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Abstract This paper is devoted to the formulation of a novel optimization under uncertainty frame-
work for the definition of optimal shapes for morphing airfoils, applied here to advancing/retreating
2D airfoils. In particular, the morphing strategy is conceived with the intent of changing the shape
at a given frequency to enhance aerodynamic performance. The optimization of morphing airfoils pre-
sented here only takes into account the aerodynamic performance. The paper is then focused on an
aerodynamic optimization to set the optimal shape with respect to performance, where technological
aspects are inserted through geometrical constraints. In fact, this paper presents an exploratory work
on morphing geometries which aims at understanding the relationship between shape degree of freedom
and actual aerodynamic gain. Thus, exploring and demonstrating the gain of the aerodynamic shape
may drive the development of new mechanism for the realization of morphing structures, which could
be applied to helicopter rotor blades.

Keywords Morphing airfoils · uncertainty quantification · robust optimization · helicopters

1 Introduction

Aerodynamic forces to fly a helicopter are generated by the rotor, a system of rotating wings, called
blades, that provide the lift to sustain flight, the propulsive force to move the aircraft through the air
and the control to trim the aircraft or change its attitude. In classical configurations, a single main rotor
is employed and a sideward, tail rotor is required to provide anti-torque and directional control. The
presence of rotating elements no doubt increases the complexity of helicopters from both aerodynamic
and mechanic points of view. With regard to aerodynamics, the flowfield around the helicopter is
dominated by unsteady, three-dimensional effects and interactions among the helicopter bodies (rotor
blades, main body and tail), as well as by vortices and wakes (see Fig. 1). This system is so complicated
that, after many years of studies, it still defies an adequate and comprehensive description [22]. From
a mechanic point of view, the presence of the rotor introduces the structural dynamics associated with
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the degrees of freedom of each blade. In conventional rotors with fully articulated hubs, helicopter
blades are connected to the shaft by means of hinges which permit flap and lead-lag motions. Pilot
control is exerted through a change in the pitch angle of the blades, either cyclically or collectively.
In addition, blades are slender bodies undergoing twisting and bending. The aeroelastic degrees of
freedom, together with the remaining rigid motions, are coupled with the aerodynamic loads.

The aerodynamic flowfield, the blade dynamics and aeroelasticity, the pilot control are all relevant
aspects of the environment surrounding the rotor, which must be taken into account in helicopter
rotor design. This poses a great challenge to rotor designers, because the high-fidelity analysis of all
these aspects and their mutual interaction requires the employment of tools with prohibitive cost.
In comprehensive rotor analysis models, parsimonious models of each sub-system (e.g. aerodynamics,
structural dynamics) are used to limit the cost necessary to estimate loads, displacements and overall
performance of the rotor [22, p.805]. Examples are the CAMRAD II code developed by Johnson [15,
14] or MBDyn [26,25] developed at the Department of Aerospace Science and Technology of the
Politecnico di Milano. A modest cost permits parametric calculations that are crucial in the design
stage. To some extent, the employment of cheap models and the combined use of models of different
fidelity are intrinsically rooted in the design of rotors.

Another major challenge of rotor design is the definition of the performance goals. In fact, helicopter
rotors are required to fulfill many different mission requirements. This translates into the necessity for
rotor blades to operate with satisfactory performance in extremely different operating conditions,
depending on the flight condition, pitch control and advancing or climbing velocity.

In such a context, the goal of aerodynamic design is to improve the overall performance of the
rotor by increasing thrust to accommodate for an increased payload, reducing the torque due to aero-
dynamic drag at a given thrust level, alleviating aerodynamic loads on the blade structure, enlarging
the helicopter rotor flight envelope, reducing vibrations.

Airfoils of helicopter rotor blades are required to operate in different conditions and good perfor-
mance in one condition does not transfer to another one. A very attractive solution to this problem is
the employment of a blade capable of changing its shape during flight, that is a morphing blade.

With regard to helicopters, morphing rotor design is a challenging and active area of research [4]. In
helicopter applications, the urgent need to improve the boundaries of the flight envelope leads research
and industry to experiment extreme configurations and technological solutions. Examples of this are
tilt-rotors (e.g. the Bell XV-15) or hybrid configurations with a rotor and one or two propellers (such
as Sikorsky X2 or Airbus Helicopter X3), or adaptive rotors (such as the DARPA Mission Adaptive
Rotor (MAR))

Retreating side:
subsonic regime, high angles of attack

Advancing side:
transonic conditions,
low angles of attack

Tip
vortices

Blade elasticity

Main body
and tail

interaction

Fig. 1: Characteristics of the complex flowfield around a helicopter rotor in forward flight.
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(a) (b)

Fig. 2: Technologies for variable camber morphing: (a) Prototype of conformable camber airfoil with
piezoelectric actuators developed in Ref. [12], (b) FishBAC structure [30].

Potential approaches to reach this goal are variable blade diameter, sweep, chord, variable-camber
airfoils, varying blade twist, anhedral/dihedral, tip speed, stiffness, and damping. Some studies in
the field have demonstrated the aerodynamic and acoustic benefits of active twist rotor [3,41], rotor
power reduction using trailing-edge flaps or envelope expansion using extendable chord sections [4].
Probably the most developed type of morphing in the field is related to twist, obtained with aeroelastic
effects produced by trailing-edge control surfaces and “smart spar”, i.e. variable stiffness spar to create
aeroelastic twisting.

Airfoil morphing is mainly concerned with camber variations: to a larger extent, the camber of an
airfoil describes its asymmetry, and is typically used to control its zero-lift angle of attack [10]. Adding
camber, for example, will tend to increase the amount of lift produced at a given angle of attack of
the airfoil, although this is limited by stall and separation. Almost all modern aircraft use discrete
control surfaces, such as flaps, ailerons, or sometimes slats, to adjust the camber of the wing. Trailing
edge devices are control surfaces typically hinged at 75% of the chord which rotate to change their
angle and also translate in some cases to increase chord as well as camber. In helicopter rotor blades,
trailing edge flaps have been extensively considered for vibration reduction over the last decades [12].
For instance, flaps are considered in the Boeing Smart Materials Actuated Rotor Technology (SMART)
rotor project focused on the development of controllable rotors with smart-material actuators [19,35].
However, the camber change is almost always discrete in that after actuation of the control surface,
there is a sudden transition of camber in the chordwise direction. This causes a sudden change in
the pressure distribution over the corner created at the hinge line, causing a drag penalty and the
possibility of separation. As a result, a smooth variation of camber obtained by airfoil morphing is an
attractive solution to increase the lift coefficient in particular conditions of flight.

Variable camber airfoils have been adopted in fixed-wing applications [7,2] and this solution has
recently been explored for helicopter applications, as well. To this extent, a continuously changing
rotor blade airfoil is seen as a successor to rotor blade trailing-edge flaps [12]. In Ref. [18] an adaptive
airfoil with an aerodynamically smooth variable leading-edge droop is used to postpone dynamic stall.
A variable-camber airfoil based on a compliant mechanism and piezo-electric actuators is developed in
Ref. [12] (see Fig.2a). The morphing device is used for active helicopter vibration reduction. In this case
the shape of the airfoil is fixed, but an optimization is performed to find the optimal material distribu-
tion to maximize the trailing-edge deflection under actuation forces and minimize the deflection under
external aerodynamic loads. Another important study in the field is the development of the FishBone
Active Camber (FishBAC) concept introduced and developed in Refs. [32,30,31]. The FishBAC is
made of a compliant spine and stringer skeleton, pre-tensioned elastomeric matrix composite skin, an
antagonistic tendon drive linked to a non-backdrivable spooling pulley, and a non-morphing,“rigid”,
main spar (see Fig. 2b).

