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1. Introduction section, unless simplified and safe assumptions are formulated, as 
in [22,23].
Advanced fiber reinforced composite materials have been used 
for many years in civil engineering for structural retrofitting of both 
reinforced concrete and steel elements, in view of their partic-
ularly useful properties: corrosion resistance, high strength, low 
dead weight and hence ease-to-use which avoids the cumbersome 
work associated with traditional retrofitting techniques, see [1–4].

Composite materials may be used for different purposes: flexu-
ral strengthening of both reinforced concrete (RC) and steel beams, 
as in [5–7]; shear strengthening of RC elements, see [8–10]; pre-
vent local buckling of steel beams web, see [11]; strengthening of 
tensile steel elements under fatigue and static loading, as in [12–
15] and confinement of RC columns, see [16,17].

When dealing with this type of strengthening, one of the main 
issues, which may prevent to achieve the full load bearing capacity 
of the retrofitted element, is the debonding of the CFRP lamina from 
the substrate. In addition, even before failure, significant slip occurs 
at the interface, (see, e.g. [18–21]), which affects the service 
behavior of the retrofitted elements and prevents from analyzing 
them according to the usual hypothesis of conservation of plane
Different numerical studies, that take into account the partial 
interaction between CFRP reinforcement and substrate, based on 
1D (see for instance [24]), 2D (see [25,26]) and 3D (see [27–29]) 
finite element formulations exist in literature. Partial interaction 
modeling is also considered in composite beams to take into 
account separately the behavior of both concrete slab and steel 
beam, see for instance [30,31]. All the approaches, proposed to 
model externally reinforced beams, predict fairly well the behavior 
under service loads, but most of them fail in the prediction of the 
ultimate load or highlight the impossibility in following the 
debonding phenomena occurring at the interface up to the com-
plete detachment of the reinforcement lamina.

This paper presents a novel numerical approach, based on the 
force method, in which the response of an externally reinforced 
beam is derived by enforcing compatibility along the interface 
between concrete and CFRP lamina. However, in view of the soft-
ening nature of the cohesive law governing the response of the 
interface, the usual approach to the force method was modified and 
the problem was formulated assuming as primary unknowns the 
interface slips, instead of the interface shear stresses. It is 
demonstrated that this approach is stable enough to follow, unless 
snap-back occurs, the complete equilibrium path from the
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Fig. 2. Stress–strain relationship assumed for FRP.

Fig. 3. Stress–strain relationship assumed for concrete.
response of the strengthened beam to that of the original one after 
the debonding of the external reinforcement and the consequent 
and sudden load drop.

The problem formulation brings to a set of nonlinear equations, 
which are solved within a classical Newton–Raphson scheme, 
whose corresponding consistent tangent operator is derived.

The paper is organized as follows: Section 2 describes the 
numerical method proposed to compute the response of an exter-
nally reinforced beam. Then results of the modeling of benchmark-
ing experimental tests taken from literature are derived in 
Section 3 in order to validate the proposed numerical approach. 
Section 4 presents some parametric analyses aimed at showing 
the effect of the main design parameters on the overall behavior 
of a RC beam retrofitted by a CFRP lamina. Finally, conclusion, 
highlighting potentialities and limitation of the proposed method, 
are drawn in Section 5.

2. Numerical method

The numerical method, proposed to model an externally rein-
forced concrete beam, see Fig. 1, is based on the following 
assumptions:

� beam sections possess an axis of symmetry perpendicular to
moment axis and remain plane during deformation;
� perfect bond is assumed between concrete and steel rebars;
� slips occurring at the interface between the concrete substrate

and the external reinforcement are governed by a cohesive
law with softening behavior;
� concrete, steel rebars and external reinforcement behave as

nonlinear materials;
� bending stiffness of external reinforcement is negligible.

2.1. Constitutive equations

A brittle nonlinear elastic constitutive behavior is assumed for 
the external reinforcement (usually a Carbon Fibre Reinforced 
Polymer, or a Glass Fibre Reinforced Polymer), see Fig. 2:

rr ¼
HðerÞ � Erer if er 6 eru

0 if er > eru

�
ð1Þ

where: rr and er are the axial stress and strain, respectively, Er is the 
corresponding Young modulus, eru is the ultimate strain and Hðer Þ is 
the Heaviside step function.

