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1. Introduction

The energy efficiency of manufacturing production systems is 
becoming a topic of paramount interest for many reasons, such as 
the need to minimize the energy consumption of industrial plants, 
to resize the factory energy supply infrastructures, and to limit the 
CO2 emissions, see e.g. European Commission (2009), Organization 
for Economic Cooperation and Developoment (2004), Seliger 
(2007), and ICF International (2007). Different levels of manufac-
turing efficiency have been considered in the literature 
(Fysikopoulos, Pastras, Alexopoulos, & Chryssolouris, 2014):(i) the 
process level, which concerns the energy interaction related to the 
physical machining operations; (ii) the machine level, which 
considers both processing and auxiliary operations; (iii) the 
production line level, which refers to a group of different machines 
and, finally, (iv) the factory level, which concerns the high-level 
managing of different production lines, possibly interacting and 
sharing common appliances. In general, improving the efficiency at 
the lower levels (machine and process) is a complex task because it 
may result in worsening quality and costs or it may require the 
deployment of new and more advanced processing techniques. By 
contrast, energy efficiency at the production or factory level can be 
improved by designing suitable production scheduling and 
planning algorithms. This level of optimization is

usually preferred because it is less invasive and does not effect 
quality and costs. For this reason, the development of optimization 
algorithms for the solution of scheduling problems, such as job 
shop, flow shop, and flexible flow shop, has been the subject of a 
huge scientific effort, see e.g. Pinedo (2008) and the references 
reported there. Recent contributions explicitly dealing with the 
energy efficient scheduling of production systems are reported in 
Angel, Bampis, and Kacem (2012), Haït and Artigues (2009), Fang, 
Uhan, Zhao, and Sutherland (2011), Bruzzone, Anghinolfi, Paolucci, 
and Tonelli (2012), and Dai, Tang, Giret, Salido, and Li (2013).

This paper considers the problem of optimizing on-line the 
production scheduling and buffer management of a multiple-line
production plant composed by L machines Mi, i ¼ 1; …; L, which
can operate at different speeds corresponding to different energy
demands. The path from a common source node, where the part to 
be processed is assumed to be always available, to each machine 
may differ in the number of buffer nodes, and the energy required 
to move the part along these transportation lines must be suitably 
considered in the computation of the overall energy consumption. 
Therefore, the control problem consists of computing, at each 
sampling instant, the sequence of commands to be applied to the 
transportation lines and the processing speed of the machines in 
order to optimize the throughput of the system and to limit the 
overall energy consumption. This problem, which shares some 
similarities with the classical flexible flow shop problem, has been 
motivated by the optimal management of the de-manufacturing 
plant described in Colledani, Copani, and Tolio (2014) and Copani et 
al. (2012). Specifically, this plant is made by a number of machines 
and a multi-path transportation line, part of which is
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made by two parallel independent transport lines which start from 
the same source node and feed two independent machines. The 
design of the optimal pallet routing has been already considered in 
Cataldo and Scattolini (2014a, 2014b), where however the target 
machine of each pallet has been assumed to be a priori given.

The optimal scheduling of parallel machines, which must 
guarantee the completion of a given number of tasks by assigning 
them to different machines, has been considered in many papers, 
see e.g. the review (Senthilkumar & Narayanan, 2010) and the 
references therein. This problem is known to be very complex, see 
Weng, Lu, and Ren (2001), and therefore the proposed solutions are 
mainly based on the development of heuristics, see e.g. Kim, Na, and 
Chen (2003), Rabadi, Moraga, and Al-Salem (2008), and Jansen and 
Porkolab (2001). On the contrary, the approach here proposed relies 
on Model Predictive Control, or MPC, see e.g. Camacho and Bordons 
Alba (2004), a technique widely popular in the process industry, 
such as chemical, petrochemical, pulp and paper, but still in its 
infancy in the field of discrete manufacturing, save for the notable 
exceptions of Vargas-Villamir and Rivera (2001), Vargas-Villamir 
and Rivera (2000), Alessandri, Gaggero, and Tonelli (2011), Braun, 
Rivera, Flores, Carlyle, and Kempf (2003), Ydstie (2004), Ferrio and 
Wassick (2008), Wang and Rivera (2008), where problems related 
to the management of supply chains have been studied. MPC is 
based on the simple idea of transforming the control problem into 
an optimization one, where different goals and constraints on the 
process variables can be included. Specifically, in the problem here 
considered, MPC recursively computes the optimal sequence of 
buffer commands and machines' processing times over a given 
prediction horizon by minimizing the overall energy consumption 
and maximizing the future production. Then, only the first value of 
the optimal sequence is applied and the overall optimization 
procedure is repeated at the next time instant. Optimization is 
performed under suitable constraints on the production, on the 
electric power involved, and under the physical constraints imposed 
by the system. These constraints are described by logical 
statements, which in turn are transformed into algebraic relations 
among boolean variables, see Bemporad and Morari (1999). 
Moreover, the machines are represented by finite state machine 
models, so that the overall system to be optimized is described by a 
Mixed Logical Dynamic (MLD) model, see again Bemporad and 
Morari (1999), a  representation which combines discrete time 
dynamics with logical (boolean) decision variables. Thanks to the 
use of MLD models, the resulting optimization problem belongs to 
the class of Mixed Integer Linear Programming (MILP) problems, for 
which fast solvers are available.