Another solution in the literature is proposed in Ref. [24]. In this case a variable droop leading
edge is used to improve the sectional lift-to-drag ratio by alleviating dynamic stall on the retreating
blade while simultaneously reducing the transonic drag rise of the advancing blade. A leading edge
variation combined with a trailing edge camber variation is the solution presented in Ref. [37] to define
shock-free airfoils for helicopter rotors.
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Because morphing structures typically imply increased weight, complexity and cost, an in-depth
assessment of the potential aerodynamic benefit of such an approach is strongly recommended [30]. As
a final remark, optimization of the morphing airfoil shape to improve the aerodynamic performance is
typically run separately to the morphing mechanism design [10]. To this extent, the optimization ap-
proach is conceived as a two-level approach [7]: (i) the best deformed airfoil configuration is determined
according to a desired aerodynamic performance, and (ii) in the second level, the best internal struc-
tural configuration is obtained using a topology optimization suited to the chosen compliant structure
able to adapt itself in order to match the optimal shape coming out from the first level.

In this paper, we present a novel framework for obtaining optimal morphing airfoils under uncertain
operating conditions. This is a quite novel approach in literature, permitting to improve the overall
performance of the system. Different types of geometry constraints are considered. The effect of camber
and thickness morphing is discussed and trailing edge morphing is studied. The gain of the morphing
airfoil strategy is assessed not only from a deterministic point of view, but also when considering
uncertainty in the operating conditions. In such a way, a more realistic estimate of the gain of morphing
strategies can be defined.

In the following, Section 2 is devoted to the description of some numerical ingredients, which are
used in this paper. Then, a discussion on two different choices of morphing strategy is presented in
Sec. 3 to assess the capability of morphing airfoils. In this first part, only deterministic evaluation are
presented, because deterministic optimal shapes (and corresponding operating conditions) represent
the good starting point of robust approaches. This discussion demonstrates how camber morphing is
more effective to enhance the aerodynamic performance. Then, optimal shapes from deterministic and
robust approaches are computed and presented in Sec. 4. Finally, the validation over the azimuthal
angle is presented in Sec. 5. Some conclusions and perspectives are then drawn in Section 6.

2 Numerical ingredients

The problem of defining optimal airfoil shapes can be cast in an optimization problem, which seeks to
minimize an a priori defined objective function by acting on the shape of the airfoil.

The framework proposed in this paper requires many ingredients that need to be defined. Note
that different choices are possible for each ingredient, even if all the methods used here are assumed
to be highly performing with respect to the application of interest. To begin with, a parameterization
is necessary to translate the airfoil shape into a finite set of sufficiently small design variables. Then,
a method to estimate the cost function (e.g. drag or lift-to-drag ratio) for each combination of design
variables must be chosen. For an aerodynamic optimization problem, this method is the solver of an
aerodynamic model. Finally, an optimization algorithm is necessary to obtain the optimal solution.

2.1 Parameterization and Design variables

The Class/Shape function Transformation (CST) [20] is used to describe an airfoil shape with a finite
set of variables. This technique is retained here since it has shown in literature the capability to
represent a wide variety of 2D geometries with a relatively few scalar parameters (for more details see
for example [29]).

The parameterization is well-defined by specifying two functions: a geometry class function C
and a shape function S that defines the particular shape of the geometry. In this case, the airfoil
shape is decomposed into the camber mean line and the normal thickness distribution. The thickness
distribution is taken in perpendicular direction with respect to the camber mean line.

Then, the camber line and thickness distribution are such that the upper surface ζu and lower
surface ζl are obtained applying the thickness perpendicular to the camber line, as follows

ζu = ζc + ζt cos(ε)

ζl = ζc − ζt cos(ε), (1)

where ε = arctan
(

dζc
dχ

)
. Please note that also the χ coordinate of the resulting airfoil will be affected

by this addition of vectors.
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Note that the coordinate of the camber mean line at the trailing edge is set to zero to consider
closed trailing edge and zero geometric angle of attack. In addition, the class functions for the camber
line Cc and the thickness distribution Ct are defined as follows

Cc(χ) = χ(1− χ) Ct(χ) =
√
χ(1− χ). (2)

While the class function for the thickness distribution is the one suggested in Ref. [20] to define a
rounded nose distribution close to the leading edge, the class function for the camber presents a linear
term to avoid vertical slope of the camber distribution at the leading edge. In addition, the linear term
of the class function permits to directly relate the first coefficient of the shape function Ac0 with the
slope of the camber line at the leading edge. In addition, the linear term of the class function permits
to directly relate the first coefficient of the shape function Ac0 with the slope of the camber line at the
leading edge.

The shape function S(χ) is given by a Bernstein polynomial of order N , whose coefficients {Aci}Ni=1
represent the design variables xs of the optimization problem. A convergence study suggested the
employment of 4th order polynomials for each distributions that yields 10 design variables. The order
of the polynomial could be chosen based on a convergence analysis of the CST (for further details see
Ref. [11]). Because the camber is built as the product of the class function and the shape function, the
linear term in Cc permits to directly relate the coefficient of the shape function Ac0 (i.e. the constant
term of the polynomial) with the slope of the camber line at the leading edge.

In addition to the coefficients describing the shape of the airfoil, the angle of attack can be regarded
as a design variable. In fact, it is possible to solve the constrained optimization problem by acting on
the airfoil design variables xs to minimize the drag coefficient and on the angle of attack to track
the target lift coefficient inside two nested loops. The underlying idea is an analogy with the blade
collective pitch control: to increase thrust it is necessary to act on the collective pitch, which changes
the angle of attack of the blade section through the alteration of inflow angle.

Thus, each airfoil tested in the optimization loop is obtained with a specific set xs, and its per-
formance are evaluated computing the angle of attack α that provides the desired lift coefficient. The
nested optimization loops used to implement this procedure are described in detail in Section 2.3.
Thus, the resulting set of design variables is x = {xs, α}.

2.2 Aerodynamic models

A model describing the aerodynamic load acting on the airfoil is necessary to compute the objective
function of the optimization problem. The aerodynamic models used in this optimization problem are
different for each side of the blade in order to capture the specific features of the flow in such different
operating conditions, while limiting the computational effort.

In the retreating side featuring subsonic condition below the static stall boundary, the XFOIL
code [8] is adopted, which is an aerodynamic code with coupled panel and integral boundary layer
methods developed for the analysis of subsonic, isolated airfoils [8]. This code is chosen because it
provides a fast and sufficiently accurate estimation of the aerodynamic force coefficients for a two-
dimensional section in the range of angle of attack considered in this problem. Please note that the
highest value of the angle of attack in the range is below the static stall limit for most airfoils. Note also
that although dynamic stall has significant impact on forward flight rotor performances, its effect are
not included on the design of airfoil at this stage mainly for two reasons: i) the capability to simulate
correctly the loads developed during a dynamic stall are limited even by using numerically demanding
models, and ii) the dynamic stall is strongly influenced by three dimensional effects [40].

