although this is a complex transformation chain,
everything is hidden from the designer, who only has to inter-
act with the modeling environment. The entire verification
process is fully automated with minimal user intervention
(i.e. providing a few configuration parameters).

3.2 Verification and validation

This section provides an overview of the verification and
simulation activities, of the language constructs that have
been introduced specifically for them, and of the theoretical
framework on which the simulation tool is based.

First of all, while models of industrial embedded systems
can be very large, only parts of them, typically those that
have the most stringent safety-critical requirements, need to
be verified and validated using formal techniques. This leads
to so-called lightweight formal approaches [25], where for-

Fig. 5 Transformation tools
and their inputs and outputs for
the verification (a) and
simulation (b) tool chains

Instead of utilizing the two aforementioned components 
to perform the transformation, we could have implemented 
the transformation directly from the system model to the for-
mal Zot model. However, the division of the transforma-
tion process in two steps provides a good degree of decou-
pling and independence between the UML metamodel and 
the Java primitives implementing the semantics. Thus, if 
one needs to build transformations for different semantics, 
for example to tailor them to different application domains, 
only the implementation of the Java methods executed by 
the Java2Lisp component should be modified/extended, 
leaving X M I 2Java untouched. Moreover, this decoupling 
makes the implementation of the transformations simpler and 
easier to maintain.

The configuration information comes in the form of a num-
ber of parameters, which can be specified in the launch con-
figuration of the tool. The user can specify the type of solver 
to be used by the tool (SAT or SMT), the encoding of the 
temporal logic to be used for a given solver (i.e. Zot plug-
ins) and the time bound for the verification (i.e. the maximum 
length of system executions to be analyzed).

The user must also define the property to be verified. If no 
property is provided, the system model alone is used instead. 
In this case, the verification tool looks for an execution trace 
of the system and if one exists it returns it.If instead a property 
is defined, the verification tool determines whether this prop-
erty holds for the system or not. The property to be verified



malisms are applied only where necessary. In this vein, we
introduced stereotypes to allow designers to identify those
parts of the system on which they want to focus V&V activi-
ties. These stereotypes are then taken into account during the
transformation phase, which only produces a formal model
for the tagged parts, instead of the whole MADES model.

More precisely, the �toBeVerified� stereotype is used
to tag whole packages and single containers and classes; from
�toBeVerified� elements the transformation takes the ele-
ment types, operations, attributes, and State diagrams, which
are, in a way, the backbone of the model. In addition, the
�system� stereotype is used to tag classes collecting the
objects (which are instances of �toBeVerified� classes)
which form the actual system on which V&V activities are
to be applied. From �system� containers the transforma-
tion takes, in addition to the objects composing the system
(i.e., those depicted in the Object diagrams mentioned in
Sect. 2.2), the diagrams (Sequence diagrams and IODs) rep-
resenting the interactions among these objects.

On the slice of the model identified through the
�toBeVerified� and �system� stereotypes designers
can perform verification and simulation activities supported
by the MADES approach.

Two types of verification activities are supported: con-
sistency checks and property verification. When perform-
ing consistency checking the designer feeds the verification
tool only with the slice of the system to be analyzed. In this
case, the verification tool looks for an admissible run of the
model. If it can find one, this means that the model is feasi-
ble, i.e., it has at least an execution. If no run can be found,
then the model contains some inconsistency (e.g., two objects
required to send messages at the same time to a third com-
ponent that blocks when a message is received), which must
be resolved before the system can be further developed.

Property checking is the classical verification activity
where the user defines, using a suitable formalism, a prop-
erty against which the model is to be checked (e.g. “every
time message m is sent between objects o1 and o2, state s
will be entered in object o3”). Then, the system model and
the property are fed to the verification tool, which answers
in two possible ways: either the property holds for the mod-
eled system, or there is a run of the system that violates the
property. In the latter case the tool returns a counterexample,
i.e., a system run that witnesses the violation of the property.
If the property does not hold, the user can navigate through
the counterexample produced by the verification tool using
the traceability feature of Sect. 3.3.