Reference is made to reinforced concrete beams to formulate 
the proposed approach. For concrete in compression the classical 
parabola-rectangle stress–strain relationship, see [32], is consid-
ered, while the behavior of concrete under tensile stress is 
assumed to be linear elastic up to the tensile strength f ct and then 
it drops to zero, see Eq. (2) and Fig. 3:
Fig. 1. Illustrative representation of a beam extern
rc ¼

0 if ec > ect

Ecec if 0 6 ec 6 ect

ec

ec2
2þ ec

ec2

� �
f c if � ec2 6 ec < 0

�f c if � ecu 6 ec < �ec2

0 if ec < �ecu

8>>>>>>>><
>>>>>>>>:

ð2Þ

where: ec2 ¼ 0:002 is the strain at the end of the parabola, ecu is the
ultimate compressive strain and ect ¼ f ct=Ec represents the tensile
mechanical strain at the peak stress f ct .

For internal steel reinforcement a classical elasto-plastic consti-
tutive law is adopted with isotropic linear hardening, that is:

rs ¼

Eses if esj j 6 f sy=Es

f sy þ Hs esj j � f sy=Es
� �� �

� es

esj j
if f sy=Es 6 esj j 6 esu

0 if esj j > esu

8>><
>>: ð3Þ

where: rs and es are the steel axial stress and strain, respectively, f sy

the yield stress and Es; Hs the steel Young modulus and the linear
hardening coefficient, respectively.
ally reinforced in bending with a CFRP lamina.



The cohesive law adopted to model the interface between the
beam and the external reinforcement, i.e. the relationship between
interface shear stress t and slip s, is the classical bilinear one, see
[22] and Fig. 4, described in the following equation:

t ¼

Kf s if 0 6 s 6 se

tf �
s� se

su � se
tf if se 6 s 6 su

0 if s > su

8>><
>>: ð4Þ

The above cohesive law depends on three parameters: the interface 
shear strength tf , the elastic stiffness K f and the fracture energy Gf 

(i.e. the area under the curve).

2.2. Reinforced concrete cross-section behavior

In the present Section, the procedure adopted to construct the 
three dimensional surfaces, relating both the curvature vb and 
axial deformation gb (defined with respect to the center of gravity G 
of the geometric cross section, see Fig. 5) of the beam section to the 
bending moment Mb and axial force Nb, will be described.

According to the above hypotheses and to the assumptions in 
Fig. 5, the compatibility equation governing the response of the 
concrete beam section can be written as follows:

ecðyÞ ¼ gb � vb � y ð5Þ

Given an axial force Nb and a curvature vb, the horizontal equilib-
rium is imposed as:

N gbð Þ ¼
Z

Ac

rc ec gbð Þð ÞdAþ
X

k

rsk esk gbð Þð Þ � Ask ¼ Nb ð6Þ

where Ask is the area of the kth rebar and rsk the corresponding 
stress.

Integration over the cross section can be carried out either by 
performing an analytical integration (see [33,34]), or by adopting 
a numerical quadrature formula (namely Gauss’ formula, see 
[35]). Nevertheless, because of the former assumption that the 
beam section possesses an axis of symmetry perpendicular to 
moment axis, a simple numerical quadrature formula based on 
the discretization of the cross section in horizontal strips (see for 
instance [36]) is adopted, that is:

N gbð Þ ¼
X

j

rcj ecj gbð Þ
� �

� Acj þ
X

k

rsk esk gbð Þð Þ � Ask ¼ Nb ð7Þ

where: ecj is the strain computed by means of Eq. (5) in the center of 
gravity (placed at ordinate yjÞ of each jth horizontal strip of area Acj 

and rcj is the corresponding stress computed trough Eq. (2). In view 
of the assumed perfect bond between concrete and steel reinforce-
ment, we get esk gbð Þ ¼ ec gbð Þjy¼ysk