The paper is organized as follows. In Section 2 the problem is 
stated, the models of the components, i.e. machines and buffer 
zones, are developed, and the overall MLD model is derived. In 
Section 3 the optimization problem is formulated and its main 
characteristics are examined. Section 4 is devoted to present and 
critically analyze some simulation results where different scenar-
ios are considered. Finally, in Section 5 some conclusions and hints 
for future developments close the paper.

2. Problem formulation

The generic structure of the production system considered in
this paper is sketched in Fig. 1: it consists of L parallel production
lines, each one with pi, i ¼ 1; …; L buffer nodes ended by a machine 
Mi (Fig. 2). The machines M1; …; ML are assumed to have a
controllable and variable duration processing time related to the 
required energy to perform the machining operations. This means
that it is possible to choose whether a machine must process the 
next part at full or slow speed with consequent high or low energy

demand. The binary variable ui;j, i¼ 1;…; L; j¼ 1;…; pi represents
the trigger which moves the part from node Ni;j�1 to Ni;j.
Specifically, ui;j ¼ 0 if the part is not moved from Ni;j�1 to Ni;j or
if node Ni;j�1 is empty, while ui;j ¼ 1 if the part is moved from
Ni;j�1 to Ni;j.

The control problem consists in moving the parts from the root
node N0 to the machines M1;…;ML and in deciding the processing
time of each machine, while ensuring that constraints on max-
imum power and minimum production are fulfilled.

Assumption 1. The root node N0 always contains a part, i.e. there
is always a part ready to be processed by the system.

2.1. Node model

Let xi;j be a logical state related to node Ni;j and let xi;j ¼ 1 when
Ni;j contains a part and xi;j ¼ 0 otherwise. The variable ui;j is logical
as well, and ui;j ¼ 1 means that the part will be moved from Ni;j�1

to Ni;j.
Letting k be the discrete time index, the dynamics of the logic

state is given by

xi;jðkþ1Þ ¼ xi;jðkÞþui;jðkÞ�ui;jþ1ðkÞ ð1Þ
In order to simplify the notation, from now on we will drop the
time index k when not required for clarity of presentation. More-
over, the superscript þ will denote the variable at the next time
instance, so that, given a generic variable φðkÞ, the symbol φ will
correspond to φðkÞ and φþ to φðkþ1Þ. According to this notation,
(1) can be written as

xþ
i;j ¼ xi;jþui;j�ui;jþ1 ð2Þ

The inputs ui;j must be suitably constrained in order to prevent the
states taking values different from zero and one, and to avoid
unrealistic configurations, such as moving a part out of an empty
node. In particular, it is possible to move a part into Ni;j if and only
if all the following conditions are fulfilled:

1. The node Ni;j�1 contains a part .
2. The node Ni;j is empty or it contains a part which is moved to

Ni;jþ1 at the same time instant.

These conditions can be rewritten using logical operators as
:xi;j � 1 4ð:xi;j 3 ðxi;j 4ui;j þ 1ÞÞ ð3Þ 
which, according to the propositional calculus rules (Bemporad & 
Morari, 1999; Lucas, Mitra, & Moody, 1992; McKinnon & Williams, 
1989; Raman & Grossmann, 1991; Williams, 2013), is equivalent 
to
ui;jrxi;j�1

ui;jr1�xi;jþui;jþ1 ð4Þ

Fig. 1. Production system.

Fig. 2. Node model.



As for the root node N0, Assumption 1 implies that x0 ¼ 1 at  any 
time instant, allowing its dynamics to be neglected. However, only
one part at a time can be moved out of N0 and thus the following 
constraint must be fulfilled:

XL
i ¼ 1

ui;1r1 ð5Þ

The interface between the final node Ni;pi of each line and the
corresponding machine Mi will be discussed in the following
together with the models of the machines.

2.2. Simplified Machine Model (SMM)

Let the i-th machine Mi, i¼ 1;…; L, be represented by a finite
state machine which describes the following behavior:

� the machine can either be busy (B) or free (F);
� the transition F-B occurs on the rising edge of a logic (binary)

input, denoted by γi, which may be seen as a “starting” signal;
� together with the starting signal, a second integer input,

denoted with ηi, must be set. The machine will then stay in
the busy state for ηi time instants and, afterwards, it will go
back to be free, i.e. the transition B-F will occur;

� when the machine is busy, the output representing the
absorbed power, denoted by qi, must be set according to a
properly designed function qi ¼ f ei ðηiÞ, related to the
processing time;

� during the last time instant in which the machine is busy, the
logic output representing the end of the processing, denoted by
ψi, must be set;

� when busy, the logic output βi, representing the busy state of
the machine, must be set to one.

Therefore, each machine Mi can be represented by the block
shown in Fig. 3.

2.2.1. Mathematical model
In view of the previous definitions, the mathematical model of

Mi can be derived by defining the following internal states:

� zi
l: logic state denoting whether the machine is free (zli ¼ 0) or
busy ðzli ¼ 1Þ;

� zi
c: integer state counting the number of time instants in the
busy state;

� zηi : integer state to “hold” the value of ηi during the transition
F-B.

In addition, consider the following auxiliary logical variable:

μi ¼ 12zci Zzηi �1 ð6aÞ
which will be used to trigger the transition B-F , as illustrated in
Fig. 4.