3.2.1 Simulation

The goal of simulation is, given models of the behavior of
the system being developed and of its environment, to pro-
duce a trace that is “compatible” with both models, i.e., that

Fig. 6 RC circuit

does not violate either model. A trace is a sequence of values
over a time interval, which correspond to the values assumed
over that time interval by a set of quantities (or variables) of
interest (physical quantities, such as temperature, velocity,
altitude, or logical ones, such as a switch being turned on or
off, etc.). Suppose, for example, that the variables of inter-
est are the temperature Tp in a room and the state St on/off
of a fan, and that the time interval is the discrete one [0, 5];
then a trace could be [〈Tp = 25, St = off〉, 〈Tp = 26, St =
off〉, 〈Tp = 27, St = on〉, 〈Tp = 28, St = on〉, 〈Tp =
27, St = on〉, 〈Tp = 27, St = on〉]. Usually, the model S of
the system and the model E of its environment are expressed
through different formalisms and using different notions of
time. Model S is typically described through formalisms such
as automata or, as in the MADES approach, logics, using
a discrete notion of time (in which case interval [0, 5] is,
as in the example above, the sequence [0, 1, 2, 3, 4, 5]); the
behavior of its physical environment E , on the other hand,
is normally described through differential equations, using a
continuous notion of time. Then, a notion of “hybrid” sim-
ulation is necessary, one that seamlessly mixes the concepts
above.

The basic premise of the MADES simulation approach is
that the system and environment models communicate with
each other through shared variables. The reference model is
essentially the one originally proposed in [23]: the system and
environment models have private variables, whose values are
not visible outside of the model itself, and also some shared
variables that are accessible to both models and are used
to communicate information between them. Each variable
belongs to a model (e.g., shared system variables belong to
the system model), which is used to compute the variable’s
value. In the MADES approach, variables can be real-valued
quantities such as a speed or an acceleration, or discrete, finite
(e.g., Boolean) signals such as a switch being turned on or off.

The dynamics of environment variables (i.e., model E)
is typically governed by differential equations or algebraic
laws, which, in the MADES approach, are expressed in the
Modelica [21] language, and use a continuous notion of time.
Model S, instead, is described through MADES diagrams,
which are ultimately translated into a formal model expressed



as a set of metric temporal logic constraints according to
the semantics presented in Sect. 2.3. The concepts that are
needed to create a simulation model, such as the identification
of what constitutes the “environment” and the shared vari-
ables, are introduced by designers through suitable MADES
stereotypes.

To illustrate the features of the simulation mechanisms in
MADES we will use throughout this paper a simple example
of system that monitors and controls the RC circuit depicted
in Fig. 6. The system reads the voltage on the capacitor, and,
when it detects that the voltage has remained below a cer-
tain threshold for “long enough”, it increases the voltage
commanded by the generator and keeps it “high” for a cer-
tain amount of time. The elements of the MADES model
are depicted in the Class diagram of Fig. 7; class Env cor-
responds to the RC circuit, which is the “environment” of
the controller application that is being designed. The val-
ues of the voltages (the monitored one and the commanded
one) are represented through attributes of the Env class.
These attributes are of type double to indicate that they are
real numbers. The controller application has two elements: a
monitor component, which reads the voltage on the capacitor,
and a controller component, which commands the voltage of
the generator depending on the information it receives from
the monitor and realizes the control strategy. As Fig. 7 shows,
in this case the whole model Simulation RC Example is to
be considered for the simulation, so it is tagged with the
�toBeVerified� stereotype. To indicate which class con-
tains the definitions of the relevant objects and interactions,
class System is tagged with stereotype �system�.

Fig. 8 Object diagram for the RC system

Class Env encapsulates the Modelica model, and as such it
is tagged with the MADES stereotype
�environment�. Its attributes c_volt and in_volt are
the variables that are shared between the system and the
environment models; c_volt and in_volt are the names
through which these variables are referred to in the Mod-
elica model. Dually, mon_c_v and volt_cmd are the corre-
sponding names used to indicate these variables in the system
model (i.e., they are essentially synonyms used in the system
model to refer to c_volt and in_volt). To state this correspon-
dence in the MADES model, we use stereotype �shared�
in the Object diagram. More precisely, since shared variable
c_volt of object e of Fig. 8, which is an instance of class
Env of Fig. 7, corresponds to variable mon_c_v of object m,
a link between objects e and m is drawn; the link is tagged
with the �shared� stereotype and its roles have the names
of the variables that correspond to each other. The direction
of the link, which points to the “owner” of the variable, indi-
cates whether the variable belongs to the system (i.e., it is a
system shared variable, as volt_cmd) or to the environment
model (i.e., it is an environment shared variable, as c_volt).