.
Eq. (6) is non-linear in the unknown gb, but the choice of dis-

cretize it by means of Eq. (7) makes it easy to adopt an iterative for-
mula based on the Newton–Raphson scheme:
Fig. 4. Bilinear cohesive law adopted to model the interface behavior.
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where gi

b and Njgi
b 

are the trial and the corresponding axial stress 
resultant at the ith iteration, respectively; while in view of Eq. (7), 
the derivative reads:

dN
dgb
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dec
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¼des
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¼1 X

j
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ei

cj
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X

k
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where
drc

dec

				
ei

cj

and
drs

des

				
ei

sk

are the current tangent moduli of the con-

crete and steel constitutive laws, respectively.
Once that the value of gb has been computed the strain distribu-

tion is known and through the constitutive equations (2) and (3) 
the moment Mb corresponding to the given axial force Nb and cur-
vature vb can be derived as follows:

Mb ¼ �
Z

A
rc ecð ÞydA�

X
k

rsk eskð ÞyskAsk ð10Þ

that is

Mb ¼ �
X

j

rcjec¼gb�vb �ycj
ycjAcj þ

X
k

rsjes¼gb�vb �ysk
yskAsk ð11Þ

Finally the position X of the neutral axis (with respect to the upper 
part of the section, see Fig. 5) can be computed as follows:

X ¼ H � yG �
gb

vb
ð12Þ

By repeating the above passages for all the combinations of given
sets of axial forces and curvatures the sought surfaces can be built
numerically.

Since these surfaces are derived in a discrete form; we describe

now the method adopted to compute the values vb;
@vb

@Nb
;
@vb

@Mb

� �

and gb;
@gb

@Nb
;
@gb

@Mb

� �
for any value of Nb;Mbð Þ, needed to achieve

the structural response according to the formulation described in
the next Section.

Within the above defined discretized surfaces we first find the
triples v11;N1;M1

� �
; v12;N1;M2
� �

; v21;N2;M1
� �

and v22;N2;M2
� �

such that: N1 6 Nb 6 N2 and M1 6 Mb 6 M2, see Fig. 6. Then the 
following approximation is adopted:

vb�aNbþbMbþcNbMbþd
@vb

@Nb
�aþcMb;

@vb

@Mb
�bþcNb

8<
: where:

N1 M1 N1M1 1
N2 M1 N2M1 1
N2 M2 N2M2 1
N1 M2 N1M2 1

2
6664

3
7775

a

b

c

d

2
6664
3
7775¼

v11

v21

v22

v12

2
6664

3
7775

ð13Þ

The same method is applied to compute gb;
@gb

@Nb
;
@gb

@Mb

� �
.

2.3. Evaluation of the structural response

The beam is first discretized in M-1 segments. Each element, 
between two nodes, is then split in two parts: the reinforced con-
crete beam segment and the external reinforcement one, whose 
interaction depends on the interface shear stresses t (see Fig. 7).

The numerical method adopted aims at simulating the response 
of a CFRP reinforced beam in a loading test. Debonding of the 
external reinforcement from the substrate is usually very brittle 
and induces a sudden decrease of the stiffness and of the 
load-carrying capacity of the beam. In order to model this process
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Fig. 5. Generic section of the reinforced beam having an axis of symmetry.

Fig. 6. Illustrative representation of the surfaces relating the curvature vb and the
axial deformation gb to the bending moment Mb and axial force Nb .
a displacement controlled numerical procedure is adopted. At each
kth loading step an increasing value dm;k of the displacement at a
certain section m of the beam is assigned (in the following defined
as controlling point). All external loads (else than the self-weight)
will then gradually increase, proportionally to a factor named ak,
up to the ultimate load and then will suddenly decrease when fur-
ther increasing dm;k. The load factor ak needed to achieve the
applied displacement dm;k is one of the unknowns.

