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0. Introduction

The concept of diametrically complete set, i.e. a set such that addition of any point produces a set of
larger diameter, was introduced by Meissner at the beginning of the last century as a property enjoyed by 
all sets of constant width. Diametrically complete sets have also been called diametrically maximal or simply 
complete in the literature. Although the notions of set of constant width and of diametrically complete set 
are equivalent in 2-dimensional and in Euclidean spaces, a fundamental result by Eggleston [6] shows that, 
even in 3-dimensional spaces, diametrically complete sets need not have constant width. Besides, results by 
Yost [23] prove that, already in finite dimensional spaces, the class of constant width sets is poor, reducing 
to balls and singletons any time the unit ball of the space is irreducible, and suggest to consider the wider 
class of diametrically complete sets for further exploration.

Existence of constant width sets which are not balls (the most famous the Reuleaux triangle) has been 
known for a long time in Mathematics, and a thorough study of such sets, as well as of diametrically 
complete sets, has been conducted in finite dimensional spaces. Interest about these notions in the infinite 
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dimensional setting started around 1985 with papers by Behrends, Harmand, Payá, Rodriguez-Palacios and 
Yost, mostly connected with the study of M-ideals, and several scattered results appeared in the following 
twenty years.

Then, in 2006, Moreno, Phelps and the second author published two joint papers [13,14] totally devoted 
to the study of these properties in infinite dimensional spaces. An exhaustive report of the results obtained 
till that time is contained in [13] and we refer to it for a more detailed history of the subject.

In [13] Moreno, Papini and Phelps determine the class of constant width sets in C(K) spaces and in co, 
and they provide both an example, in c0, of a set of constant width with empty interior and an example of a
subset of C([0, 1]) which is diametrically complete and is contained in a hyperplane. In [14] they consider, 
beside the two classes of sets already mentioned, two other related families of sets; in particular the class 
of sets with constant radius from the boundary, a property introduced by Eggleston and possessed by all 
diametrically complete sets (hence by all constant width sets).

Papers [13] and [14] focus mainly on C(K) spaces and their subspaces. Few examples and results exist in 
reflexive spaces, except for finite dimensional and Hilbert spaces.

Therefore one of the aims of this paper is to examine properties of the aforementioned classes of sets as 
well as their mutual relationships in generic reflexive spaces.

In doing that, the notion of normal structure, that has been sporadically used in [13,14] and in some 
subsequent work by Moreno [12] and Moreno and Schneider [15] in connection with the properties we are 
interested in, turns out to be fundamental. A detailed study regarding how properties like normal structure 
can help to shed new light on diametrically complete sets or even constant width sets has not yet appeared 
in the literature and it is our intention to present it, in generic normed spaces, in Section 2. Our main result 
of the section is Proposition 2.5 stating that the class of diametrically complete sets and the class of sets 
of constant radius from the boundary coincide if the space has normal structure. Besides, also Theorem 3.4 
(which is in Section 3 because its usefulness is in reflexive spaces) enlightens relationships between 
properties of normal type and existence of diametrically complete sets which are diametral.

The main result of the paper is Theorem 3.5 in Section 3 where we show that in reflexive spaces satisfying 
the non-strict Opial’s condition diametral sets (if any) can be enlarged to sets which are both diametral 
and diametrically complete.

The first consequence of this result is that, in those spaces, normal structure is equivalent to the weaker 
property that the absolute Chebyshev radius is strictly smaller than the diameter for every bounded set.

Our main result is of course strictly connected also with the question whether diametrically complete (or 
even constant width) sets exist whose interior is empty. In regard to this problem, the situation seems to be 
quite different in nonreflexive and in reflexive spaces. In nonreflexive spaces the results we quoted from [13] 
prove that it is actually possible to construct explicit examples. In reflexive spaces, our result guarantees 
existence of diametrically complete sets with empty interior. Moreover, starting from a set of that kind, we 
construct a diametrically complete set which is contained in a hyperplane. On the other side, we are not 
aware of any example, in reflexive spaces, of a set of constant width with empty interior.