The dynamics of the states is given by

zlþi ¼ ðzli4:μiÞ3 ð:zli4γiÞ ð6bÞ

zcþi ¼
zci þ1 if zli
0 if :zli

(
ð6cÞ

zηþi ¼
zηi if zli
ηi if :zli

(
ð6dÞ

These relations describe the following facts:

� (6b) states that the machine will be busy at the next time
instant either if it is currently busy and the processing is not yet
completed, i.e. μi ¼ 0, or if it is currently free and the starting
trigger γi is set;

� (6c) defines zic as an increasing counter only when busy, which
is reset when free;

� (6d) defines zηi as a holder of the last value that ηi has taken
when in the free state. This value is kept as long as the machine
is busy.

The absorbed power is defined as a function of the value of zηi ,
since it is different from zero only when the machine is in the busy
state and is related to the production duration. No assumptions on
the class of this function have been made,1 but since zηi AN, it is
required to be defined only for integer positive values. In parti-
cular, assume that ηiA ½η

i
;η i�DN, η iZη

i
Z1 and let Di ¼ η i�η

i
þ1

be the number of possible values ηi can take. The function
qi ¼ f eðzηi Þ can then be obtained by defining Di auxiliary logical
variables, denoted by δih, h¼ 1;…;Di constrained as follows:

XDi

h ¼ 1

δhi ¼ 1 ð6eÞ

XDi

h ¼ 1

hδhi ¼ zηi ð6fÞ

The absorbed power is then computed as

qi ¼
XDi

h ¼ 1

f ei ðhÞδ
h
i if zli

0 if :zli

8>><
>>: ð6gÞ

The other two logic outputs can be easily obtained from the state
variables as

βi ¼ zli ð6hÞ
and, for the end of cycle

ψ i ¼ zli 4μi ð6iÞ 
which can be recast as a set of inequalities as described in 
Bemporad and Morari (1999).

2.2.2. Machine–buffer interface
The machines must be properly connected to the buffer lines as 

in Fig. 1. It can be noted that each machine behaves similarly to a 
node. The main difference is in the transition from being busy to
free. In fact, each buffer node Ni;j can be freed by setting the
controllable variable ui;j þ 1, while the machines are automatically 
freed once the processing is completed. Therefore, with respect to

Fig. 3. Machine block.

Fig. 4. FSM of a machine.

1 It should be noted that the function qi ¼ f ei ðηiÞ should be monotonically
decreasing, because, in general, the faster processing (i.e. small ηi), the higher
absorbed power (i.e. big qi). However, at least from a theoretical point of view,
nothing prevents it to behave differently.



Fig. 1 and the notation presented in Section 2.1, each machine can 
be seen as a node by setting

xi;pi þ 1 ¼ βi

ui;pi þ 1 ¼ γi ð7Þ

Concerning constraints (4), due to the inability to pull a part out of
the machine, a part in Ni;pi þ 1 can be moved into Mi only when Mi is 
free, i.e. xi;pi þ 1 ¼ 0. Therefore, the set of constraints for the last 
node of each line is

ui;pi þ1rxi;pi

ui;pi þ1r1�xi;pi þ1 ð8Þ

The underlying assumption is that each machine must be free for 
at least one time instant before a new part can be processed. This 
assumption will be removed in the next paragraph in which an 
Enhanced Machine Model is introduced.

2.3. Enhanced Machine Model (EMM)

The model presented in Section 2.2 is valid only when the 
machine cannot achieve continuous processing operations, mean-
ing that it is not possible to unload the machined part and load a 
new one at the same time. In fact, the previous model forces the 
machine to be free for at least one time instant (unload operation) 
before going back to busy. However, some industrial applications 
may achieve continuous processing operations and therefore an 
Enhanced Machine Model is developed to take this behavior into 
account.

As for the simpler model, consider the state machine in Fig. 5:

� Free (F): the machine is not operating and waiting for a part to
be processed.

� Busy (B): the machine is operating and it is not the last
operative time instant.

� End (E): the machine is operating in its last operative time
instant.

The main difference with the previous model is the ability to
directly switch from the end state to the busy one, i.e. to begin the
machining of a new part immediately after the current one has
finished. There is no need to go through the free state. Inputs and
outputs are defined in the same way as in the previous model.
However, the output power qi must be different from zero when the
active state is either busy (B) or end (E). In fact, these states only differ
from a timing point of view, i.e. E is active during the last time instant
of the processing, while B during the previous ones.

2.4. Mathematical model

In the following, to simplify the notation the index i denoting
the specific machine will be dropped. Consider the following state
variables:

� zF: logic state which is true when the machine is free.
� zB: logic state which is true when the machine is busy.
� zE: logic state which is true when the machine is in the

end state.
� zc: integer state counting the time instants spent on the

busy state.
� zη: integer state “holding” the value of η set during the

transition F-B and F-E.

The transitions are defined by the following auxiliary logical
variables:

ξ1 ¼ 12γ4η¼ 1 ð9aÞ

ξ2 ¼ 12γ4η41 ð9bÞ

ξ3 ¼ 12zcZzη�2 ð9cÞ

ξ4 ¼ 12:γ ð9dÞ
In other words, the following scenarios are possible:

1. From the free state, it is possible to go to the busy or end states
depending on the value of the processing time η. In particular, if
η41 the active state will be B and a long processing will start,
otherwise it will be E leading to a new one-step machining.

2. When the active state is B, the machine will remain busy until
the remaining processing time is only one step, that is ξ3 ¼ 1.
At this point, the machine will switch to E.

3. From the E state it is possible to:
(a) Begin a new long processing (η41) by switching to B.
(b) Begin a new one-step processing (η¼ 1) by staying in E.
(c) End the current processing by going back to F.