For fully developed transonic conditions, like the one experienced in forward flight, a finite volume-
based numerical solver of the Euler equations is used, the Stanford University Unstructured (SU2)
software suite [33,34]. The SU2 solver provides several space discretization schemes, among which the
second-order Jameson-Schmidt-Turkel scheme is employed. An implicit Euler, local time-stepping is
used to converge to the steady-state solution, and the GMRES method in conjunction with the LU
SGS preconditioner is used to solve the resulting system [13].

For the computation inside the optimization loop, a two-dimensional coarse structured mesh of
20480 rectangular cells is used, with y+ = 1000 (see Fig. 3). The mesh extends ±25 chords around
the unitary-chord airfoil. For each airfoil in the optimization loop, the computation runs for 500



6

(a) (b)

Fig. 3: Coarse structured grid (20480 cells) for Euler computations inside the optimization loop. (a)
O-mesh ; (b) Zoom.

Initial
design x0

Generate
new design

Optimization
loop

Trim loop for advancing side
find ᾱ1 : CL1(ᾱ1,xk) = CL1

Trim loop for retreating side
find ᾱ2 : CL2(ᾱ2,xk) = CL2

Evaluate
objectives

Convergence? Optimal
design

xk f1 = CD1(ᾱ1)

f2 = CD1(ᾱ2)

Yes

No

Fig. 4: Outer NSGA loop for xs and inner trim loop to determine α.

iterations starting from a baseline solution of the NACA0012 airfoil. This number of iteration is used
to ensure the solution reaches a variation of the lift and drag coefficients lower than 10−6. The mesh
is deformed by displacing the airfoil boundary cells according to the new geometry and by translating
the displacement to the volume cells with a method based on the finite element method discretization
of the linear elasticity equations [33]. The element stiffness is set inversely proportional to the wall
distance and 500 smoothing iterations are applied to get a regularly deformed mesh. Concerning the
boundary conditions, wall and far-field characteristic-based conditions implemented in SU2 have been
considered. The total cost of a single CFD iteration is about 400 seconds on a single core.

2.3 Optimization algorithm

In the following sections, different optimization problems will be solved. A general formulation for
them is the following:

minimize: f(x)

subject to: g ≤= 0

by changing: x (3)
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where f is a vector of objective functions which depends on the airfoil lift and/or drag coefficients and
x are the design variables (described in Section 2.1). The objective function vector f contains a single
element in the case of a single objective optimization, or more in case of multi-objective functions.
Equality and inequality constraints g are present: for instance, a lift equality constraint is used to
ensure the airfoil produces the sufficient amount of lift that ensures trim to the rotor, or an inequality
constraint for the moment coefficient, to limit the load on the blade.

To solve the optimization problem, a Non-dominated Sorting Genetic Algorithm [36] is chosen for
its ability to explore the design space.

Evolutionary algorithms have been employed to tackle many engineering optimization problems.
Applications to aerodynamic optimization problems can be found for instance in Refs. [6,21,23]. Main
advantages of such approaches are the possibility to tackle multi-objective problems without scalariza-
tion and to exhaustively explore the design space. On the other hand, they are very expensive from a
computational point of view because they require many computations of the objective function, even
in region of the domain where designs with poorer performance are present. Genetic algorithms uses
operators inspired by natural evolution to get to the optimal solution. In such a framework, each design
vector is considered as an individual, and the design variables in the vector represent the chromosomes.
A group of individuals is called a generation. Each individual is assigned a fitness function, that is a
measure of the probability that this individual will be a parent of the individuals of the next genera-
tion. The fitness in the optimization algorithms is associated to the objective function: the better the
objective function, the higher the fitness value. In the single objective case, the fitness function is a
measure of the objective function. In the multi-objective case, the fitness function is assigned based on
the position of the individual in the objective space with respect to the current Pareto front. With the
fitness value, the selection step is performed to determine the parents of the new generation; mutation
and crossover operators are then used to mantain genetic diversity and to obtain different children
from a single set of parents. The genetic algorithm performs a loop over the generations. The starting
point is an initial generation of individuals that are typically randomly chosen. For each iteration, a
new generation of individuals is computed using selection, crossover and mutation operators. Then,
the objective functions are evaluated for each individual, and each design vector is assigned a fitness
function. From the fitness of these individuals, a new generation is computed and the loop goes on for
a sufficient number of generations.

Typical values for the crossover and mutation probabilities pc = 0.9, pm = 0.1 are chosen and the
sharing parameter is set using a formula based on the number of design variables.

Because of the presence of the lift coefficient equality constraint, which can be satisfied with a
separate design variable (the angle of attack), an inner loop is nested inside the genetic algorithm loop
(see Fig. 4). In particular, for each design vector xs,k of the k-th iteration in the genetic loop, a secant

method is used to find the angle of attack α that guarantees CL,k = CL. The i-th iteration of the
secant loop reads

αi = αli +
αri − αli

CL(αri)− CL(αli)

(
CL − CL(αli

)
) (4)

where αli and αri are the left and right boundaries of the interval in which the angle of attack is sought
and they satisfy: CL(αri) > CL and CL(αli) < CL. The left and right value are updated according to
the value of the lift coefficient for the current αi: if CL(αi) > CL, then αri+1

= αi; if CL(αi) < CL,

αli+1 = αi, and if CL − ε ≤ CL(αi) ≤ CL + ε, with a tolerance ε = 10−3, the loop breaks.

The method converges in a few iterations, owing to the quasi-linearity of the lift coefficient for most
airfoils in the vicinity of the considered values of the angle of attack. Lack of convergence within few
iterations may happen in the retreating side (i.e. for high values of the angle of attack) for airfoils close
to stall conditions, that will be discarded in the optimization process because they will have a poor
drag coefficient. The result of the two nested loops is a set of optimal solutions defined by a design
vector {xs, α}.

Because we are using a genetic algorithm, the error on the lift coefficient constraint for those airfoils
should not affect the optimization process.

It is noted that the inner trim loop targets the equality constraint on the lift coefficient, but the
design vector coming out of it may not satisfy the moment coefficient constraint.
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3 Effects of camber and thickness morphing

In this section, the effect of modification of the thickness and the camber of the airfoils is discussed. An
airfoil geometry can be characterized by the coordinates of the upper and lower surface. However, an
airfoil can also be described by the construction of a thickness shape distributed around a camber line.
This description dates back to the 1920s and 1930s, when the NACA 4-digit and 5-digit airfoils were
generated by superimposing a simple meanline shape with a thickness distribution that was obtained
by fitting a group of popular airfoils of the time.

The camber mean line mainly affects the chordwise load distribution, the angle of zero lift, the
pitching-moment coefficient, the slope of the lift curve and the approximate position of the aerodynamic
center [1, p.65]. Effects of increasing the camber line are generally a lower zero-lift angle of attack
and a higher maximum lift coefficient. The counterpart of this is an increase in the drag coefficient,
especially at low angle of attack, and an increase in the pitching moment coefficient. This latter
problem, which is crucial in helicopter blade design, led to the almost universal use of symmetric airfoil
sections on helicopter developed before the 1960s [22, p.360]. However, with the advent of new camber
line distribution, such as the NACA 23012 airfoil which is designed to limit the moment coefficient,
cambered airfoils were introduced also in rotorcraft blades. A clear example of the effect of camber on
moment coefficient is given by reflexed airfoils, which have reduced camber over the afterward section
producing less lift over this region, thereby less nose-down pitching moment. In this case the aft section
is actually generating downforce and the moment coefficient at zero lift is positive.