Fig. 7 Class diagram for the
RC system



To illustrate how shared variables can be used in MADES
diagrams, let us focus on the state diagram for the Monitor
component, which is shown in Fig. 9. The diagram states that
the component remains in state High as long as the value of
the monitored voltage of the capacitor mon_c_v is > 6 V.
This is captured by the invariant constraint mon_c_v >

6 associated with the state. As formalized in Sect. 2.3, the
invariant must hold in all instants in which the component is
in state High, except the last one, when the state is exited.
When the voltage goes below the threshold, the component
moves to state Low, as indicated by the trigger condition on
the transition between the two states. One instant after having
entered state Low, the component moves to state Wait_Act ,
where it stays for at most 2 instants, and then it changes
to state Act . When transitioning to state Act , the monitor
triggers the reaction of the system by activating Sequence
diagram Act Detect_Sq D (see Sect. 4.2). Six time units after
having been in state Act the monitor component moves to
state High or Low depending on the value of the monitored
voltage.

Section 4.2 shows the rest of the model of the RC system,
and an example of simulation for the example system. The
theoretical underpinnings and the algorithm of the MADES
simulation approach can be found in [5].

3.3 Traceability

The transformation tool, which acts as the “glue” between the
other components, generates traceability information, which
can be used to check and maintain the consistency of the rel-
evant artifacts. Moreover, such traceability information can
be used to create a conceptual link between the different rep-
resentations of the same concepts such as elements in the
MADES UML model and in the formal model generated by
the transformation tool.

In the approach presented in this paper, traceability sup-
port is provided between the following artifacts:

– Input MADES UML model and textual output of Zot,
that is, traceability information relates the result of the
verification back to the input system model;

– Input MADES UML model and set of Java primitives
generated by the X M I 2Java component of the trans-
formation tool. This information is captured mainly for
debugging and accounting purposes.

Next, we provide a brief summary on how the traceability
mechanism is implemented in MADES.

The traceability support of the proposed approach is illus-
trated in Fig. 10. The generated trace can be used to support
backward and forward traceability between the original sys-
tem model and the textual output of the verification tool.
When the formal model is generated by the transformation
tool, an additional internal file is generated, which contains
tuples of the form 〈 string id, XMI id 〉. The first element of
the tuple is the unique string identifier which is used in the
formal model for the various model elements. This identi-
fier is also used by the verification tool when it generates the
results of the verification. The second element of the tuple
is the XMI identifier from the source MADES UML model.
The traceability tool of the tool chain links the two artifacts
by accessing the list of tuples. When the user navigates from
the textual output of Zot to the source model, the tool finds
the tuple which contains the string identifier of interest and
then retrieves the XMI identifier of the model element. In a
similar manner, when the user navigates from the MADES
UML model to the textual output of Zot, the tool finds the
tuple, which contains the XMI identifier of interest and then
it retrieves the string identifier of the textual output.

To visualize the various relationships between the two arti-
facts, we built a dedicated user interface (Fig. 11). This inter-

Fig. 9 State diagram for class Monitor



Fig. 10 Traceability support
for MADES V&V tool chain

Fig. 12 Cassidian surveillance Radar

4 Assessment

This section presents the application of the MADES verifi-
cation and validation solutions on two examples. The first
demonstrates the use of formal verification (in the form of
consistency checks) on an industrial case study provided by
Cassidian3. The second demonstrates the use of simulation
onto the RC system introduced in Sect. 3.2. We use two sep-

3 http://www.cassidian.com.

Fig. 11 Traceability interface

face is divided in two areas. The source model is shown on 
the right-hand side, while the textual output of the verifi-
cation tool is shown on the left-hand side. The two areas 
are navigable through a hyperlink system. For instance, 
selecting a string identifier in the output file on the left 
highlights the corresponding model element in the source 
model.

In addition to the traceability support discussed above, 
experienced users can also have access to traceability infor-
mation for the intermediate artifacts of the transformation 
chain. That is traceability information between the source 
MADES UML model and the intermediate Java representa-
tion, which is generated internally in the tool. This traceabil-
ity information is generated automatically by the transforma-
tion tool utilizing the fine-grained traceability mechanisms 
provided by the model-to-text transformation language and 
tooling used, namely EGL and the Epsilon framework. This 
traceability information can be used by an experienced user 
of the tool to gain a deeper understanding of how exactly 
the formal model is created (i.e., which parts of the formal 
model are generated by specific parts of the MADES UML 
model) and therefore understand better the results of the 
verification.

http://www.cassidian.com


Fig. 13 External behaviour of the radar system

arate examples to illustrate the features of the MADES veri-
fication and simulation tools to better focus on the features of
each technique. The two case studies witness the flexibility
of the MADES solutions.