The last Section 4 presents some known results and open problems about the structures of normal type 
considered in the paper and their uniform versions.

1. Notation and relevant definitions

Throughout this paper, X denotes an infinite dimensional real Banach space, X∗ its topological dual
space and BX its unit ball.

We denote by δ(A) the diameter of a bounded set A, by Ao, ∂A and A its interior, its boundary and its 
closure, respectively, and by coA the closed convex hull of A.

C denotes a nonempty, nonsingleton, bounded, closed and convex set.
We recall the relevant definitions.



We say that A is a diametrically complete set in X, DC for short, if

δ
(
A ∪ {x}

)
> δ(A) for every x ∈ X \A.

Obviously a diametrically complete set must be bounded, closed and convex.
Eggleston proved that diametrically complete sets are characterized by the spherical intersection property, 

i.e. that A is diametrically complete if and only if

A =
⋂
x∈A

(
x + δ(A) ·BX

)
.

Given a set A, a diametrically complete set C such that A ⊆ C and δ(A) = δ(C) is called diametric 
completion of C.

It is simple to see (via Zorn’s lemma) that every bounded set admits diametric completions.
We say that C is a constant width set, CW for short, of width λ, if for every f ∈ X∗, ‖f‖ = 1, we have

sup f(C) − inf f(C) = λ.

A simple application of the separation theorem shows that in every Banach space X, sets of constant 
width are diametrically complete.

The converse is valid when X is Hilbert (for the infinite dimensional case this follows easily from The-
orem 1 in [20]; see also [2] for a direct proof) or 2-dimensional but fails already for certain 3-dimensional 
spaces (see [6]).

For sets A, B ⊂ X, A, B bounded and nonempty, and for x ∈ X we set

r(A, x) = sup
{
‖y − x‖ : y ∈ A

}
and r(A,B) = inf

{
r(A, x) : x ∈ B

}
.

r(A, X), usually denoted by r(A), is called (absolute) Chebyshev radius of A; r(A, coA) is called Chebyshev 
self-radius of A.

The sets

C(A) =
{
x ∈ X : r(A, x) = r(A)

}
and CS(A) =

{
x ∈ coA : r(A, x) = r(A, coA)

}

are called respectively Chebyshev center and Chebyshev self-center of A.
We say that C is a set of constant radius (from its boundary), CR for short, if

r(C, x) = δ(C) for every x ∈ ∂C.

CR sets, together with CW and DC sets, were considered in [14] where it was proved that in any normed 
space diametrically complete sets have constant radius.

We recall now some definitions connected with the notion of normal structure.
A set C is called diametral if r(C, C) = δ(C). Analogously a sequence {xn} ⊂ X is called diametral if

limn→+∞ dist(xn, co(x1, x2, ..., xn−1)) = δ({xn}). For {xn} diametral, co{xn} is a diametral set.
A space X has normal structure if it does not contain any diametral set, i.e. if r(C, C) < δ(C) for every 

C ⊂ X.
If we require only the absolute radius to be strictly smaller than the diameter for every bounded set, we 

obtain a property strictly weaker than normal structure.
We say that a space X has property (G) if r(C) < δ(C) for every C ⊂ X.



Both concepts have a uniform version; precisely we define two constants of the space, J(X), called Jung 
constant, and Js(X), called self-Jung constant, as

J(X) = sup
{
2r(C) : C ⊂ X; δ(C) = 1

}

and

Js(X) = sup
{
2r(C,C) : C ⊂ X; δ(C) = 1

}
.

When Js(X) < 2 we  say that X has uniform normal structure. The
following definition, which is new, will be essential in Section 3.

Definition 1.1. A diametral set is called maximal diametral if it is not properly contained in any diametral 
set with the same diameter.

It can be proved easily, again via Zorn’s lemma, that any diametral set C is contained in a maximal 
diametral set C̃ with the same radius. Any such C̃ is said to be generated by C.

It is easy to see that:

Remark 1.2. A diametral set has empty interior and constant radius. A diametral set can be diametrically 
complete only if it is a maximal diametral set.

2. CW, DC, CR sets and normal structure

The strict relationships between the group of properties that we are examining and normal structure can
be inferred from the next result from [13].