Effects of thickness distribution includes the increase of maximum lift coefficient with increasing
thickness, at least for thickness-to-chord ratio in the range used for aeronautical applications (i.e.
around 16% [1, p.135] for the NACA 4- and 5-digit airfoils), above which the effect of thickness become
detrimental for separation. Thickness distribution has a significant impact on profile drag and on wave
drag. With regard to the latter, earlier drag rise and lift break are experienced for thicker airfoil [1,
p.274], although this is in general an effect of both thickness-to-chord ratio and distribution, and may
vary from airfoil to airfoil.

3.1 Camber and thickness morphing from an optimal trade-off airfoil

In this section, an ideal morphing strategy is investigated: the assumption is that the morphing mecha-
nism permits to have no geometry constraints to the airfoil shape between the advancing and retreating
side, and then each shape is designed by running a shape optimization in one specific operating condi-
tion. The interest is to compute an ideal reference gain, with a morphing strategy that could morph the
section of a blade from the optimal shape in the advancing side to the optimal shape in the retreating
side.

3.1.1 Deterministic optimization

Then, a deterministic optimization of helicopter rotor airfoil in forward flight is performed, which
consists typically in the minimization of the drag coefficient CD ensuring the satisfaction of constraints
on the lift CL and moment CM coefficients [27,28,9]. Drag coefficient is used instead of torque, because
a single radial station is considered, and a single airfoil is optimized. A complete blade optimization
would need to minimize torque, by considering many airfoils in the spanwise directions and other design
variables such as radial twist and chord.

Here, a target lift coefficient CL is set to consider a specific trim condition and the moment coef-
ficient is bounded with a given threshold CM to avoid excessive loading on the blade structure. The
objectives of the advancing and retreating side are conflicting with one another. In fact, an optimal
shape for the advancing side would be a mildly cambered airfoil to postpone drag rise to higher Mach
number values, whereas the adoption of a highly-cambered airfoil in the retreating side could better
adapt to higher angle of attack, for instance by means of a nose-droop.
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Case α[deg] M [-] Re [-] CL [-] CD [counts] CM [-]

1. -1.5 0.75 4.6e6 -0.025 86.97 0.02
2. 12.5 0.28 1.7e6 1.411 191.3 0.03

Table 1: Aerodynamic coefficients of NACA 23012 airfoil.

Case M [-] Re [-] CL CM wi [1/counts]

1. 0.75 4.6e6 0.025 0.08 1/2
2. 0.28 1.7e6 1.411 0.04 1/160

Table 2: Operating conditions and aerodynamic constraints.

In mathematical terms, two single-objective optimization problems may be formulated as follows

minimize: CDi(x)

subject to: CLi(x) = CLi |CMi
(x)| ≤ CMi

(5)

where x are the design variables. The subscript i is equal to 1 in the advancing side and 2 in the
retreating side. The blade section of the Bo105 rotor [38] at r = 0.85 is considered and the operating
conditions for advancing and retreating sides are taken from the corresponding “figure-of-eight” in the
(M,α)–plane from Ref. [16, p.296]. Both operating Mach number and the corresponding constraints
are reported in Tab. 2. The values of the lift constraint CLi are set for each side with the intent of
producing a design that improves the performance of the NACA 23012 airfoil, a classical shape for
helicopter rotors (the aerodynamic coefficients of the NACA 23012 airfoil in the operating conditions
are presented in Tab. 1).

To complete the scenario of deterministic optimization problems, a one-objective optimization with
a trade-off performance is performed. The optimization problems in this case is defined as follows

minimize:
1

2

2∑
i=1

wiCDi(x)

subject to: CLi(x) = CLi |CMi
(x)| ≤ CMi

i = 1, 2

by changing: x, (6)

where wi are weights chosen from the drag coefficient of the optimal airfoils obtained in the one-point
optimization case (see Tab. 2). The result of such an optimization is a compromise solution between
advancing and retreating side that is used as a reference of a trade-off optimal solution.

Then, three different deterministic optimization problems are solved, thus computing three optimal
designs: (i) airfoil DA1 with optimal drag coefficient in the advancing side, (ii) airfoil DA2 with optimal
drag coefficient in the retreating side, and (iii) airfoil DA0 with optimal weighted drag coefficients.
These airfoils are presented in Fig. 5 and the characteristics of their geometry are reported in Tab. 3.
Note that the optimal airfoil for the retreating side is highly cambered to cope with the higher angle of
attack and it has a lower thickness-to-chord ratio to reduce the drag coefficient. The optimal airfoil of
the advancing side generates positive lift owing to a slight camber and greater thickness. The slope of
the camber line at the leading edge is controlled by the first coefficient of the parameterization thanks
to the modification of the CST discussed in Section 2.1.

The drag coefficients of the optimal airfoils are presented in Tab. 4. The drag coefficient are ex-
pressed in drag counts, where one drag count is equal to 0.0001. The gain with respect to the reference
NACA 23012 airfoil are presented in Tab. 5. The DA1 airfoil and the DA2 airfoil significantly improve
the performance of the advancing and retreating side, respectively.

3.1.2 Assessment in terms of morphing strategy

The optimized airfoils are presented in Fig. 6 in the space of the objectives of the deterministic
optimization (i.e. the drag coefficient in the advancing and retreating side). Airfoil DA0 represents



10

0 0.2 0.4 0.6 0.8 1

−0.05

0

0.05

0.1

0.15

χ

ζ

 

 

 DA1

DA2

DA0

Fig. 5: Optimal airfoils (DA1, DA2 and DA0) for the different optimization problems.

DA1 DA2 DA0

Maximum thickness 0.1187 0.1049 0.1161
Position of maximum thickness 0.36 0.22 0.31
Maximum camber 0.0054 0.0303 0.0079
Position of max camber 0.81 0.31 0.73
First design variable (Ac

0) 0.065 0.289 0.107
Camber slope at LE [deg] 3.704 16.098 6.108

Table 3: Characteristics of the optimal airfoils (for unitary chord).

CD1 α1|CL1
CM1 CD2 α2|CL2

CM1

[counts] [deg] [-] [counts] [deg] [-]

DA0 0.8947 -1.059 0.0463 177.8 11.1 -0.0108
DA1 0.6927 -1.002 0.0459 – – –
DA2 191.99 -3.101 0.1047 126.0 9.27 -0.0393

Table 4: Performance of the optimal airfoils: performance of DA1 in the retreating side is not reported
because DA1 airfoil cannot satisfy lift constraint.