4.1 Verification

The case study addresses a ground-based surveillance radar
system, presented in Fig. 12, and focuses on the Radar
Processor.

The example system was chosen to compare the MADES
approach against the current state of practice within the com-
pany. Since formal verification of UML models is not estab-
lished as standard practice of the company, the case study
showed how such an activity can be carried out, thanks to
the flexibility of the MADES approach, without significantly
impacting on the modeling style already in use. The case
study also showed how the MADES verification approach
can be used to enhance the current practice of the devel-
opment of complex systems, where a common approach is
the top-down refinement of the structure and allocation of
functions to the resulting architectural elements (subsystems,
software, hardware). In this approach, the development of the
architectural elements is carried out by different teams, based
on a functional specification. When integrating the architec-
tural elements to sub-systems and systems, it happens reg-
ularly that the elements completely fulfill their functional
specification, but they do not work together. Therefore, not
only the structure, but also the behavior of the system, i.e.
the interaction between the architectural elements, must be
refined. When dealing with embedded real-time systems such
as radar processors, it is essential that after each refinement
step the behavior still respects the constraints that arise as
a consequence of the available processing power, interface
bandwidth, etc. The case study showed how the MADES
formal verification approach can be used to support this step.

The pre-existing model, which was created using UML
1.4 according to the procedures described in [10], was re-

engineered using the concepts and new stereotypes provided
by the MADES notation [3]. The model was not significantly
altered to make it verifiable by the MADES tools; instead,
the MADES notation allowed designers to add precise timing
constraints that were not previously expressible, and thus not
analyzable.

The model includes many packages4, each addressing a
separate issue related to the development of the target system.
Not all packages and classes are needed for the verification
activity; those that are to be included in the formal model
for verification were tagged with the �toBeVerified� and
�system� stereotypes introduced in Sect. 3.2.

The radar system reacts to stimuli from its environment
and in response to them performs respective computations
and produces suitable outputs within prescribed time bounds.
Cassidian’s development process calls for defining a first,
“external” view of the system through a Sequence diagram
(Fig. 13a), which captures the reaction mechanism described
above. To represent the fact that the computation is trig-
gered by an external stimulus, we introduce the IOD of
Fig. 13b, which describes it: when data are received from the
radar antenna, the radar processor system reacts by perform-
ing its computation. The “external” behavior has a timing
requirement, which is represented by the following constraint
applied to the Sequence diagram of Fig. 13a:

@ProcessRadarDataExternalBehavior.exit -
@ProcessRadarDataExternalBehavior.enter <= 50

(10)

The high-level external behavior of Fig. 13 is realized
through a sequence of messages exchanged by the com-
ponents of the radar processor system. The details of this
sequence are captured by a further Sequence diagram that
refines the one of Fig. 13a. Figure 14 shows the elements of
a possible software-based architecture of the radar process-
ing system, and their interactions. As Fig. 14a shows, other
solutions for the system have been designed, though they are

4 Interested readers can refer to [11] for the details omitted in this paper.



Fig. 14 Package containing the elements composing the system (a) and corresponding Sequence diagram (b)

Fig. 15 Architecture of component T hresholding (a) and the interaction among its parts that achieves the thresholding computation (b)

The architecture of Fig. 14a is further refined in the com-
ponents shown in Fig. 15a. In particular, each of the com-
putations performed by the objects of Fig. 14b is expanded
in its own Sequence diagram, which represents the interac-
tions occurring within the objects to achieve the computation.
For example, Fig. 15b shows the interaction among the parts
of component T hresholding that achieve the computation
whose input and output messages are depicted in Fig. 14b. As
before, suitable timing constraints are added to the various
interactions to link their events. For example, the following
constraint of the interaction of Fig. 14b states that the com-
putation of Fig. 15b starts when message m_dopres, cor-
responding to the invocation of operation DopResult from
object dop1 to object thres1, is delivered to the latter.