Proposition 2.1. (See [13, Theorem 3.2].) Let C be diametrically complete: if Co = ∅, then C is diametral.

The result can be made slightly more detailed:

Proposition 2.2. Let C be diametrically complete: Co = ∅ if and only if C is a maximal diametral set.
Let C be a set of constant radius: Co = ∅ if and only if C is diametral.

Proof. The if implication is trivial because any diametral set has empty interior.
For the reverse implication we prove the second claim first. For a set of constant radius C, Co = ∅ implies 

r(C, x) = δ(C) for  every x ∈ C, i.e. r(C, C) = δ(C).
Now a diametrically complete set C has constant radius, and is therefore diametral whenever Co = ∅; 

were C not maximal, a diametral  set C̃ would exist, with δ(C̃) = δ(C), which contains C properly. Then, 
adding to C any point from C̃ \ C would not enlarge the diameter of C, contradicting the assumption that C 
is diametrically complete. �

Results in the next proposition are almost immediate consequences of Proposition 2.2; the second claim 
was already remarked by Moreno [12, p. 176].

Proposition 2.3.

(a) A space has normal structure if and only if every set of constant radius has nonempty interior.
(b) A space has property (G) if and only if every diametrically complete set has nonempty interior; in

particular, in spaces that enjoy property (G) every set of constant width has nonempty interior.



Proof.

(a) is equivalent to the second statement of Proposition 2.2.
(b) We recall that in [13, Theorem 3.2], it was proved that r(C) = r(C, C) for  every diametrically complete

set C.
If (G) holds, for any diametrically complete C we have

r(C) = r(C,C) < δ(C)

so C is not diametral and its interior cannot be empty.
If (G) does not hold, let C be such that r(C) = δ(C) and C̃ be a diametrical completion of C. Then

r(C) ≤ r(C̃) ≤ δ(C̃) = δ(C) and r(C̃) = r(C̃, C̃)

imply that C̃ is diametral, hence has empty interior. �
We have just proved that constant width, diametrically complete and constant radius sets with empty 

interior can exist only in spaces which lack normal structure. As about constant radius sets, we have 
remarked in Section 1 that every diametral set is of constant radius, hence we have plenty of constant 
radius sets whose interior is empty. But do constant width sets or diametrically complete sets with empty 
interior exist?

A positive answer to this question was given in [13] in nonreflexive spaces. We’ll deal with the problem 
in reflexive spaces in Section 3.

We have recalled in Section 1 that each of the classes of constant width, diametrically complete and 
constant radius sets is contained in the next one, and in general the inclusion is strict.

Concerning equivalence of the classes of diametrically complete and of constant radius sets, Moreno, 
Papini and Phelps proved the following

Proposition 2.4. (See [14, Prop. 2.2].) Every diametrically complete set has constant radius. The converse, 
which is false in general, holds for sets with nonempty interior. In particular, the two notions coincide in 
finite dimensional spaces. They also coincide in Hilbert spaces.

We extend their result to spaces with normal structure. We remark that the problem whether the coin-
cidence of the two classes characterizes spaces with normal structure is still open.

Proposition 2.5. The class of diametrically complete sets and that of sets of constant radius coincide if the 
space X has normal structure.

Proof. Since diametrically complete sets do have constant radius, we need only prove that in spaces with 
normal structure every set of constant radius is a diametrically complete set.

Assume that X has normal structure and let C be any set of constant radius in X. By Proposition 2.3(a), 
Co 	= ∅, and the result just quoted from [14] implies that it is diametrically complete.

Propositions 2.5 and 2.2 show that the class of sets of constant radius is the union of the class of 
diametrically complete sets with the family of all diametral sets.

Proposition 2.5 together with Proposition 4.1 in [14] allows us to extend immediately Corollary 4.2 there 
to

Corollary 2.6. The class of diametrically complete sets is closed with respect to the Hausdorff metric in any 
space with normal structure.



 

 

The next two results connect uniqueness of the diametric completion of a set C to the diameter of its 
Chebyshev center C(C). The first one was presented by the second author in [16]: since that paper is not 
easily accessible, we give again its proof here.