The solution is searched also in terms of unknown interface slips
sk ¼ s1;k . . .  sN;k½ �T (N being the number of nodes used to d
cretize the interface, see Fig. 7). Once vector sk is known, the corre-

sponding interface shear stresses tk ¼ t1;k . . .  tN;k½ �T can 
derived through the adopted cohesive law, see Eq. (4). The vectors

of bending moment Mb;k ¼ Mb1;k . . .  MbM;k½ �T and axial force

Nb;k ¼ Nb1;k . . .  NbM;k½ �T in the beam, and axial force Nr;k ¼
Nr1;k . . .  NrN;k½ �T in the external reinforcement, could then 
derived by simple equilibrium equations in the generic section j as:

Mbj;k ¼ Mbj;ak
� b yG þ yRð Þ

Xf ðjÞ
i¼1

ti;kDxi

* +
8j ¼ 1 . . . M

Nbj;k ¼ Nbj;ak
� b

Xf ðjÞ
i¼1

ti;kDxi

* +
8j ¼ 1 . . . M

Nrj;k ¼ b
Xf ðjÞ
i¼1

ti;kDxi

* +
8j ¼ 1 . . . N

ð14a;b; cÞ
where the term in brackets � � �h i is equal to zero for those sections 
not externally reinforced, f ðjÞ is the upper limit of the summation, 
function of the section j where the internal forces are computed, b 
is the external reinforcement width, index ak refers to the contribu-
tion of the external loads, and yR is the distance between the center 
of gravity of the CFRP reinforcement and the bottom of the rein-
forced concrete cross section (see Fig. 7). As soon as the distribution 
of the internal forces is assessed it is possible to compute, through 
Eqs. (1) and (13), the characteristics of deformation of both concrete 
beam and external reinforcement sections:

vbj;k ¼ vb Mbj;k;Nbj;k

� �
gbj;k ¼ gb Mbj;k;Nbj;k

� �
grj;k ¼ gr Nrj;k

� � ð15a;b; cÞ

and the corresponding vectors defined as follows: curvature

vb;k ¼ vb1;k . . . vbM;k

� �T and axial deformation gb;k ¼ gb1;k . . .
�

gbM;k�
T in the concrete beam and axial deformation gr;k ¼

gr1;k . . . grN;k

� �T in the reinforcement.
By integration of the above beam and reinforcement

deformations and by the use of the principle of virtual work, it is
possible to compute: the vectors of concrete beam sections axial

displacements ub;k ¼ ub1;k . . . ubM;k½ �T and rotations hb;k ¼
hb1;k . . . hbM;k½ �T , the vector of the external reinforcement axial

displacements ur;k ¼ ur1;k . . . urN;k½ �T and the transversal dis-
placement vbm;k at the controlling point, i.e. the section m where
the displacement dm;k is imposed:

ubj;k ¼
Xj

i¼1

gbi;kDxi

hbj;k ¼
XM

i¼1

M̂1
i vbi;kDxi þ

Xj

i¼1

vbi;kDxi

urj;k ¼ ur1;k þ
Xj

i¼1

gri;kDxi

vbm;k ¼
XM

i¼1

M̂m
i vbi;kDxi

ð16a;b; c;dÞ

where M̂1 ¼ M̂1
1 . . . M̂1

M

� �T
and M̂m ¼ M̂m

1 . . . M̂m
M

� �T
are the

bending moment distributions due to a unit couple applied at the 
left end section and to a unit force applied at the specific coordinate 
where the displacement dm;k is imposed, respectively. In the above 
equations, the principle of virtual work was used to evaluate the 
rotation at the left end section of the beam, first term in Eq.(16b), 
and the displacement of the controlling point, Eq. (16d).

Horizontal displacement ur1;k at the left end section of the exter-
nal reinforcement (see Eq. (16c)) is also unknown.

Interface slips Dk ¼ D1;k . . .  DN;k½ �T occurring at each node of 
the interface can then be derived as follows, function of the sec-
tions displacements and rotations above determined:

Dk ¼ �ub;k � hb;k yG þ yRð Þ þ ur;k ð17Þ

The final system of N + 2 nonlinear equations reads:

Z Yð Þ¼
w Yð Þ
W1 Yð Þ
W2 Yð Þ

2
64

3
75¼

Dk sk;ak;ur1;k
� �

�sk

NrN;k skð Þ
vbm;k sk;akð Þ�dm;k

2
64

3
75¼

0
0
0

2
64
3
75; where Y¼

sk

ak

ur1;k

2
64

3
75

ð18Þ

The above equations, nonlinear due to the softening nature of the
cohesive law and to the nonlinear behavior of both beam and rein-
forcement, impose kinematic compatibility at the interface (N equa-
tions), zero axial force at the external reinforcement end section (1



Fig. 7. Schematic representation of the discretized externally reinforced beam.
equation) and the assigned displacement at the controlling point (1
equation).