Percentage gain Percentage gain Relative gain Relative gain
side 1 side 2 side 1 side 2

DA0 +99% +7 % 1/97.2 1/1.08
DA1 +99% – 1/125 –
DA2 – +34% – 1/1.52

Table 5: Gain of the optimal airfoils with respect to the NACA 23012 airfoil: gain of DA1 in the
retreating side and gain of DA2 in the advancing side are not reported because these airfoils do not
satisfy respectively the lift and moment constraint.

the reference optimal solution for a non-morphing configuration. Instead, airfoil DA1 and DA2 give
an indication of the best possible gain of a morphing strategy. In fact, the maximum, “ideal” gain
of morphing airfoils consists of the gain of a morphing strategy that could morph the section of a
blade from the shape of airfoil DA1 in the advancing side to the shape of airfoil DA2 in the retreating
side. This is depicted in Fig. 7. This solution would have the lowest drag coefficient in the advancing
side and at the same time the lowest drag coefficient on the retreating side. The morphing strategy
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Fig. 6: Optimal deterministic shapes and drag coefficient in the advancing and retreating sides

f1

f2 Best in condition 1

Best in condition 2

“Ideal”
morphing airfoil

Best trade-off

Fig. 7: Scheme of two-point optimization and “ideal” morphing airfoil.

is ideal in this case, because in practice any morphing mechanism would impose geometry constraints
to the airfoil shape between the advancing side and retreating side that are not considered in this
first instance. Indeed, state-of-the-art technology permits only local deformation of the camber line,
as presented in the introduction, although an active field of research on materials is developing ways
of increasing the degree of freedom of morphing geometries that could be adopted in future research
activities. Nevertheless, the ideal gain is of the greatest significance, because it sets a reference gain.
The gain is computed with respect to the optimal non-morphing geometry, which in this case is the
trade-off airfoil DA0. As presented in Tab. 6, such a “perfectly” morphing airfoil could gain 22% of
the drag coefficient in the advancing side and 29% in the retreating side, while maintaining the trim
lift coefficient and moment constraint.

To further support the choice of camber line morph over thickness distribution morph, a comparison
is made among airfoils generated from airfoil DA0 imposing either the thickness distribution of airfoil
DA1 and DA2 or the camber line. In other words, four airfoils are constructed by fixing either the
thickness or the camber line of airfoil DA0 and imposing the camber line or the thickness of airfoils
DA1 and DA2. The airfoils are summarised in Tab. 7 and the resulting shapes are presented in Fig. 8.
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DA1 DA2

Gain w.r.t DA0 22 % 29 %

Table 6: Gain of an “ideal” morphing with respect to the trade-off non-morphing solution DA0.

Thickness Camber

Thick DA0 + Camb DA1 DA0 DA1
Thick DA0 + Camb DA2 DA0 DA2
Thick DA1 + Camb DA0 DA1 DA0
Thick DA2 + Camb DA0 DA2 DA0

Table 7: Summary of airfoils obtained by imposition of either the thickness or camber line of DA1 and
DA2 from DA0.
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Fig. 8: Airfoils obtained by changing either the thickness or camber line from airfoil DA0.

CD1 α1|CL1
CD2 α2|CL2

Gain Gain

[counts] [deg] [counts] [deg] side 1 side 2

DA0 0.8947 -1.059 177.8 11.1

Thick DA0 + Cam DA1 0.805 -0.945 192.3 11.502 +10%
Thick DA0 + Cam DA2 151.53 -3.316 141.6 9.55 +20%
Thick DA1 + Cam DA0 0.801 -1.128 – – +10.5%
Thick DA2 + Cam DA0 11.26 -1.028 166.0 10.881 +6%

Table 8: Drag coefficient of airfoils obtained from deterministic optimal airfoils (see Tab. 7).

The first two solutions refers to a camber morphing in which the camber is modified and the thickness
is held constant (and equal to the one of the best non-morphing solution). On the other hand, the last
two solutions represent a thickness morphing, where the camber is held fixed to the one of airfoil DA0.

For these airfoils the angle of attack for which the lift coefficient satisfies the trim constraint (i.e.
the constraint to produce the target lift coefficient) is computed and the corresponding drag coefficients
are evaluated. Results are presented in Tab. 8. As explained in Section 2.2, the Euler equations-based
CFD model is used in the advancing side and XFOIL in the retreating side (see Sec. 2.2). Note that
the solutions obtained by holding the thickness fixed and changing the camber line (Thick DA0 +
Cam DA1 and Thick DA0 + Cam DA2) improves the gain of the reference DA0 airfoil by 10% in the
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α1|CL1
CD1 |CL1

CM1 |CL1
α2|CL2

CD2 |CL2
CM2 |CL2

[deg] [counts] [deg] [counts]

-3.316 151.53 0.109153 9.55 0.01416 -0.0414

Table 9: Performance of Thick DA0 + Cam DA2 airfoil in both sides.

advancing side and 20% in the retreating side. With respect to the ideal gains presented in Tab. 6,
this solution restores 50% of the ideal gain in the advancing side and 90% in the retreating side. On
the other hand, solutions obtained by modifying the thickness distribution present a similar gain on
the advancing side (10.5%), but a smaller gain in the retreating side (6%). These results show that the
camber morphing gets closer to the ideal morphing gain and it is therefore more effective. Furthermore,
it seems that the thickness and camber line equally contributes to the ideal gain in the advancing side,
while in the retreating side the camber line plays a key role. As a matter of fact, in the advancing
side transonic flow is experienced, and the minimization of the drag coefficient corresponds to the
minimization of wave drag. This contribution equally depends on camber and thickness distributions
over chordline. On the other hand, high angle of attack and subsonic flow are encountered in the
retreating side, thus the gain is basically built upon the adaptation of the airfoil to the high angle of
attack achieved through camber.

Finally, results for airfoil Thick DA1+Cam DA0 in the retreating side are not presented because
this airfoil cannot meet the trim constrained, as it happened with airfoil DA1 (see Tab. 4). In a similar
way, airfoil with DA0 thickness and DA2 camber exceeds the moment coefficient in the advancing side
as presented in Tab. 9 (similarly to what happened for DA2, please refer to Tab. 4). To some extent,
these airfoils obtained by combination of thickness and camber of DA0, DA1 and DA2 inherit some
of the characteristics of the original airfoils. However, it is noted that the moment coefficient of the
airfoil Thick DA1+Cam DA2 also exceeds the threshold value CM2 set in the optimization loop (see
Tab. 9).

4 Optimal morphing airfoils

The optimization problems tackled in the case of morphing airfoils maintain the same structure of
the cases presented in Section 3.1.1. Thus, two optimization problems are performed, one for the
advancing side and one for the retreating side, which seeks the design with minimal drag coefficient
with an equality constraint on the lift coefficient and an inequality constraint on the moment coefficient.
The same values of target lift coefficients, bounding moment coefficients and operating conditions are
used (please refer to Tab. 2).

The difference in this case is that the optimization is performed by acting on the design variables
describing the morphing geometry. The morphing design variables are described in the following section.

4.1 Morphing strategy and parameterization

The morphing strategy considered in this work is a conformable camber airfoil, which changes over
the period of rotation of the blade. Several technological solutions can be employed to achieve this
goal: for instance, the FishBone Active Camber [30], the controllable camber presented in Ref. [12]
and chiral structures as the one developed in Ref. [2]. The basic idea in the definition of a camber
morphing airfoil is that the thickness distribution is held fixed, while the camber is allowed to change
its shape during flight.