Proposition 2.7. (See [16, Prop. 3.5].) If the set C has a unique diametric completion in X, then δ(C(C)) ≤ 
2r(C) − δ(C).

Proof. Set

C ′ =
⋃

{C̃ : C̃ a diametric completion of C}

and, for ε ≥ 0,

Cε(C) =
{
x ∈ X : r(C, x) ≤ r(C) + ε

}
.

We may assume C(C) nonempty, and, by contradiction, we suppose δ(C(C)) > 2r(C) − δ(C).
It is easy to see that, for any ε,

C(C) + εBX ⊂ Cε(C),

hence

δ
(
Cε(C)

)
≥ δ

(
C(C)

)
+ 2ε.

Therefore, if we choose ε = δ(C) − r(C), we have that

Cε(C) =
{
x ∈ X : r(C, x) ≤ δ(C)

}
= C ′ and δ

(
C ′) ≥ δ

(
C(C)

)
+ 2ε > δ(C)

i.e. there exist more than one diametric completion of C in X. �
Corollary 2.8. Any bounded set C such that δ(

δ
C
(
(
C
C
)
)) > J(X) − 1 has more than one diametric completion.

In particular, δ(δ
C
(
(
C
C
)
)) ≤ J(X) − 1 for every diametrically complete set C.

Proof. We may assume δ(C) = 1.  Then our assumption becomes δ(C(C)) > J(X) − 1 ≥ 2r(C) − δ(C) and 

the thesis follows from Proposition 2.7. 

The estimates given in Corollary 2.8 are sharp, as shown by the next

Example 2.9. Let X be c0, and consider its subset C = {(xi) : 0  ≤ xi ≤ 1, i = 1, 2, ...}. It is easy to see
that C is a diametral and diametrically complete set with δ(C) = 1,  hence it coincides with C(C). It is well 
known that J(c0) = 2,  therefore 1 = δ(δ

C
(
(
C
C
)
)) = J(X) − 1 which  shows that the bound given in Corollary 2.8

is sharp.
Moreover, for ε > 0, set Cε = {(xi) : 0  ≤ x1 ≤ 1 − ε ∧ 0 ≤ xi ≤ 1, i = 2, 3...}; still δ(Cε) = 1.  Now

C(Cε) = {(ci) ∈ c0 : −ε ≤ c1 ≤ 1 ∧ 0 ≤ ci ≤ 1, i = 2, 3...} and δ(C(Cε)) = J(X) − 1 + ε which implies that 
Cε has more than one diametric completion.



3. Diametral and diametrically complete sets in reflexive spaces

We begin this section with a classical example of a diametral set which we immediately see not to be
diametrically complete.

Here X is the space E√
2, a renorming of l2 introduced by R.C. James to show that not all reflexive spaces

possess normal structure. We recall the general definition of such spaces, since they will be used more than 
once in the following.

For β > 1 let Eβ = (l2, | · |β) be the space l2 renormed according to

|x|β = max
{
‖x‖2, β‖x‖∞

}

where ‖x‖2, ‖x‖∞ denote respectively the l2 and l∞ norms of x.

Example 3.1. For X = E√
2 set C = co{ei}, where {ei} is the canonical basis of l2. It is known, and easy to

see, that C is a diametral set in E√
2, with r(C, C) = δ(C) =

√
2. We claim that r(C) =

√
2. In fact, take

any x ∈ E√
2: since x ∈ l2, ∀ε > 0 ∃io(ε) such that |xi| < ε ∀i ≥ io. Then

|x− eio |√2 ≥
√

2‖x− eio‖∞ ≥
√

2(1 − ε)

which implies r(C, x) ≥
√

2 for every x ∈ E√
2. So C is a diametral set such that

√
2 = r(C) = r(C, C); 

nevertheless it is neither diametrically complete, since y = ( 1√
2 , 

1√
2 , 0, ..., 0, ...) does not belong to C but

r(C, y) =
√

2, nor maximal diametral because 
√

2 = r(C) ≤ r(C, z) ≤
√

2 for each z ∈ co(C ∪ {y}) implies
that also co(C ∪ {y}) is diametral.