@m_dopres.stop - @ProcessDataThresholding.enter = 0

not dealt with in this paper. We use MADES timing con-
straints to link the events of the high-level Sequence diagram 
of Fig. 13a to the corresponding ones of Fig. 14b. More pre-
cisely, the following constraint of the Sequence diagram of 
Fig. 13a states that the interaction of Fig. 14b starts when 
message prd (which corresponds to the invocation of oper-
ation Process Radar Data) ends.

@prd.stop - @ProcessRadarDataRealisation1.enter = 0

Dually, the following constraint of the Sequence diagram 
of Fig. 14b states that it terminates exactly when the interac-
tion of Fig. 13a also terminates [hence, the latter cannot last 
more than 50 time units, due to constraint (10)].

@ProcessRadarDataRealisation1.exit -
@ProcessRadarDataExternalBehavior.exit = 0



The model of the radar processor system outlined in
Figs. 13, 14 and 15 has been checked for consistency through
the MADES formal verification tool. More precisely, we used
the tool to determine whether the system model admits some
executions or not. If this does not occur, the most likely rea-
son is that constraint (10) is too stringent given the sequence
of computations that are necessary to process each batch of
input data from the antenna. In fact, the semantics associated
with Sequence diagrams is such that events along the same
lifeline occur at separate instants of time, so an interaction
such as the one of Fig. 15b takes a non-null time that, when
considering also the time it takes to complete with the other
computation steps depicted in Fig. 14b, creates a contradic-
tion with constraint (10).

The check was performed in an incremental fashion, by
exploiting tags �toBeVerified� and �system� to isolate
the parts of the MADES model to be analyzed, starting from
a basic model that included only the first level of refinement
(i.e., the diagrams of Figs. 13a, 14b), then adding the details
of the components of Fig. 15a.

Initially, the MADES verification tool was fed with the
model consisting of essentially the diagrams of Figs. 13 and
14b, with the time bound in constraint (10) equal to 20 instead
of 50. When only these elements were considered, the tool
determined that the model was indeed satisfiable.

If, however, the details of the components of Fig. 15a were
included, the limit of 20 time units to complete the processing
was not feasible, because of the actual time to perform the
various computations as modeled in the Sequence diagrams
such as the one in Fig. 15b. In this case, setting the time
bound of the whole computation to 50 as in constraint (10)
was enough to make the model satisfiable.

Verification5 took a time that ranged from few minutes
(20, to check the consistency of the high-level model with
time bound 20), to few hours (almost 3 for the check of the
complete model with time bound 50). While the duration of
the checks was at times considerable, the application of the
MADES approach to the Cassidian case study gave encour-
aging results, as it allowed us to gain better insight into the
modeled system. Improving the efficiency of the verification
tool is part of our future work.

4.2 Simulation

This section shows the capabilities of the MADES simu-
lation tool through the RC example system introduced in
Sect. 3.2. Figure 16 shows the Modelica model of the circuit
of Fig. 6. The Modelica model of the environment and the

5 The verification was carried out on a desktop computer with a 2.8GHz
AMD Phenom™II processor and 8MB RAM; Zot was configured to
use the SMT-based smteezot plugin, and the solver was Microsoft
Z3 3.2. The bound on the length of the traces sought was 100.

Fig. 16 Modelica model of the RC circuit

UML model of the system are created separately; the stereo-
types described in Sect. 3.2 are then used to link the two
models together for their co-simulation. The Modelica UML
profile [39] may provide an interesting way to foster a tighter
integration of the two models.

In addition to the diagrams shown in Figs. 7, 8 and 9, the
MADES model of the software controller of the RC circuit
includes the Sequence diagram of Fig. 18 and the State dia-
gram of class Controller , which is shown in Fig. 17. The
Sequence diagram of Fig. 18 is activated any time the moni-
tor object, whose behavior is governed by the State diagram
of Fig. 9, moves from state Wait_Act to state Act , as indi-
cated by the action on the transition between the two states.
The Sequence diagram describes the interaction between the
monitor and controller objects, which consists simply of the
monitor invoking operation act_detect on the controller. A
�TimedConstraint� associated with the diagram imposes
that the message is sent when the interaction starts (i.e., when
the State diagram of the monitor object takes the transition
from Wait_Act to Act). The State diagram of Fig. 17 shows
that, before the controller receives an invocation of opera-
tion act_detect (i.e., while in state I dle), it keeps the volt-
age that is input to the RC circuit low (in the [0, 2] range,
as stated by the invariant on the state). The invariant does
not fix exactly the value of the commanded voltage, but it
only sets a range within which the simulator can arbitrarily
choose a value when generating the trace. Upon receiving an
invocation of operation act_detect , the controller moves to
the preparatory state Wait , where it stays until 1 time unit
has elapsed since entering the state. While in state Wait , the
controller keeps the commanded voltage in an intermediate



Fig. 17 State diagram for class Controller

old again, it sets the commanded voltage back to a value in
the [0, 2] range.