The solution at the k-th loading step has to be achieved by
means of an iterative procedure. Initial trial values of the
unknowns, i.e. ak; ur1;k and vector sk, have to be assigned at the
beginning of each loading step k (usually consisting with the solu-
tion of the previous step k� 1Þ and then the following Newton–
Raphson iteration procedure (run by index nÞ is adopted till
convergence:

Ynþ1 ¼ Yn �
@Z
@Y

				
n


 ��1

Z Ynð Þ ð19Þ

where Y is the vector of the unknowns and Z Yð Þ the vector of resid-

uals. Consistent tangent operator
@Z
@Y

is derived in Appendix A.

It is interesting to note that amplification load parameter a can
be applied to any type of loading conditions; therefore, the numer-
ical approach proposed can deal with displacement-controlled
analyses with both concentrated and distributed forces.

It is important to underline that the problem cannot be formu-
lated in terms of interface shear stresses t, in view of the softening
behavior of the cohesive law. On the contrary, the choice of consid-
ering the interface slips s as primary unknowns allows to follow
the reinforcement debonding and to model the entire equilibrium
path from the response of the reinforced beam to that of the orig-
inal one after detachment.
3. Validation of the numerical method

In order to validate the proposed formulation for modeling 
debonding in externally reinforced beams, benchmarking experi-
mental tests taken from literature, concerning reinforced concrete 
beams, are simulated.

The experimental tests performed by Maalej et al., see [37], are 
here considered. They consist in five simple supported reinforced 
concrete beams, loaded in four point bending configuration. All the 
details about geometry, internal and external reinforcement can be 
found in Table 1 and Fig. 8.

In all experimental tests, debonding started from the reinforce-
ment end due to the shear stress concentration occurring at the 
CFRP-concrete interface. The four reinforced beams (one is the ref-
erence one, i.e. without any external reinforcement) were charac-
terized by a different CFRP reinforcement thickness, which 
induced different shear stress concentrations and consequently 
different failure loads. These failure mechanisms were correctly 
predicted by the current model, which, on the contrary, being



Fig. 9. Concrete beam curvature as function of bending moment and axial force.
based on the beam hypothesis, would not be able to predict 
debonding phenomena starting from a stress concentration occur-
ring in correspondence of a mid-flexural shear crack.

Figs. 9 and 10 visualize the surfaces representing curvature and 
axial strain as functions of bending moment and axial force for the 
concrete beam section, determined following the method 
described in Section 2.2.

Since in [37] no information are provided on the ultimate strain 
and on the shape of the steel reinforcement stress–strain relation-
ship, it was decided to calibrate the adopted linear hardening con-
stitutive law, through a tuning procedure with respect to the load–
displacement curve of the reference beam (beam 1). The results 
achieved, reported in Table 2, permitted to reach a very good 
agreement with the experimental curve, see curves with index 1 
in Fig. 11.

The rather small value of the identified Young modulus (the 
nominal value reported in [37] is 183.6 GPa) may be due to a com-
pensation intrinsic in the solution of the inverse problem with 
respect to experimental data which may be affected by the testing 
machine deformability.

By means of a similar best fitting procedure with respect to 
beam 5 (the one having the thicker CFRP reinforcement) the cohe-
sive properties, which cannot be measured directly, were identi-
fied, see Table 3. This identification allowed a good agreement with 
the experimental curve in terms of stiffness, ultimate load and post 
peak branch (see curves with index 5 in Fig. 11).

The material parameters above identified were then adopted to 
simulate the other reinforced beams (i.e. beam 2, 3 and 4), which 
were characterized by a different CFRP lamina thickness.