The equality r(C) = δ(C) in Example 3.1 shows that E√
2 lacks also property (G); besides, we could

prove directly that a maximal diametral set generated by the set C is diametrically complete, but we’ll 
obtain these results as particular cases of the next Theorem 3.5 and Corollary 3.6.

In Section 2 we asked about existence, in reflexive spaces, of constant width or at least diametrically 
complete sets whose interior is empty. Taking into account Proposition 2.2 we know that they have to be 
maximal diametral sets. This leads us to formulate the main question of this section.

Main Question 3.2. In reflexive spaces, must every maximal diametral set be diametrically complete?

A weaker version of it is

Question 3.3. If a reflexive space contains a diametral set, does it contain also a diametrically complete set 
which is still diametral?

Interest in finding classes of spaces where the problem has an affirmative answer lies also in the fact that 
those spaces lack normal structure (if and) only if they lack property (G).

All this is made precise in

Theorem 3.4. Let X be a normed space and consider the following conditions:

(a) Any maximal diametral set is diametrically complete;
(b) for any maximal diametral set C ⊂ X, r(C) = r(C, C);
(c) if a diametral set exists in X, then there exists also a diametrically complete set which is diametral;
(d) if X has property (G) then X has normal structure.

(a) and (b) are equivalent; they imply (c) which is equivalent to (d).



 

Proof. (a) ⇒ (b) Proved in [13, Theorem 3.2].
(b) ⇒ (a) If C were not diametrically complete, it would exist y /∈ C, such that δ(C ∪ y) = δ(C), hence

r(C, y) ≤ δ(C) and  consequently (being r(C, ·) a  convex function) r(C, z) ≤ δ(C) for  any z ∈ co(C ∪ {y}).
Now our assumption that r(C) = r(C, C) = δ(C) implies that r(C, z) = δ(C) for every z ∈ co(C ∪ {y}), 

i.e. that co(C ∪ {y}) is diametral, contradicting maximality of C.
(a) ⇒ (c) Let C be a diametral set. Consider the class A of all diametral sets containing C and with

diameter δ(C): by Zorn’s lemma, there is a diametral set C̃ ∈ A, which is maximal with respect to the
(partial) order relation defined by inclusion; C̃ must be diametrically complete because of (a).

(c) ⇒ (d) Suppose X lacks normal structure: in X there exists a diametral set, hence by (c) there exists
also a set C which is both diametrically complete and diametral. So r(C) = r(C, C) = δ(C) and  X lacks
property (G) as well.

(d) ⇒ (c) If a diametral set exists, by hypothesis X lacks also property (G). Then, Proposition 2.3
guarantees the existence of a diametrically complete set with empty interior, which is diametral by Propo-
sition 2.2. 

We point out that, though Theorem 3.4 holds in any normed space, nonreflexive spaces do exist where 
none of the conditions listed above is fulfilled: for instance, l∞ enjoys property (G) but lacks normal 
structure, hence it contains a maximal diametral set which is not diametrically complete and is contained in 
a ball of radius strictly smaller than its diameter.

We proceed now to prove that the answer to our main question is affirmative in the class of reflexive 
spaces satisfying the non-strict Opial’s property.

We recall that a space X satisfies the non-strict Opial’s property if, for any sequence {xn} ⊂ X, if 
w-limn→+∞ xn = x then, for every y ∈ X,

lim inf ‖xn − x‖ ≤ lim inf ‖xn − y‖. (1)

It is known that the Eβ’s as well as the spaces lp,∞, which are renormings of the lp spaces, do have
the non-strict Opial’s property (see [5]), and also that none of them enjoys normal structure. On the other 
side, the strict Opial’s property (defined like (1) but with a strict inequality) is known to imply normal 
structure.

Theorem 3.5. Let X be a reflexive Banach space which satisfies the non-strict Opial’s property. If C is a 
maximal diametral set in X, then C is diametrically complete in X.