The dynamics of the state is given by

zFþ ¼ ðzF4:ξ2Þ3 ðzE4ξ4Þ ð9eÞ

zBþ ¼ ðzF4ξ2Þ3 ðzB4:ξ3Þ3ðzE4ξ2Þ ð9fÞ

zEþ ¼ ðzF4ξ1Þ3ðzB4ξ3Þ3 ðzE4ξ1Þ ð9gÞ

zcþ ¼ zcþ1 if zB

0 if :zB

(
ð9hÞ

zηþ ¼
zηi if zB

ηi otherwise

(
ð9iÞ

Concerning the outputs, (6e) and (6f) still apply in this context. 
However, (6g) must be changed to

q¼
PD

h ¼ 1 f eðhÞδh if zB3zE

0 otherwise

(
ð9jÞ

The busy output β is now defined as

β¼ zB3zE ð9kÞ
and the end of cycle ψ

ψ ¼ zE ð9lÞ
The logical states zB, zF and zE must also be constrained as follows:

zFþzBþzE ¼ 1 ð9mÞFig. 5. FSM of a enhanced machine.



In fact, although the combination of the graph topology in Fig. 5, 
together with the definitions of ξ1, ξ2, ξ3 and ξ4 and the dynamics 
of zB, zF and zE prevent the activation of more that one state at a 
time, constraint (9m) is still required to avoid the potential
feasibility of the initial state zF ¼ zB ¼ zE ¼ 0, which would lead 
to a wrong evolution of the system.

As in the case of the Simplified Machine Model, model (2.4) 
belongs to the class of Mixed Logical Dynamics models (MLD) and 
thus it can be reformulated as a suitably constrained linear system 
(Bemporad & Morari, 1999).

2.4.1. Machine–buffer interface
The machine–buffer interface is very similar to what discussed 

in Section 2.2.2. In particular, (7) still applies for the enhanced 
model with β defined in (9k). By contrast, it is now possible to 
start the machining of a new part when the part being currently 
processed is about to end. More specifically, if the active state of Mi

is E, which corresponds to ψ i ¼ 1, the machine can process a new 
part. Such behavior is achieved by setting the constraints in place
of (8)

ui;pi þ 1 rxi;pi
ui;pi þ 1 r1�xi;pi þ 1 þψ i ð10Þ 
From a conceptual point of view, it can be noted that the role of ψi

in (10) is equal to that of ui;j þ 1 in (4). Indeed, ψi can be seen as a 
signal which moves the part out of the machine Mi in the same
way as ui;j þ 1 moves it out of Ni;j.

2.5. Mixed Logical Dynamical model of the system

The system described in the previous sections is characterized 
by the mutual coexistence of discrete time dynamics and logical 
variables. Such systems are referred as hybrid. Different classes of 
hybrid dynamical models have been developed in the literature: 
Piecewise Affine (PWA), Mixed Logical Dynamical (MLD), Linear 
Complementary (LC), Extended Linear Complementary (ELC) and 
Max–Min-Plus-Scaling (MMPS) Systems (see Heemels, De 
Schutter, & Bemporad, 2001 and the references therein). From 
now on, MLD models (Bemporad & Morari, 1999) will be con-
sidered since they are particularly suitable for control purposes.

As discussed in Bemporad and Morari (1999) a MLD system can 
be described by the following linear relations:

xðkþ1Þ ¼ AxðkÞþBuuðkÞþBδδðkÞþBzzðkÞ
yðkÞ ¼ CxðkÞþDuuðkÞþDδδðkÞþDzzðkÞ
EδδðkÞþEzzðkÞrEuuðkÞþExxðkÞþE

8><
>: ð11Þ

where

� x¼ ½xc; xl� is the state vector and xcARnc , xlAf0;1gnl .
� u¼ ½uc;ul� is the input vector and ucARmc , ulAf0;1gml .
� y¼ ½yc; yl� is the output vector and ycARpc , ylAf0;1gpl .
� δAf0;1grl is a vector of binary auxiliary variables.
� zARrc is a vector of continuous variables.

In Bemporad and Morari (1999) it is shown how logical relation-
ships, such as (6b), as well as implications between continuous 
and binary variables, e.g. (6c), can be recast as a set of linear 
inequalities by introducing a certain number of auxiliary variables, 
resulting in a model in the form of (11).2

2.6. Overall plant model

In summary, the overall system to be controlled is defined by
the connection of all the nodes and the machines accordingly to
the plant topology. Therefore, the plant model can be seen as the
block shown in Fig. 6 where:

� ui;j, i¼ 1;…; L, j¼ 1;…; pi are controllable inputs which cause
the parts to move and the machines to start;

� ηi, i¼ 1;…; L, are the controllable inputs which define the
processing time of each part;

� qi, ψi and βi, i¼ 1;…; L, are the measured outputs as described
in Section 2.2.

Note that the use of either the simple of the Enhanced Machine
Model is transparent with respect to the definition of inputs and
outputs, since they differ only in the internal dynamics. Therefore,
it is possible to define a unique control problem which will adapt
itself to the actual model of the machines being used. Moreover, it
is also possible to include configurations in which both models
coexist to describe the behavior of different machines.