In Fig. 11, it is shown that the numerical method proposed is 
able to predict fairly well the experimental behavior of all the 
tested beams (not only those that had been used to identify the 
material properties), both in terms of stiffness and ultimate load 
(depicted in the curve by a circle or a square). For beams 3, 4 
and 5, the failure mode consisted in ripping of the concrete cover 
due to external reinforcement debonding and the numerical 
method was also able to follow the descending branch. Beam 2 
had the thinner CFRP reinforcement and both experimentally and 
numerically failed for CFRP rupture. The error obtained when sim-
ulating its load-carrying capacity is anyway small, and probably 
depends on the difference between the actual local strength of 
the CFRP sheet and the nominal one (i.e. the one adopted in the 
computations, equal to 3400 MPa according to [37]).
Table 1
Details of the external reinforcement of the five beams tested in [37].

Specimen Beam 1 Beam 2 Beam 3 Beam 4 Beam 5

Number of layers 0 1 2 3 4
CFRP thickness (mm) 0 0.111 0.222 0.333 0.444

Fig. 8. Specimen geometry of the experimental tests by Maalej et al. [37].

Fig. 10. Concrete beam axial deformation as function of bending moment and axial
force.



Table 2
Identified steel reinforcement properties.

Es f sy Hs

165,240 MPa 561 MPa 1098 MPa

Fig. 11. Comparison between numerical and experimental load displacement
curves. Failure mechanisms consist in both external reinforcement debonding
(circle) and CFRP rupture (square).

able 3
entified interface properties entering the adopted bilinear cohesive law.

Kf tf Gf

2.50 N/mm3 0.97 MPa 1.08 N/mm

Fig. 12. CFRP axial stress in the four reinforced beams at their ultimate numerical
load.
T
Id
Fig. 12 visualizes the CFRP axial stress distribution, for all the 
four reinforced beams, along the longitudinal axis, computed in 
correspondence of the numerical ultimate load. In relation to beam 
2, a maximum CFRP axial stress is reached, equal to the assumed 
nominal tensile strength reported in [37] (3400 MPa), coherently 
with the failure mechanism predicted by the numerical model 
and occurred in the test.
4. Parametric study

This Section is intended to present some parametric analyses 
aimed at showing the effect of the main design parameters on the 
overall behavior of a RC beam externally retrofitted in bending by a 
CFRP lamina. In order to emphasize the effects on the ultimate load 
of the parameters related to the external reinforcement and the 
adhesive, concrete was treated as linear elastic in compression, 
while the tensile behavior was assumed linear elastic up to the ten-
sile strength f ct , followed by brittle failure. Similarly, the strength 
of the CFRP lamina is set to be so high not to have its breaking 
before debonding.

The reference case considered is a simple supported beam 2.0 m 
long loaded by a uniform distributed load and reinforced by a CFRP 
lamina, 100 mm wide and 1.0 mm thick. The beam has a rectangu-
lar cross section with dimensions 100 mm x 200 mm, it is rein-
forced with rebars, whose total area is 402 mm2 at the lower 
side, and 157 mm2 at the upper side, see Fig. 13.

Parametric studies were performed with respect to the follow-
ing parameters: CFRP lamina length Lr , fracture energy Gf , interface 
shear strength tf and CFRP modulus of elasticity Er , by varying each 
parameter at time with respect to the reference values reported in 
Table 4.
Fig. 14 visualizes the response of the reinforced beam with 
respect to a variation of the reinforcement length Lr within the 
range [1.0–1.8 m]. It turned out that the longer the reinforcement 
lamina, the higher the ultimate load and the more brittle the 
debonding phenomenon occurs, due to a larger amount of defor-
mation energy stored in the beam.

Fig. 15 reports the parametric analysis performed with respect 
to the fracture energy Gf , made considering values comprised 
between 1.0 N/mm and 2.0 N/mm. It is shown that the higher the 
fracture energy the higher the ultimate load and the more ductile 
the debonding failure mechanism is. For fracture energy values 
smaller than the 1.0 N/mm, the curve presented a snap-back 
behavior and, therefore, the implemented method was not able 
to follow the response of the reinforced beam after debonding.

Fig. 16 visualizes the parametric analysis performed with 
respect to the interface shear strength tf , considering values in 
the range [0.5–1.5 MPa]. It is shown that the higher the interface 
shear strength the higher the ultimate load and the more brittle 
the debonding failure mechanism is. For interface shear strength 
higher than the 1.25 MPa, the curve presented a snap-back behav-
ior and, therefore, the implemented method was not able to follow 
the post-peak response of the reinforced beam.