Proof. Assume C is not diametrically complete: as a first step, we claim that a point y ∈ X \ C exists 
such that r(C, y) < δ(C). In fact, we have r(C, y) ≤ δ(C) for some points y ∈ X \ C. If r(C, y) = δ(C) for 
all such y’s, we would have r(C, z) = δ(C) for any y and any z ∈ co(C ∪ {y}), contradicting maximality 
of C.

Secondly, it is easy to prove, and known in literature, that from any diametral set C it is possible 
to extract a diametral sequence {xn} ⊂ C with the same diameter as C, i.e. a sequence such that
limn→+∞ dist(xn, co(xi)n−1

1 ) = δ({xn}) = δ(C). Notice that any subsequence of a diametral sequence is
still diametral, with the same diameter. So weak compactness of C allows us to assume, passing to a sub-
sequence if necessary, that {xn} converges weakly to some point z ∈ co{xn}. Now, for k = 1, 2, ..., choose
zk ∈ co(xi)nk−1

1 such that ‖z − zk‖ < 1
k ; we may assume that {nk} is increasing. Considering the sequence

{xnk
}, which is still diametral with δ({xnk

}) = δ(C), we have

lim inf ‖xnk
− z‖ ≥ lim inf

(
‖xnk

− zk‖ − ‖zk − z‖
)

≥ lim
(

dist
(
xnk

, co(xi)nk−1
1

)
− 1
k



= δ
(
{xnk

}
)

= δ(C) > r(C, y)

≥ lim inf ‖xnk
− y‖

contradicting the non-strict Opial’s condition, which proves the thesis.

Taking into account Theorem 3.4 we can state the next

Corollary 3.6. Let X be a reflexive Banach space which satisfies the non-strict Opial’s property: if X lacks 
normal structure, X lacks also property (G).

While l∞ is an example of a space with property (G) (see Section 4) and without normal structure, we do 
not know of any such example in reflexive space. A famous result obtained independently by Klee [10] and 
Garkavi [8], assures that in every normed space X which is not an inner product space and has dim(X) ≥ 3 
we can find bounded convex sets C such that r(C) < r(C, C).

Our main question is equivalent to ask if in reflexive spaces we may have maximal diametral sets satisfying 
this inequality.

We turn now to the problem of the existence of diametrically complete sets (or even constant width sets) 
with empty interior. We have already remarked in the Introduction that such examples were provided in 

[13] in nonreflexive spaces, therefore we restrict our investigation to reflexive spaces.
Theorem 2.3 shows that such sets can exist only in spaces without normal structure, and Theorem 3.5

shows that in every reflexive space which satisfies the non-strict Opial’s condition and lacks normal structure 
(equivalently, lacks property (G)) we must have a diametrically complete one which is diametral, hence a 
diametrically complete set with empty interior. Therefore we can state

Corollary 3.7. Every reflexive space which satisfies the non-strict Opial’s condition and lacks normal struc-
ture contains diametrically complete sets whose interior is empty.

We remark that in [3, Theorem 3.2], it was claimed that no diametrically complete set other than single 
points could admit empty interior, which is contradicted both by examples in [13] and by our results.

In particular, the set C in Example 3.1 has a diametric completion which is still diametral and has empty 
interior. Obviously, a completion of that C cannot be contained in a hyperplane, but we can produce also 
diametrically complete sets with that property, as shown by the following result.

Theorem 3.8. Let X = E√
2 ⊕2 R. There exists a diametrically complete set C contained in the hyperplane

E√
2 of X.

Proof. Let A be the collection of all diametral subsets of E√
2 which contain co{ei} and have diameter 

√
2.

With an easy application of Zorn’s lemma as in Theorem 3.4, we produce a maximal set C in A. We claim 
that

(a) C is diametrically complete in E√
2;

(b) C is diametrically complete also in X = E√
2 ⊕2 R.

In fact

(a) C, as a maximal diametral set in the space E√
2 which satisfies the non-strict Opial’s property, is

diametrically complete: in particular

r(C, x) =
√

2 ∀x ∈ C and r(C, x) >
√

2 ∀x ∈ E√
2 \ C;



(b) let z ∈ E√
2 ⊕2 R, z = (z̃, ζ) with z̃ ∈ E√

2 and ζ ∈ R \ {0}. For any x ∈ C,

‖z − x‖ =
(
|z̃ − x|2√2 + ζ2) 1

2 > |z̃ − x|√2.