3. Model predictive control

The MPC problem consists of maximizing the production while
fulfilling constraints on the overall energy consumption and
minimum production. The resulting constrained optimization
problem must be solved on-line by computing the predicted
evolution of the system behavior as a function of the available
control variables in a future time window called prediction horizon.
The output of the optimization process is the optimal sequence of
inputs in the horizon. Then, accordingly to the so-called Receding
Horizon, or Rolling Horizon, (RH) approach, only the first optimal
input is applied to the system and the others are discarded. The
optimization process is then repeated at the next time instant. The
cost function to be minimized includes the following terms:

1. Production: a negative cost in order to maximize the produc-
tion. It can be measured in terms of end-of-cycles of the
machines, indicated by the outputs ψi, i¼ 1;…; L;

2. Energy consumption: a positive cost to minimize the overall
energy consumption;

3. Movements: a positive termweighting useless movements of the parts;
4. Part: a positive weight penalizing the presence of parts in the

nodes if not needed to fulfil the requirements.

Based on the previous considerations, the cost function has been
selected as follows:

J1 ¼ �Qprod

XtþN�1

k ¼ t

XL
i ¼ 1

ψ iðkÞþQenergyΔt
XtþN�1

k ¼ t

XL
i ¼ 1

qiðkÞ

Rmove

XtþN�1

k ¼ t

XL
i ¼ 1

Xpi
j ¼ 1

ui;jðkÞþQpart

XtþN�1

k ¼ t

XL
i ¼ 1

Xpi
j ¼ 1

xi;jðkÞ ð12Þ

Fig. 6. Schematic block of the plant.

2 For the Simplified Machine Model: nc ¼ 7, nl ¼ 2, mc ¼ 2, ml ¼ 5, pc ¼ 2, pl ¼ 4,
rc ¼ 6, rl ¼ 10. For the Enhanced Machine Model: nc ¼ 7, nl ¼ 6, mc ¼ 2, ml ¼ 5,
pc ¼ 2, pl ¼ 4, rc ¼ 6, rl ¼ 24.



where N is the prediction horizon, t is the current time index,Δt is
the adopted sampling time and the weights Qprod, Qenergy, Rmove and
Qpart are design parameters. The maximum absorbed power and
minimum production requirements along the prediction horizon
can be included in the optimization problem by defining qmax as
the overall maximum allowable power and Pmin as the minimum
allowable production. Then, the following constraints must be
considered:

XL
i ¼ 1

qiðkÞrqmax ð13aÞ

XtþN�1

k ¼ t

XL
i ¼ 1

ψ iðkÞZPmin ð13bÞ

In order to avoid infeasibility problems, due to the potential
impossibility to contemporarily fulfill the above relations, con-
straints (13) can be modified to allow their violation when
necessary by adding slack variables εq and εp as follows:

XL
i ¼ 1

qiðkÞrqmaxþεq ð14aÞ

XtþN�1

k ¼ t

XL
i ¼ 1

ψ iðkÞZPmin�εp ð14bÞ

εq; εpZ0 ð14cÞ
These slack variables must be heavily weighted in the cost
function in order to prevent them to be different from zero when
the optimization problem is feasible, so that the cost function
becomes

J2 ¼ J1þSpεpþSqεq ð15Þ
where the coefficients Sp and Sq take sufficiently high values.
Therefore the optimization problem can be stated as

min
ui;j ; ηi ; i ¼ 1;…;L;j ¼ 1;…;pi ;εp ;εq

J2 ð16Þ

subject to (14).

3.1. Avoiding deadlocks and guaranteeing due date

The previous formulation of the MPC optimization problem
does not guarantee a given due date, a property often required in
industrial applications. In fact, the constraints (14) are implemen-
ted according to the RH approach, and the optimal solution can
even cause deadlocks of the system when the minimum produc-
tion requirement is small. This is shown in the very simple
scenario depicted Fig. 7, where it is assumed that the prediction
horizon is N¼5 steps, the minimum production requirement is
Pmin ¼ 1 and the maximum processing time is η¼ 2. The produc-
tion requirement can be satisfied by operating at the slower speed
(i.e. η¼ 2), and the controller will choose this scenario in order to
minimize the absorbed power, given that f eð1Þ4 f eð2Þ. However,
two solutions still solve the problem; in fact, since only four time
steps are required to process the part and the horizon is one step
longer, the remaining step can be put on the leading (Fig. 8a) or
trailing (Fig. 8b) edge of the horizon. These solutions have the
same optimal cost and thus the controller will randomly choose
one of them. However, the first one (Fig. 8a) must be avoided,
since it locks the system due to the RH implementation. In the

following, two solutions to this problem are proposed. The first
one does not introduce hard constraints, but does not guarantee a
given level of production, while the second one is characterized by
additional constraints which enforce the fulfillment of a prescribed
due date.

3.1.1. Exponential weighting
This solution consists in increasingly weighting the control

variables along the horizon, so that the optimal solution tends to
activate the control variables at the beginning of the prediction
horizon. With reference to the previous example, this means that
the former solution is “cheaper” than the latter. The new cost
function is

J3 ¼ J2þ
XtþN�1

k ¼ t

Rk� t
dead

XL
i ¼ 1

Xpi
j ¼ 1

ui;jðkÞ ð17Þ

where R0
deadoR1

deado…oRN�1
dead . In addition, RN�1

dead must be much
smaller than any other weight appearing in (15) in order for the
optimal solution to be unaffected, besides the removal of any
initial delay.