In this case the simulator was able to produce a trace
that is compatible with both the system and the environ-
ment models. It can occur that the tool is not able, after
exhausting the backtrack depth set by the user, to produce
a combined trace. While this is not a proof that the closed-
loop system is infeasible, as the simulator does not per-
form and exhaustive exploration of the space of the traces
of the system, it is nonetheless an indication that there might
be a problem with the designed system which ought to be
investigated.

For example, in an earlier version of the model of the
RC controller the Sequence diagram of Fig. 18 stated that
the controller object remained blocked and unable to receive
new operation invocations for some instants after an invo-
cation of act_detect . At the same time the State diagram
of Fig. 9 stated that the monitor component re-checked the
value of the capacitor voltage immediately after invoking
operation act_detect , which clashed with the blocking of
the controller. In fact, as the capacitor voltage did not have
time to grow past the desired threshold, this entailed a new
invocation of operation act_detect , which was however not
possible. In this case the simulator was not able to produce a
trace of the closed-loop system, which led us to change the
controller logic.

5 Related work

Our approach builds upon research conducted in different
and heterogeneous areas such as semantic foundations of
UML, model checking as well as Model-Driven Engineering
(MDE). In the following, we will highlight the most influen-
tial work, which is related to the proposed approach.

Fig. 18 Sequence diagram for the simulation example

range of [2, 4] volts. After the stated amount of time elapses, 
the component transitions to state React , where it stays until 
6 time units have elapsed, and in which the commanded volt-
age is raised in the [9, 11] range. Then it moves back to state 
I dle, and the loop restarts.

Figure 19 shows the dialog box for launching the simula-
tion on the MADES and Modelica models of the RC system 
and its environment. As the Figure shows, the user indicates 
which models are to be used, and the tool generates the for-
mal model from the MADES one, sets up the simulation 
tool, then launches the simulation tool itself, and opens it in 
a separate window. Trough the simulation tool GUI the user 
can set up some simulation parameters, such as the sampling 
interval, the simulation horizon, and the backtrack depth (see 
[5] for further details), then launch the actual simulation. The 
tool implements the algorithm described in [5], and (possi-
bly) produces a trace, such as for example the ones depicted 
in Fig. 20, which shows the traces of the monitored and of 
the commanded voltages. As the figure shows, the controller 
reacts in full force a few instants after the capacitor volt-
age has dipped below the threshold of 6 V; when it reacts, 
it increases the commanded voltage in the [9, 11] range for 
several instants; then, as the voltage has gone over the thresh-



Fig. 19 Dialogue box for launching the simulation

5.1 UML semantics

Many earlier versions of UML explained the semantics of
the language in English; more recent revisions (e.g., UML
2.5) as well as recent developments such as fUML are moving
towards a more mathematical semantics, though largely these
efforts are not focusing specifically on support for formal
verification. As a result formal analysis of UML models is
difficult, and ascribing formal semantics to UML to support
formal analysis has been a very active area of research. The
majority of the existing approaches propose the manual or
automatic translation of various UML diagrams or elements
to well-established formalisms such as Petri nets, Z or timed
automata. For example, Evans et al. [19] translate UML class
diagrams to the Z notation and then they utilize it to reason
about the properties of the model. There are other examples
(e.g. [17,42,44]) that propose the transformation of specific
UML diagrams (e.g. class diagrams, state machines, etc) to
a flavor of Z.

Another strand of research attempts to formalize aspects
of UML by translating UML diagrams to Petri nets. Ham-
mal [24] provides a formalization of UML statechart dia-
grams by translating them into Interval Petri Nets (ITPN),
thus enabling the analysis of the performance and of the
time properties of the system. Similarly, [40,41] propose
a mapping of activity diagrams onto Petri nets. Saldhana
and Shatz [38] use collaboration diagrams to connect stat-
echarts and then they derive an Object Petri Net of the sys-
tem. This is the enabler to apply standard techniques for Petri
nets.