As a consequence, for every z ∈ (E√
2 ⊕2 R) \ E√

2, we have

r(C, z) =
(
r(C, z̃)2 + ζ2) 1

2 > r(C, z̃) ≥
√

2

which, together with (a), proves that C is diametrically complete in E√
2 ⊕2 R.

Therefore C is a diametrically complete set contained in a hyperplane of a reflexive space. 

Having proved that diametrically complete sets may have empty interior also in reflexive spaces, we are 
led to ask what can be said about constant width sets with empty interior. As recalled in Section 2, such 
an example was given in c0; the set in that example is a proper pseudo-ball (a set whose w∗-closure in X∗∗

is a ball and which is not a ball itself), and of course the example cannot be extended to reflexive spaces.
Existence of proper pseudo-balls characterizes M-ideals among Banach spaces (see [17]).
A preliminary question is if proper constant width sets (i.e. neither singleton nor balls) may exist in infinite 

dimensional reflexive spaces. An affirmative answer is provided by results in [22] saying that any Banach 
space has an isomorphic copy containing proper constant width sets (i.e. not balls and not singletons), so 
we can say that reflexive spaces containing proper constant width sets do exist.

Therefore it is not meaningless to look for the “worst”, from a topological point of view, constant width 
sets, so bad to have empty interior.

Unfortunately, we must leave the problem open: our last example, being contained in a hyperplane, 
certainly cannot have constant width and we’ll show that, at least in the case of X = E√

2, also the
construction in Theorem 3.5 does not lead to a constant width set.

With this aim, we start from the set co{ei} in E√
2 and give a clear geometric characterization of the

maximal diametral set C that it generates. Theorem 3.5 states that C is a diametric completion of co{ei}.

Theorem 3.9. If C is a maximal diametral set generated by co{ei} in E√
2, C is the intersection of the closed

positive cone of l2 with the unit ball in the l2-norm. In particular, C is the unique diametric completion of 
co{ei}.

Proof. Let c = (ci) be any point of C: observe first that cı̄ < 0 for some ı̄ would imply |c − eı̄|√2 ≥√
2|cı̄ − 1| >

√
2 contradicting δ(C) =

√
2.

Now suppose that ‖c‖2 > 1: since c ∈ l2 we have that ∀ε > 0 ∃io(ε) such that |xi| < ε ∀i ≥ io. Then, for
a sufficiently small ε

|c− ei0 |2√2 ≥ ‖c− eio‖2
2 =

i�=i0

c2i + (1 − ci0)2 = ‖c‖2
2 + 1 − 2ci0 > 2

contradicting again δ(C) =
√

2.
To prove the reverse implication, take x = (xi) with xi ≥ 0 ∀i and ‖x‖2 ≤ 1 and suppose that x does

not belong to C. Since C is diametrically complete, this is equivalent to say that r(C, x) >
√

2, i.e. ∃c ∈ C

such that |x − c|√2 >
√

2. Then one of the following two inequalities must be satisfied:

(a) ∃ı̄ such that |xı̄ − cı̄| > 1
(b) ‖x − c‖2 >

√
2.



If (a) held, since xı̄ ≤ 1 and both xı̄ and cı̄ are non-negative, we would have

|xı̄ − cı̄| = cı̄ − xı̄ > 1

hence

cı̄ > 1 which implies |c|√2 ≥
√

2|cı̄| >
√

2

contradicting δ(C) =
√

2 because 0 = w-lim ei ∈ C.
In case (b), remember that we have just proved that for each c ∈ C we have ‖c‖2 ≤ 1. Therefore

‖x− c‖2
2 =

+∞

i=1
(xi − ci)2 =

+∞

i=1

(
x2
i + c2i − 2xici

)
≤ ‖x‖2

2 + ‖c‖2
2 ≤ 2

again a contradiction. �
Corollary 3.10. In E√

2, the set C, diametric completion of co{ei}, cannot be of constant width.