3.1.2. Guaranteed due date
In the second solution, the production Pmin is guaranteed at

every N time steps. This can be achieved by letting t ¼ t=N
� �

N and
by introducing in the optimization problem the additional con-
straint

Xt þN�1

k ¼ t

XL
i ¼ 1

ψ iðkÞZPmin ð18Þ

which is not forced in a RH form, but makes reference to
successive time intervals of length N. Also in the case of these
additional constraints, the use of suitable slack variables can be
necessary to avoid feasibility properties, as discussed in (14) and
(15) for constraints (13). In any case, the resulting optimization
problem is more stringent than the one with the exponential
weighting, so that the feasibility issue can become more critical.

3.1.3. Storage costs
The parts produced in the N time steps considered the due date

constraint have usually to be stored before their delivery, with
related storage costs. In order to minimize these costs, the
production can be weighted in the performance index so as to
postpone it as long as possible. This can be easily considered in the
problem formulation with the new performance index

J4 ¼ J3þ
Xt þN�1

k ¼ t

Qstore

XL
i ¼ 1

ψ iðkÞ
" #

ð19Þ

where Qstore is a proper weight.

4. Simulation experiments

The algorithm here proposed has been implemented in MATLAB 
using the MPT Toolbox (Herceg, Kvasnica, Jones, & Morari, 2013) 
and the HYSDEL (Torrisi & Bemporad, 2004) modeling language. In 
the following, two experiments are described to highlight its main 
features. The first one focuses on the analysis of the system 
behavior in response to variations of the minimumFig. 7. Example of a simple configuration.

Fig. 8. Two feasible solutions for the same problem. (a) First solution: initial delay.
(b) Second solution: no initial delay.



production regardless of the energy consumption, while the
second one on the production maximization constrained by a
limited amount of available power. Both experiments are based on
the plant depicted in Fig. 9, where the two machines can process
the parts at slow speed (two time instants, η¼ 2) or at full speed
(one time instant, η¼ 1), but they differ in the absorbed power, as
listed in Table 1.

Note that the absorbed power refers to the whole processing
which is assumed to be uniformly split during the machining. For
instance, M2 requires an overall energy of 2:00Δt ðkJÞ, where Δt
(s) is the adopted sampling time measured in seconds, to process a
part at slow speed, that is in two time instants. Some remarks
about the selected values are in order:

� as expected, slow processing times lead to lower
absorbed power;

� M1 is always more powerful than M2, given the same proces-
sing time. However, from Fig. 9, it can be noted that M2 is
farther than M1 from the source node. Therefore, M2 may not
always be the obvious optimal choice.

The following tuning parameters are used in both experiments:

� The prediction horizon is N¼6.
� The sampling time is Δt ¼ 60 (s).
� The movement cost is Rmove ¼ 0.
� The storage cost is Qstore ¼ 0.
� The weights of the slack variables are Sq ¼ 106 and Sp ¼ 104.

Unless otherwise specified, the exponential weighting method
described in Section 3.1.1 to avoid deadlocks has been used with
Rh
dead ¼ 0:01ðhþ1Þ, h¼ 0;…;N�1. Each test has been run with the

two machine models SMM and EMM to evaluate the different
behaviors.

4.1. Minimum production

The aim of this experiment is to demonstrate the scheduling
capabilities of the algorithm in case of dynamic variations of the

minimum production requirement. The cost function parameters
have been chosen as Qpart ¼ 10, Qprod ¼ 1:2� 105, Qenergy ¼ 1. Note
that, even if Qprod⪢Qenergy, the energy consumption has a more
relevant impact on the performance index since the power is
measured in terms of [W] and the energy magnitude is 105, then it
is expected to be minimized with the production as low as
required to fulfil the minimum specification. Moreover, if the
minimum production is set to zero, the trivial solution of turning
all the plant off will be the optimal one to minimize the energy
consumption.

In the simulation experiment, the maximum power constraint
(13) has been neglected and the minimum production has been
changed as follows:

� at t¼0 [min] only one part must be processed during the
prediction horizon, i.e. it has been set Pmin ¼ 1;

� at t¼20 (min), Pmin ¼ 2;
� at t¼40 (min), Pmin ¼ 4;
� at t¼60 (min), Pmin ¼ 6;
� at t¼80 (min), Pmin ¼ 8.

4.1.1. Simplified Machine Model
Fig. 10 shows the resulting scheduling of the machines as well

as the buffer management when the model described in Section
2.2 is used. The dashed vertical lines in Fig. 10a denote the changes
in the minimum production requirement. The following remarks
can be stated:

� from t¼0 (min) to t¼20 (min), machine M2 is preferred to M1.
This is not surprising since the low production allows the
controller to choose the cheapest machine at slow speed, that is
M2 for two time steps;

� from t¼20 (min) to t¼40 (min), machineM2 is still preferred to
M1. In order to fulfil the higher production requirement, the
idle time of M2 is reduced;

� from t¼40 (min) to t¼60 (min), M1 is periodically scheduled at
slow speed;

� from t¼60 (min) to t¼80 (min), the production requirement
further increases and both machines switch at full speed, as
expected;

� from t¼80 (min) to t¼100 (min), both machines already
operate at full speed but the production is further increased.
This results in a missing production, as shown in Fig. 10b.

The previous experiment has been repeated by substituting the
exponential weighting with the due date constraint described in 
Section 3.1.2. The results achieved are reported in Fig. 11. A direct
comparison between Figs. 10 and 11 show that the exponential 
weighting method produces a slightly more regular solution in
terms of machines use and energy consumption. Moreover, if the 
minimum production requirement changes during the fixed time
window where the constraint (18) is active, the due date con-
straint can lead to feasibility problems, see time t¼40 (min) for 
example. For this reason, the exponential weighting can be
preferred when there are not hard production constraints.