A third approach to the formalization of UML utilizes
timed automata as underlying formalism. Vooduu [16] can
be used to verify whether a set of statechart diagrams satisfy a

time constraint expressed as a sequence diagram. To perform
the verification both types of models are translated into timed
automata. Again, [12] models the static and dynamic behav-
ior of a system using statechart diagrams, then formalized in
terms of hierarchical timed automata.

One major limitation of the aforementioned approaches is
that they concentrate on a single type of diagram. Therefore,
they neglect the problem of integrating different structural
and behavioral diagrams to get a more holistic view of the
system. Moreover, the approaches that utilize Petri nets suffer
from the limitations of this formalism such as the explosion
of resulting nets and the inability to distinguish between types
and instances.

Also the Object Management Group (OMG) has recently
released the fUML specification [31], which consists of a
subset of UML2 as well as the execution semantics for
this subset. The execution semantics of fUML is given in
terms of first-order predicates or axioms over possible exe-
cution traces. Although the adopted formalism is appropriate
for model execution, it is not appropriate for formal veri-
fication of user-defined properties. The semantics of time,
concurrency, and inter-object communication is neglected,
while many of the high-level diagrams of UML are not
covered.

5.2 Model-driven transformation of UML models

With the advent of Model-Driven Engineering (MDE), the
translation from UML models to formal representations has
become easier, since novel technologies have been developed
to assist the automatic transformation and manipulation of
models.



Fig. 20 Results of the
simulation of the RC system:
monitored capacitor voltage (a)
and commanded voltage (b)

ing the engineers to move from abstract system models to an
executable platform.

The main focus of the MARTES [1] project is on the
efficient and combined use of UML and SystemC for the
systematic model-based development of real-time embedded
systems. The project adopts ideas from MDA and aims to
provide viable means for the definition, construction, exper-
imentation, validation, and deployment of embedded appli-
cations on heterogeneous platforms.

Finally, the Quasimodo (Quantitative System Properties
in Model-Driven-Design of Embedded Systems) project [30]
aims to develop theory, techniques, and tool components for
handling quantitative constraints in model-based develop-
ment of embedded systems. Quantitative constraints involve
the resources that a system may use, assumptions about the
environment in which it operates, or the requirements on the
services that the system has to provide.

The emphasis in MDE is on using standardized approaches 
for capturing models (e.g., UML [33], EMF/Ecore [43]), and 
task-specific languages (e.g., QVT, VIATRA [15], ATL [26], 
Epsilon [27], Kermeta [20]) for processing models to perform 
tasks such as internal and external model-to-model trans-
formation, model-to-text transformation, model comparison, 
merging, refactoring, and migration in an automated manner. 

The research into model-driven development of real-time 
and embedded systems has attracted substantive attention in 
recent years. For example, Gaspard2 [34] is an Integrated  
Development Environment (IDE) for System on Chip (SoC) 
development, whose objective is to provide an integrated 
environment that enables the modeling, simulation, code 
generation,deployment specification of SoC applications and 
hardware architectures, and the association of the two. The 
Gaspard2 framework uses MARTE for high-level system rep-

resentation. The approach is based on MDE principles allow-



Neither Gaspard2 nor MARTES support formal verifica-
tion. In addition, the first two rely on UML dialects to model
target systems, whilst Quasimodo uses timed, hybrid, and
probabilistic automata.

6 Conclusions

One of the main limitations of UML is that its diagrams
are hard to formally verify and validate due to inadequately
defined semantics. This paper proposes the MADES solution
to address this problem.

The proposed solution consists of three major contribu-
tions: a dedicated UML profile (MADES UML), a formal
semantics ascribed to MADES UML and based on the TRIO
metric temporal logic, and a modeling/verification frame-
work that enables the verification and closed-loop simula-
tion of designed systems. The resulting framework is entirely
based on mature and open-source technologies.

The approach has been evaluated in close collaboration by
the MADES industrial and academic partners on a number
of representative case studies from the embedded systems
domain. The proposed solution helped model all the prob-
lems and details of interest and the automatic verification
helped reveal subtle problems since the very early phases of
the design process.

As for the future work, the definition of the proper-
ties of interest, currently specified through a form-based
approach, requires in-depth analysis and more domain-
specific solutions. In parallel, we will continue the finer-
grained improvement, optimization, and tailoring of the
MADES
solution.
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