The type of morphing introduced to some extent in the previous section permits modification of the
camber over the entire chordwise coordinate. However, in general the camber line cannot be modified
at any chordwise coordinate, but it is held fixed in particular areas to maintain the internal structure
of the blade and to accommodate morphing mechanisms. In general, the region close to the leading
edge is fixed, where the D-shaped spar used in the helicopter blade structure is found. Thus, two types
of camber morphing are considered. In the first case (Fig. 9a), complete freedom is given to the camber
line. In the second type (Fig. 9b) the first part of the airfoil is fixed, while for the remaining part of
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H(χ)
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Fig. 9: Types of morphing strategy: baseline geometry (black), camber morph (green) or trailing edge
morph (blue) and resulting morphed geometry (red): (a) Camber line morphing, (b) Trailing edge
morphing.

the blade section, the camber can morph and work as a trailing-edge flap with a larger extension and
continuous shape modification. In this way, an increasing level of constraints to the morphing strategy
are given: (i) ideal morphing, with constraints neither on the thickness nor on the camber line, (ii)
camber morphing, with a fixed thickness distribution, and (iii) trailing edge morphing, with a fixed
thickness distribution and a partial constraint on the camber line.

A suited parameterization is required to describe and optimize a morphing camber airfoil. The
parameterization introduced in Sec. 2.1 treats separately the camber line and the thickness distribution
perpendicular to the local camber line. For the entire camber morphing, the design variables are
the coefficients Aci of the shape function Sc(χ) used to describe the camber distribution as ζc(χ) =
Cc(χ)Sc(χ). The class function is the same function presented in Eq. (2). The order of the Bernstein
polynomials is retained from the optimization in forward flight condition, but owing to the fact that
the thickness distribution is now fixed, the number of design variables is reduced by half. It follows
that the design variables for the case of camber morphing are xm,c = {Aci}, i = 0, ..., 4.

For the trailing edge morphing modification, a piecewise cubic function is used. The cubic functions
are defined to ensure continuity up to the second order. Following an approach similar to the one
presented in Ref. [10], the morphing camber line is described as follows

ζc(χ) = Cc(χ) Sc(χ) +H(χ)

H(χ) =

nc∑
i=1

hi(χ) (7)

and each cubic function hi(χ) reads

hi(χ) =

{
0, if χ ≤ ψ0,i

Ami
(x−x0,i)

3

(1−x0,i)3
, if χ > χ0,i,

where Ami are the coefficients of the cubic functions and x0,i are the locations of the start of the morph.
The number of cubic functions nc is equal to two in order to represent also reflex cambered airfoil and
the locations of the morphs are x0,1 = 0.4 and x0,2 = 0.7. The D-spar length x0,1 is set to 40% of the
chord, following the FishBAC configuration [10]. The coefficients of the cubic functions are the design
variables of the morphing airfoil xm,te = {Am1 , Am2 }.

4.2 Deterministic results

With two different operating conditions and two different morphing strategies, four optimization prob-
lems are performed, which are summarised in Tab. 10. Each optimization has been performed with an
initial generation of 100 individuals and 10 generations of 55 individuals to widely explore the solution
space. The results of these optimization are reported in Tab. 11, where the first and second columns
indicate the morphing strategy and the objective, respectively. The last two columns present the gain
with respect to the optimal non-morphing airfoil, i.e. airfoil DA0.
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Fig. 10: Airfoils obtained by morphing the camber mean line of airfoil DA0.

The camber morphing involving the entire camber line permits to gain 23% with respect to DA0 in
the retreating side and 10% in the advancing side. In the latter condition, the optimal solution obtained
by the optimization is indeed the airfoil obtained by summing the thickness distribution of DA0 to
the camber line of airfoil DA1, i.e. Thick DA0+Cam DA1. In the retreating side, the optimization
is capable of improving the drag coefficient of airfoil Thick DA0+Cam DA2 and at the same time
overcoming the problem associated with the moment coefficient constraint.

On the other hand, the trailing edge morphing improves the starting airfoil of 5% in the retreating
side, but it does not find better solutions than airfoil DA0 in the advancing side. A first explanation
of this can be found in the fact that airfoil DA0 has a shape more akin to DA1 than DA2 (see Fig. 6)
and it is an airfoil that already greatly reduces the wave drag coefficient of the reference airfoil (i.e. the
NACA 23012 airfoil shown in Tab. 1). However, the modification that the camber needs to undergo
to improve the performance in the advancing side (for example, a modification into the camber line of
airfoil DA1) is not compatible with the trailing edge modification shown in Fig. 9b. This problem could
be overcome only by changing the thickness distribution together with the trailing edge modification.
The best gain of such a strategy may be defined only by an optimization problem combining the
coefficient of the thickness distribution Ati, the coefficient of the mean line Aci and the coefficient of
the local trailing edge morph Ami .

To appreciate the difference in the morphing strategies, the optimal airfoils for the retreating side
are presented in Fig. 10. It is worth noting how the camber morphing lifts up the camber line while
maintaining the trailing edge location, and the trailing edge morph deflects the trailing edge to achieve
an increase in lift coefficient.

Case Objective Equality Inequality Design
constraints constraints variables

DMO1 minCD,1 CL1 = CL1 |CM1 | ≤ CM2 xm,c, α
DMO2 minCD,2 CL2 = CL2 |CM2 | ≤ CM2 xm,c, α
DTO1 minCD,1 CL1 = CL1 |CM1 | ≤ CM2 xm,te, α
DTO2 minCD,2 CL2 = CL2 |CM2 | ≤ CM2 xm,te, α

Table 10: Summary of optimization problems.
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Morphing Objective CD1 α1|CL1
CD2 α2|CL2

Gain Gain

[counts] [deg] [counts] [deg] side 1 side 2

Camber min f1 0.805 -0.945 192.3 11.502 +10%
Camber min f2 102.82 -2.5 135.7 9.62 +23%
TE morph min f1 0.8947 -1.059 177.8 11.1 0%
TE morph min f2 100.50 -1.93 169.2 10.045 +5%

Table 11: Performance of the deterministic airfoils obtained with two strategies for camber morphing

4.3 Results under uncertainty

From the deterministic optimization, valuable information has been obtained. In fact, the camber
morphing could potentially bridge the gap between a non-morphing airfoil and an “ideal” morphing
airfoil and the morphing over the entire chordwise distribution of the camber line is more effective to
this purpose. Starting from these results, the robust optimization problems are tackled in this section.
Note that the design variables used in this case are the design variable of the camber morphing xm,c,
as this technique is more effective.

The objective of robust optimization is to design an airfoil that is minimally sensitive to the variation
of the operating conditions. In this case, it is considered that the operating conditions at which the
blade section will operate are affected by the uncertainty arising due to modelling assumptions of
physical parameters necessary at the design stage.

4.3.1 Robust optimization formulation

Due to the uncertainty, the objective function f is no longer only a function of the design variables xm,c,
but it also depends on the uncertain variables ξ. Within this uncertain framework a minimization with
a target lift coefficient in a specific design conditions loses its meaning. However, a robustly optimal
airfoil with a satisfactory lift-to-drag ratio in a range of conditions could be used to trim the aircraft
in a specific condition keeping always a low drag coefficient. In addition, if the robustness of the lift-
to-drag ratio will translate into the drag coefficient at a specific target lift coefficient, a robust shape
would ensure less variability of the required power due to aerodynamic drag.

In particular, for the problem under analysis, the following objectives are defined for each side of
the blade.

1. On the advancing side, rotor blade encounters transonic flow, so airfoils should typically be designed
to delay drag divergence to higher Mach numbers [22,5]: however, since the airfoil should feature also
a certain amount of lift, the lift-to-drag ratio is maximized for the first condition corresponding
to the advancing blade at 90 deg, with the constraint of providing a lift coefficient equal to or
greater than the value of the reference NACA 23012 airfoil. Thus, the lift-to-drag ratio CL/CD is
the objective f1 of the optimization: f1 = CL/CD.