It is important to observe that the maximum attained load 
strongly depends on the interface shear strength. This seems to be 
in contrast with what generally stated by guidelines, see [22], 
according to which, if the minimum bond length is guaranteed then 
the maximum transferrable force depends on the fracture energy 
only. However, this concept is true for pull–push tests where the 
reinforcement is loaded with a uni-form axial force, but it is wrong 
in the present case where a variable bending moment distribution 
induces into the CFRP lamina a non-uniform axial force. Indeed, if 
we considered a reinforced beam loaded in a four points bending 
configuration in such a way the CFRP lamina is in between the two 
loading points, then it would be possible to show that in this case 
the maximum load would not depend anymore on the interface 
shear strength.

The effect of the modulus of elasticity Er on the response of the 
reinforced beam is similar to that of the lamina thickness h as 
emerged in Section 3. Fig. 17 shows that an increment of Er causes 
the decreases of both the ultimate load and displacement. Indeed, 
the stiffer reinforcement induces a higher shear stress concentra-
tion at the reinforcement end and, consequently, a premature 
failure.
5. Closing remarks

In the present paper, a novel numerical approach, based on a
modified version of the force method, was proposed to model the
response of concrete beams externally strengthened in bending,



Fig. 13. Reference beam studied in the parametric analysis.

Table 4
Material properties and reinforcement length assumed as reference case in the
parametric analysis.

Concrete Ec ¼ 28;960 MPa; f ct ¼ 2:6 MPa
Steel Es ¼ 210; 000 MPa; f sy ¼ 450 MPa; Hs ¼ 1035 MPa
CFRP Er ¼ 230;000 MPa; Lr ¼ 1:80 m
Interface Kf ¼ 2:5 N=mm3; tf ¼ 1:0 MPa; Gf ¼ 1:0 N=mm

Fig. 14. Parametric study with respect to the reinforcement length Lr .

Fig. 15. Parametric study with respect to the fracture energy Gf .

Fig. 16. Parametric study with respect to the interface shear strength tf .

Fig. 17. Parametric study with respect to the modulus of elasticity Er .
up to the complete detachment of the CFRP lamina and further on.
The method is able to follow the complete equilibrium path of the
beam, from the response of the externally strengthened
configuration to that of the original one after the debonding of
the external reinforcement and the consequent and sudden load
drop.

The numerical method is based on a cohesive approach to
model the interface between the external reinforcement and the
substrate, and on numerically built surfaces relating the
characteristics of deformation of the concrete beam (curvature
and axial deformation) to the bending moment and axial force act-
ing at each cross-section. The proposed approach is formulated
considering concrete, steel rebar and external reinforcement as a
nonlinear material. The formulation leads to a set of nonlinear
equations expressed in terms of interface slips as primary
unknowns.

The method turned out to be able to correctly estimate the
results of experimental tests found in literature. The good agree-
ment between experimental evidences and numerical simulations,
means that the proposed approach may be considered as reference
for design considerations.

To this purpose parametric analyses were performed on a clas-
sical reinforced concrete beam, strengthened with a CFRP lamina,
in order to point out the effects on the response of the system of
the main parameters involved in the strengthening design: rein-
forcement length, interface fracture energy, shear strength and
CFRP elastic modulus.



Appendix A

Consistent tangent operator
@Z
@Y

in Eq. (19) is derived in the

following.
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By applying the derivative chain rule, it follows that:
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where

� @vb

@Mb
;
@vb

@Nb
;
@gb

@Mb
;
@gb

@Nb
and

@gr

@Nr
are diagonal matrices, computed

�

according to Section 2.2; 
@t
@s

is a diagonal matrix whose terms are determined by deriving

analytically the adopted interface cohesive law (Eq. (4));

� @ub

@gb
;
@hb
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;
@ur
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are computed by derivation of Eq. (16);

� @Mb

@t
;
@Nb

@t
;
@Nr

@t
are lower triangular matrices computed by

deriving Eq. (14);

� @s
@Y

;
@a
@Y

;
@ur1

@Y
are Boolean matrices and vectors of 0 and 1,

defined as follows (I and 0 being the identity and zero matrices,
respectively):
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