The same experiment has been performed by including in the 
performance index to be minimized a term weighting the storage

time, as shown in (19). Specifically, the weight Q store ¼ 3 � 104 has 
been used and the results obtained are shown in Fig. 12. By
comparing the results of Figs. 11 and 12, it is easy to see the
different behavior of the machines in the interval from
t ¼ 20 ðminÞ to t ¼ 40 ðminÞ, in which the machines use a higher 
power and then work faster in order to reduce the storage time of
the produced parts.

Fig. 9. Experimental plant.

Table 1
Machines absorbed power.

Machine Processing time instants Absorbed power (kW)

M1 1 2:40
M1 2 1:05
M2 1 2:20
M2 2 1:00



4.1.2. Enhanced Machine Model
The plots related to the use of the Enhanced Machine Model are

illustrated in Fig. 13. The following observations can be made:

� from t¼0 (min) to t¼20 (min), the optimal scheduling is equal
to the previous case. In fact, the minimum production is low
enough to avoid any continuous machining;

� from t¼20 (min) to t¼40 (min), M1 is never turned on. On the
other hand, M2 takes advantage of the continuous machining to
fulfil the requirements. Note that this solution is comparable to
the previous case. Indeed, the only difference is in the different
scheduling of the idle time of M2;� from t¼40 (min) to t¼60 (min), M2 is continuously processing
the parts at slow speed, while M1 periodically operates at slow 
speed. Comparing these results to those of Fig. 10, the idle time 
of the more expensive M1 is now bigger, leading to a lower 
energy consumption;

� from t¼60 (min) to t¼80 (min), both machines are continu-
ously scheduled at slow speed. Note that in Fig. 10 they were 
periodically scheduled at full speed, but the same production is 
achieved;

�
from t¼80 (min) to t¼100 (min), a missing production occurs,
as depicted in Fig. 13b. It may be argued that the machines
should both operate at full speed, which is not possible due to 
the plant topology.

4.2. Production maximization

In the second experiment, the cost function has been tuned in
order to provide the maximum production and minimize the
overall energy consumption at the same time. The cost function
parameters have been chosen as follows: Qpart ¼ 1, Qprod ¼ 2� 105,
Qenergy ¼ 1. In contrast with the previous experiment, the produc-
tion is maximized with respect to the maximum available power.
The absorbed power has been dynamically constrained to a
maximum value. In particular, the following bounds have been
applied:

� from t¼0 (min) to t¼20 (min), the problem is unconstrained;
� from t¼20 (min) to t¼40 (min), the maximum absorbed power

is qmax ¼ 4:5 ðkWÞ;
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Fig. 10. Power Minimization using the simple machine model. (a) Machine
scheduling and buffer management. The black asterisks denote the end of the
machining. (b) Production requirement, missing production (bottom) and absorbed
power (top).
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(a) Machine scheduling and buffer management. The black asterisks denote the
end of the machining. (b) Production and absorbed power.



�
from t¼40 (min) to t¼60 (min), it is decreased to
qmax ¼ 2:2 ðkWÞ;

� from t¼60 (min) to t¼80 (min), it is further decreased to
qmax ¼ 2:0 ðkWÞ;

� finally, from t¼80 (min) to t¼100 (min), the maximum power
is set to qmax ¼ 1:0 ðkWÞ and the minimum production is
increased from zero to Pmin ¼ 4.

4.2.1. Simple machine model
Fig. 14 presents the results obtained with the simple machine 

model. The following observations are in order:

� during the first interval t r20 ðminÞ, the machines are scheduled
to run at full speed. In fact, the production is maximized with
higher priority than the absorbed power, which is also unbounded;

� from t¼20 (min) to t¼40 (min) an interesting behavior is
observed: at about t¼25 (min) the plant reaches steady state
conditions where the number of produced parts is equal to the
one in the previous time interval. The difference is in the
management of the buffer nodes. Indeed, node N2;2 is now
always filled by a part and the two machines work alternately.

One may argue that this configuration is intuitively better than
the previous one because it achieves the same production with
lower energy consumption. However, this is not true due to the
cost associated to the parts in the nodes, which is now higher.
Different tunings of the cost function parameters may change
this result;

� from t¼40 (min) to t¼60 (min) the upper bound of the power
is further decreased and the machines must switch to slow
speed production mode;

� from t¼60 (min) to t¼80 (min) the machines operate out of
phase in order to fulfil the further reduced maximum
absorbed power;

� finally, during the last interval, the maximum power is so small
that the controller must operate only M2 at slow speed. More-
over, the minimum production bound cannot be fulfilled and,
since SpoSq, its violation is preferred to the power one.

4.2.2. Enhanced Machine Model
The results are illustrated in Fig. 15. The following remarks are 

in order:
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Fig. 12. Minimum production constrained problem with storage costs. (a) Machine
scheduling and buffer management. The black asterisks denote the end of the
machining. (b) Production and absorbed power.
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� during the first three intervals (up to t¼60 (min)), the
machines are continuously scheduled at slow speed. In fact,
as previously discussed, due to the plant topology it is not
possible to continuously schedule both the machines at full
speed. However, the production is equal to the previous case
and the overall absorbed power is much smaller, especially in
the first interval ðto20 ðminÞÞ;

� from t¼60 (min) to t¼80 (min), M1, which requires an higher
power, is turned off, while M2 is continuously scheduled at
slow speed;

� during the last interval, the same behavior as in the previous
case is observed. However, M2 can now continuously operate
reducing the missing production.