Proof. It was proved in [17] that a set C is of constant width in X if and only if C − C = δ(C)BX ; by
reflexivity of E√

2 we need only show that C − C 	=
√

2BX and it is sufficient to notice that the point
y = (1, 1, 0, ...) belongs to 

√
2BX , but not to C − C.

More generally, any point y of 
√

2BX such that 1 < ‖y‖2 ≤
√

2 and 0 ≤ yi ≤ 1 for all i’s cannot be in
C − C. In fact, suppose y = z − w; z, w ∈ C. Since, by Theorem 3.9, wi ≥ 0 ∀i, we must have zi ≥ yi ∀i,
hence ‖z‖2 ≥ ‖y‖2 > 1 contradicting, again because of Theorem 3.9, the assumption z ∈ C. �
4. Jung and self-Jung constants

In this section we present a few known results about Jung and self-Jung constants J and JS , to describe
the environmental background of the aspects related to normal structure in our main question of Section 3.

The fact that the two constants may have a strongly different behavior in nonreflexive spaces can be
deduced from a few classical results:

• 1 ≤ J(X) ≤ 2;
• J(X) = 1 if X = C(Ω), Ω an extremally disconnected compact set (see [9, p. 193]); J(C(Ω)) = 2

otherwise (Amir [1], Franchetti [7]); as a consequence

J
(
l∞

)
= J

(
L∞(

[0, 1]
))

= 1; J(c) = J
(
C[0, 1]

)
= 2;

• J(l1) = J(L1([0, 1])) = 2 (Pichugov [18]);
•

√
2 ≤ Js(X) ≤ 2 (Maluta [11]);

• Js(X) = 2 if X is nonreflexive (Maluta [11]).

Actually, the anomalous case is X = C(Ω), Ω an extremally disconnected compact set, which is the unique 
case where J(X) = 1, i.e. r(C) = 1

2δ(C) for every bounded C (Davis [4]; see also [9]). All other classic
nonreflexive spaces have J(X) = 2.

On the other side, it is very difficult to evaluate the two constants in cases which are not extreme, and 
they are known in very few spaces: in “nice” spaces, for instance in the reflexive Lp’s, they coincide:



• J(X) = Js(X) =
√

2 if X is Hilbert (Routledge [21]);
• J(lp) = J(Lp([0, 1])) = Js(lp) = Js(Lp([0, 1])) = 2max{ 1

p ,
p−1
p } for 1 < p < +∞ (Pichugov [18,19]).

Regarding their mutual implications, first we remark that like normal structure implies property (G), 
analogously Js(X) < 2 implies J(X) < 2. As about the reverse implications, the just mentioned results
solve easily the problem for nonreflexive X’s. In fact

• J(l∞) = 1 < 2 = Js(l∞);
• l∞ has property (G), though it is well known that it lacks normal structure.

When we pass to reflexive spaces, we come again to our main question of Section 3 that, in this environment, 
we formulate in the weaker form as

Question 4.1. In reflexive spaces, does property (G) imply normal structure?

We point out that the analogous question for the corresponding uniform properties was given a negative 
answer in [1]. Unfortunately, the related claim is incorrect.

The relevant space is X = (
∑+∞

1 l∞n )2; X is reflexive (but not superreflexive), it has normal structure
but Js(X) = 2 (Baillon, 1981).

In [1] it was claimed that J(X) = 1 (which would also contradict [4]), but it is enough to consider the 
sequence {xn} ⊂ X, where, for each xn, the only non-zero coordinate is the nth, and this one is the vector
(1, 0, ..., 0) of Rn, to see that J(X) must be at least 

√
2.

In fact, δ({xn}) =
√

2, and, for any x ∈ X and for any ε > 0, for a sufficiently large n we have
‖x − xn‖ > 1 − ε, proving that r({xn}, x) ≥ 1, so that r({xn}) ≥ 1.

We do not know if for this space J(X) is actually less than two: 
√

2 seems to be a reasonable candidate
for its value. In any case, since X does possess normal structure, it would not provide a negative answer to 
our question.
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