2. On the retreating side, the increase of the lift coefficient is typically sought [5]: however, to account

for drag reduction as well, for the blade at 270 deg the ratio C
3/2
L /CD is maximized, which is a

measure related to the rotor figure of merit in hover [22] that privileges the lift coefficient over the

drag coefficient, i.e. f2 = C
3/2
L /CD.

The nominal operating conditions of the aerodynamic simulation are set using data from Ref. [16].
Finally, the constraints on the moment coefficient used in the deterministic case (and presented in
Tab. 2) are still considered.

In mathematical terms, the resulting optimization problem can be stated as:

maximize : µ (fi (xs, ξ))

and minimize : σ2 (fi (xs, ξ))

subject to : g (xs, ξ) ≤ 0

by changing : xs, (8)
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where the moment constraints are collected in vector g. Similarly to the deterministic case, function fi
is equal to f1 for the advancing side and equal to f2 in the retreating case. The design variables are
the variables defining the shape of the airfoil, while the angle of attack is considered as one of the
uncertain variables in the robust design problem.

Indeed, the angle of attack α and the Mach number M encountered by the two-dimensional section
of the blade are considered as uncertain, because they are affected by uncertainty on the modeling of
the physical parameters considered in the design stage. For instance, both aerodynamic and structural
uncertainties, such as blade chord, air density, and rotor angular velocity, may affect the value of the
angle of attack and Mach number. Following a probabilistic framework, the uncertain variables are
modeled as uniformly distributed random variables around a nominal value. The nominal conditions
are reported in Tab. 1 and the uncertainty band is set to 5% for the Mach number and for the angle
of attack.

The objective functions of Eq. (8) are the statistics of the performance f . These are computed by
means of an uncertainty propagation technique, that is a method to propagate the uncertainty affecting
the operating conditions into the quantity of interest f .

4.3.2 Uncertainty quantification technique

A probabilistic framework is employed to deal with the uncertain input data. In this context the
stochastic input quantities ξ are treated as independent continous random variables. The random
vector ξ, whose dimension is equal to the number of uncertain variables nξ, belongs to the probability
space (Ω,F , P ), composed by the sample space Ω, the σ-algebra F of the subsets of the events and
a probability measure P . It essentially maps the samples in Ω = [0, 1]nξ into the random outcomes
ξ ∈ Ξ and it is characterized by the probability density function pξ(ξ). The output of the system, i.e.
the quantity of interest fi in our case, is then a stochastic variable.

In the robust optimization procedure the interest is in reconstructing the mean value and the
variance of the quantity of interest; the stochastic output variable is referred to as fi(xs, ξ), where xs
is the vector of the design variables. Let us define the expected value of the stochastic variable fi as
follows

〈fi〉 =

∫
Ξ

fi(xs, ξ) pξ(ξ) dξ,

with pξ(ξ) =
∏nξ
i pξi(ξi) the joint probability of the independent input variables, and the inner product

operator of two stochastic variable fi and gi with respect to the joint probability (i.e. the covariance
for independent fi and gi)

〈fi, gi〉 =

∫
Ξ

fi(xs, ξ)gi(xs, ξ) pξ(ξ) dξ.

The mean and variance then read

µ(fi) = 〈fi〉
σ2(fi) = 〈fi, fi〉 − 〈fi〉2. (9)

To reconstruct the quantities in Eq. (9), a Polynomial Chaos (PC) expansion method [39] is used. In
fact, under specific conditions, a stochastic process can be expressed as a spectral expansion based on
suitable orthogonal polynomials, with weights associated to a particular probability density function.
The first study in this field is the Wiener process that was later developed in Ref. [39]. The basic
idea is to project the variables of the problem onto a stochastic space spanned by a complete set of
orthogonal polynomials Ψ that are functions of the random variables ξ. For example, variable fi has
the following spectral representation:

fi (xs, ξ) =

∞∑
k=0

αk (xs)Ψk (ξ) . (10)

where Ψk are the PC orthogonal polynomials and αk the coefficients of the expansion. In practice, the
series in Eq. (10) has to be truncated to a finite number of terms N , which is determined by

N + 1 =
(nξ + no)!

nξ! no!
,
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Case Objective Inequality constraints Design variables

RMO1 max(µ(f1)) and min(σ2(f1)) |CM | ≤ CM xm,c

RMO2 max(µ(f2)) and min(σ2(f2)) |CM | ≤ CM xm,c

Table 12: Summary of robust optimization problems.

where nξ is the dimension of the uncertainty vector ξ and no is the order of the univariate polynomial
expansion φi(ξi) from which the multivariate polynomials Ψk(ξ) are obtained via tensorization, i.e.

Ψk (ξ) =

nξ∏
i

φi(ξi).

The polynomial basis φi(ξi) is chosen according to the Wiener-Askey scheme [39] in order to select
orthogonal polynomials with respect to the probability density function pξ(ξ) of the input. In this work,
because a uniform distribution is considered, Legendre polynomials are employed. The orthogonality
property can be advantageously used to compute the PC coefficients of the expansion αk in a non-
intrusive PC framework; this procedure is called Non-Intrusive Spectral Projection (NISP) [6]. In fact,
from the orthogonality property it directly follows that

αk =
〈fi(xs, ξ), Ψk(ξ)〉
〈Ψk(ξ), Ψk(ξ)〉

∀k. (11)

The computation of the PC coefficients requires an integration of the polynomials that can be estimated
with several approaches, among which quadrature formula are chosen in this study. As a result, the
solution of the deterministic problem is required for each quadrature point. Once the polynomial chaos
and the associated αk coefficients are computed, the mean value and the variance of the stochastic
solution fi (xs, ξ) are obtained leveraging the orthogonality of the polynomials Ψk with respect to the
probability function pξ:

µ(fi)|PC =

〈
N∑
k=0

αk (xs)Ψk (ξ)

〉
= α0 (xs)

σ2(fi)|PC =

〈(
N∑
k=0

αk (xs)Ψk (ξ)

)2〉
− α2

0 (xs)

=

N∑
k=1

α2
k (xs)

〈
Ψ2
k

〉
.

Because a uniform distribution is considered also in the forward flight case, Legendre polynomials
are employed in the PC expansion. The order of the expansion is retained from a convergence analysis
which has been performed and proved that a fourth-order polynomial is sufficient to accurately capture
the statistics. The reconstruction of the statistics is based on the evaluation of the exact function for
a set of samples ξk in the uncertain variables domain for each design vector xs.

4.3.3 Results

Two optimization problems are then performed, which are summarised in Tab. 12.
Given the analysis of the previous sections, the nominal operating conditions are set from the

deterministic results. In other words, the nominal operating condition of the robust optimization in
the advancing side is defined by the angle of attack α1 of airfoil DMA1, while for the retreating side
the nominal angle of attack is the angle α2 of airfoil DMA2.

In the robust optimization problem (RMO2) the Pareto front shown in Fig. 11a is obtained. To
select an interesting airfoil from the Pareto set, the lift coefficient obtained in the samples over the
stochastic domain are plotted against the target lift coefficient and an airfoil is selected from the front.
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Fig. 11: Results of the robust optimization for the retreating side (RMO2): (a) Pareto front, (b) Optimal
deterministic and robust airfoils.