4.3. Computational issues

The proposed algorithm requires to solve a MILP problem at
any time instant; the mean values of the times required by the
optimization at any time step in the simulation experiments

previously described are listed in Table 2.3 It is apparent that, in 
the considered example, the required computations are fully 
compatible with a real-time implementation. However, it is also 
clear that solving the optimization problem at any time step can be 
computationally demanding, and time required depends on the 
number of machines, the model adopted to describe their beha-
vior, the number of nodes, and the length of the prediction
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Fig. 14. Production maximization using the Simple Machine Model. (a) Machine
scheduling and buffer management. The black asterisks denote the end of the
machining. (b) Production and absorbed power.
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Fig. 15. Production maximization using the Enhanced Machine Model. (a) Machine
scheduling and buffer management. The black asterisks denote the end of the
machining. (b) Production and absorbed power.

Table 2
Mean computational time (s) per optimization step.

Experiment Machine model

EMM SMM

Minimum production 0.400 0.303
Production maximization 0.456 0.367

3 The simulations have been carried out on a computer Intel(R) Xeon(R) CPU 
E5-2620 v2 @ 2.10 GHz 2.10 GHz, 16.0 GB Installed Memory (RAM), System type 
64-bit Operating System, x64-based processor, Windows 8.1 Pro., MATLAB R14b,
YALMIP R20150204, CPLEX R12.4, CPLEX settings: Parallelmode¼0, Threads¼0.



horizon. To this regard, it must be noted that also more standard
MILP formulations can lead to practically unsolvable problems, see
the following Section 4.5, while heuristic approaches can be very
conservative. In the case of large-size problems, a possible solution
consists in resorting to lagrangian relaxation techniques, which
can be referred to spatial and/or temporal distributions, as already
suggested in Luh and Hoitomt (1993), Raman and Grossmann
(1991), and Beccuti, Geyer, and Morari (2001).

4.4. Sensitivity to the cost function parameters

Some experiments have been performed with the Simplified
Machine Model to analyze the sensitivity of the solution with
respect to the parameter Qprod weighting the production in the
cost function (12). To this end, it has been set N¼6, Qenergy ¼ 1,
Pmin ¼ 1, Qpart ¼ 0, while Qprod has been varied. The number of
produced parts in the time interval ½1;100� is reported in Fig. 16 as
a function of Qprod. As expected, the curve is non decreasing and,
due to the discrete nature of the production process, it is
characterized by a stepwise form. Notably, when Qprodr1:2�
105 the contribution of the energy consumption dominates and
the system works at the minimum production, while, if
QprodZ1:85� 105, the contribution of the production sets the
system to the maximum possible production value.

4.5. Comparisons with a non RH solution

The performances of the algorithm based on the Simplified
Machine Model have been evaluated by comparing the RH
implementation and the non RH solution where the goal has been
to compute the control variables along a long prediction horizon of
thirty time instants. The same cost function has been adopted in
the two cases, with Qprod ¼ 1:2� 105 and Qenergy ¼ 1 and
Qpart ¼ 10. It has been set Pmin ¼ 20 for non RH solution while
the RH implementation has been computed with N¼6, Pmin ¼ 4,
and including the due date constraint (18). In the non RH solution
formulation the final state has been forced to be null, i.e. with
empty buffers and machines, so that the computed recipe can be
repeatedly applied for successive periods of the same length. The
results obtained with this approach are reported in Fig. 17, while
those provided by the RH implementation are shown in Fig. 18.
Although the number of produced parts is the same in the two
cases, the solution provided by non RH implementation is more
homogeneous in terms of required power, with lower peaks.
However, two comments are in order. First, the solution of the
non RH problem requires 413.891 s, while the RH approach calls
for a total time 9.910 s (average time of 0.330 s per step). In
addition, with nonRH implementation the computational time
exponentially increases, so that it is almost impossible to consider
time windows larger than 35–40 sampling times. On the contrary,
the computational time associated with RH is constant. Second,
the RH implementation allows for much more promptness in front
of possible faults of the system's components or external distur-
bances in view of the repeated sequence of optimizations per-
formed at any time instant, while the non RH solution should be
recomputed to cope with these perturbations. As a matter of fact,
with RH a feedback control law is implemented at any sampling
time, while the non RH approach leads to an open-loop control
law which is prone to disturbances and/or modeling errors.

5. Conclusions

Motivated by the success of MPC in the process industry and by
the increasing demand of high performing controllers in manu-
facturing plants, a new optimization-based control algorithm has
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Fig. 16. Produced parts.
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been developed for the buffer management and the production
scheduling of a multiple-line production plant. The simulation
results reported in the paper clearly show that the algorithm can
be easily adapted to obtain different behaviors by means of the
tuning of simple and easy-to-understand parameters of the cost
function. Moreover, the proposed method allows to cope with
dynamic changes of the minimum production and maximum
absorbed power and to choose the constraints to be violated in
case of infeasibility. All these features are very difficult to be
achieved with standard scheduling techniques based on the
solution of MILP problems or on heuristics.

Many extensions of the results reported in this paper can be
considered. The first, quite simple, could deal with the inclusion of
constraints on the early production of parts. Other improvements
could be related to the use of Lagrangian relaxation methods to
simplify the optimization phase in case of large scale systems, or to
the inclusion of non deterministic behaviors of the machines. For
all these reasons, it is believed that model-based solutions like the
one here proposed will open the way to the optimal management
of high performance manufacturing plants.
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