Airfoil CD,2|CL2
α1|CL2

µCD,2 σ2
CD,2

(σ/µ)CD,2
[counts] [deg] [counts] [counts2] [-]

DMA2 135.6 9.62 135.9 39.99 0.047
RMA2 136.6 9.62 136.7 40.06 0.046

Table 13: Drag coefficient of the deterministic airfoil minimizing CD2
(DMA2) and the airfoil selected

from the robust front in the retreating side (RMA2).

Airfoil CD,1|CL1
α1|CL1

µCD,1 σ2
CD,1

(σ/µ)CD,1
[counts] [deg] [counts] [counts2] [-]

DMA1 0.805 -0.945 3.99 31.09 1.4
RMA1 0.827 -0.894 5.07 43.57 1.3

Table 14: Drag coefficient of the deterministic airfoil minimizing CD1
(DMA1) and the airfoil selected

from the robust front in the advancing side (RMA1) with camber morphing.

The selected airfoil is plotted in Fig. 11b together with the deterministic airfoil DMA2. This airfoil
is referred to as RMA2 and its performance in the uncertainty range around the operating condition
satisfying the lift constraint are reported in Tab. 13. It is possible to note that airfoils DMA2 and
RMA2 are very similar and therefore they present similar performance. In this case, the result from
the deterministic optimization is a robust airfoil in itself. However, it is important to note that this
in general may not be the case and that robust optimization formulation represents a procedure to
guarantee that the optimal airfoils would not incur in lift loss, drag increase or moment penalties
throughout the uncertainty range.

The results of the robust optimization problem in the advancing side (RMO1) are shown in Fig. 12a.
In the Pareto front, airfoil RMA1 is hihglighted which is chosen for its significantly low variance
and average mean performance. The shape of airfoil RMA1 is presented in Fig. 12b along with the
deterministic optimal airfoil. It is possible to note that even in this case the deterministic solution
is very similar to a non-dominated robust airfoil. The deterministic airfoil is also very robust, as
demonstrated by the values of the mean and variance presented in Tab. 14.
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Fig. 12: Results of the robust optimization for the advancing side (RMO1): (a) Pareto front, (b)
Optimal deterministic and robust airfoils.

5 Validation with azimuth

After evaluating the performance in the advancing and retreating side, the drag coefficient of the
optimal airfoils over the azimuth angle of the blade rotation is computed. In the case of a morphing
airfoil, a smooth transition from the optimal shape in the advancing side to the optimal shape in the
retreating side is required. The transition over the azimuth angle ψ is obtained as follows

ζ =
ζ1
2

(1 + sin(ψ)) +
ζ2
2

(1− sin(ψ)) (12)

where ζ1 is the shape in the advancing side (ζ(90◦) = ζ1) and ζ2 is the shape in the retreating side
(ζ(270◦) = ζ2). The transition in the case of the “ideal” morphing DA1-DA2 is presented in Fig. 13,
while the morphing shapes with geometrical constraints are shown in Fig. 14. The drag coefficient is
then evaluated as follows:

– for the advancing side, an Euler equations simulation with SU2 is performed, with the set-up used
in the optimization loop (Sec. 2.2). Because the Euler equations are used, a correction associated

Fig. 13: Shapes over the azimuth obtained by morphing DA1 into DA2.
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(a) (b)

Fig. 14: Shapes over the azimuth: (a) Morphing DMA1 into DMA2, (b) Morphing DTA1 into DTA2.

with viscous effects is added to the inviscid SU2 estimate combining the van Driest II method and
a form-factor correction as presented in Ref. [17];

– for the retreating side, the XFOIL solver is adopted
– for the remaining intermediate points, the MSES code is used

The values of the mean angle of attack and the first harmonic amplitude are computed and reported
in Tab. 15 for the following combinations: (i) DA1-DA2, i.e. airfoil DA1 morphing into DA2, (ii) DMA1-
DMA2, i.e. airfoil DMA1 morphing into DMA2, and (iii) DTA1-DTA2, i.e. airfoil DTA1 morphing into
DTA2. The lift and drag coefficients for these airfoils are presented in Fig. 15. It is possible to note that
the greatest difference among these airfoils is the performance in the retreting side, where the lowest
drag coefficient is obtained for the “ideal” morphing and the drag coefficient increases with increasing
geometrical constraints. The performance in the advancing side is comparable among the different
morphing strategies, because the viscous correction [17] is dominant with respect to the inviscid drag
coefficient.

The average drag coefficient obtained with the “ideal” morphing and the camber morphing are
presented in Tab. 16. The table also includes the gain with respect to the non-morphing optimal airfoil
DA0 which is higher for the ideal case (22.6 %) and reduces to 17.1% and 3 % in the case of the
camber morphing and trailing edge modification, respectively. It is clear that to obtain the maximum
gain of the morphing strategies, an optimization which can model the thickness distribution as well is
necessary.

6 Conclusions

A methodology for robust optimization has been developed to tackle the problem of designing morphing
airfoils, which could be used for helicopter rotor blades. Robust optimization requires the coupling of
the uncertainty quantification method and the optimization algorithm. This coupling increases the
computational demand, especially in aerodynamic applications, where a single function evaluation
may be very expensive.

Morphing airfoils have been considered as a possible solution to cope with the variable flow con-
ditions encountered by blade element in forward flight. Deterministic estimates prove that an “ideal”

DA1-DA2 DMA1-DMA2 DTA1-DTA2

α0 [deg] 4.13 4.34 4.49
∆1 [deg] 4.95 5.10 5.36

Table 15: Variables of time-varying angle of attack for optimal shapes.
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DA1-DA2 DMA1-DMA2 DTA1-DTA2

avg(CD) [counts] 76.44 81.84 95.14

Gain wrt DA0 22.6 % 17.1 % 3.6 %

Table 16: Average drag coefficient over the blade rotation period for morphing airfoils and associated
gain.
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Fig. 15: Lift and drag coefficient loop of DA1-DA2, DMA1-DMA2 and DTA1-DTA2.

morphing can increase the performance of an optimal non-morphing airfoils by 22.6 % on the average
drag coefficient, and by 17 % when thickness constraint is considered.

The employment of robust optimization is thus expected to be of great interest in the application of
helicopter rotor airfoils, owing to the fact that even the airfoils with higher mean values achieve lower
values of the variance of the aerodynamic efficiency with respect to variations of the angle of attack.
The reduction of the variance could lead for instance to a reduction of the required rotor shaft torque
in variable operating conditions. Furthermore, in the different applications presented in this paper,
results have demonstrated how the robust optimization formulation represents a formal procedure to
guarantee that the optimal airfoils would not incur in lift loss, drag increase or moment penalties
throughout the uncertainty range.

Future works will be devoted to the unsteady assessment of the morphing geometries to ultimately
verify the result of the steady optimization. In addition, an optimization including the thickness distri-
bution as a design variable will be considered for the morphing cases. Building on top of the presented
work of an airfoil optimization for two azimuth positions and a single radial station, it is possible to
build a more complete framework for rotor optimization, where multiple stations and azimuth angles
can be considered. With regard to the robust technique developed in this paper, the joint employ-
ment of the multi-fidelity method and coupled adaptive approach will be explored to further improve
numerical efficiency.
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