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1. Introduction

Nowadays, a viable estimation of transonic aerodynamic loads
acting on flying airplanes is often provided by computational fluid 
dynamics (CFD) codes, so allowing to adequately tackle aircraft sta-
bility and response analyses, for both flight mechanics [1,2] and 
aeroelastic [3,4] applications. However, such simulations are still 
computationally expensive, being characterized by a large number 
of unknowns and often limited to the most significant validation 
cases [3,5,6].

In order to introduce the typical nonlinear effects encountered 
in transonic flows, researchers have focused some of their efforts 
toward the development of reduced order models (ROMs). These 
compact system representations are designed to maintain an ac-
curacy as close as possible to that of their parent high-fidelity 
aerodynamic analyses. An extensive overview of these methods can 
be found in [6] and references therein. The techniques mainly em-
ployed in the literature for the generation of reduced order models 
can be roughly subdivided in three main branches.

The first is the group of subspace projection techniques, such 
as the proper orthogonal decomposition [7,8], and, in a general-
ized sense, the harmonic balance method [9]. These approaches 
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project the high fidelity model into a subspace spanned by a very 
efficient basis, which is able to represent any solution of inter-
est through a small number of states. With proper orthogonal 
decomposition-based techniques, the related numerical bases are 
computed mostly through the singular value decomposition of a 
snapshot matrix, whose columns are time samples of very accurate 
responses to well chosen forcing terms [10]. The harmonic balance 
method on the other hand considers directly a truncated Fourier 
series as reduced order basis, limiting its application to periodic 
solutions [11,12].

The second branch is related to the adoption of generalized 
interpolation methods, e.g. radial basis function or Kriging inter-
polators [13,14]. Such methods employ a high-fidelity system for 
pointwise evaluations of its response, while a high order interpo-
lation is applied for computing the response at any intermediate 
points of interest. Therefore, this ROM works as a general non-
linear input–output mapping, permitting to represent the dynamic 
system analytically. Even if it is a robust technique, its application 
seems limited to the evaluation of nonlinear aeroelastic systems 
stability, as demonstrated in the cited references.

The third group is represented by identification techniques 
based on input–output data pairs. The Volterra series method [6], 
i.e. the generalization of the impulse response to nonlinear sys-
tems, belongs to this group. Another approach, the one followed
in this work, is characterized by the adoption of neural networks.
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Nomenclature

b airfoil/wing semi-chord
c airfoil chord
CL, CM coefficients of lift and moment
e network output error
h, θ plunge and pitch degree of freedoms
k = ωc

V∞ reduced frequency
m airfoil/wing mass
r2
θ = Jθ

mb2 nondimensional airfoil/wing moment of inertia
u network input
V ∗ = V∞

ωθ b
√

μ
reduced velocity

Wa, Wb, Wc network synaptic weights
xθ = Sθ

mb nondimensional airfoil/wing static unbalance

x network state
y network output
� network Jacobian matrix
μ = m

πρ∞ b2 fluid-mass ratio

ρ∞ fluid density
τs = ωθ t structural adimensional time
s = V∞t

b aerodynamic adimensional time
�(v) network activation function
ωh, ωθ uncoupled plunging and pitching circular frequencies
CFD Computational fluid dynamics
DTRNN Discrete time recurrent neural network
LCO Limit cycle oscillation
ROM Reduced order model
Recently, discrete time recurrent neural networks have been em-
ployed in the order reduction of relatively simple aeroelastic sys-
tems [15–17]. In particular, the first two references employ a 
neural system with radial basis functions as computational units, 
within a framework that can be interpreted as a system identifi-
cation based on a nonlinear autoregression with exogeneous input 
[18]. Reference [17] instead employs a support vector machine in 
the identification of unsteady aerodynamic loads. This technique 
has shown promising results in various machine learning applica-
tions and seems to have found its way also in problems where 
compact system representations are required.

Particular emphasis will be given in the present work to the 
determination of limit cycle oscillation (LCO) solutions of nonlinear 
aeroelastic systems.

In the context of the related theory, an LCO is a dynamic bi-
furcation. The reader can find a vast supporting literature on the 
analysis of all the different bifurcation types, regarding generic 
nonlinear systems [19,20] and aeroelastic applications [5,21]. A few 
details pertaining to the aeroelastic case are considered here.

Within the framework of fluid–structure interaction, LCOs may 
be driven by aerodynamic nonlinearities, and the related behavior 
can be associated to the formation of large vortical flow structures, 
as in the case of low speed, high angle of attack flow regimes [22,
23], or to complex shock motions in transonic flows, even when 
using Euler flow models [5,24,25]. In this last case, which is of 
main interest in this work, a nonlinear aerodynamic model would 
allow the simulation of this phenomenon.

Such a moving shock wave may undergo very large displace-
ments, eventually disappearing and reappearing during an LCO 
period [5,9]. Because of the fact that a shock wave introduces a 
discontinuity in the flow field, this kind of behavior can be as-
sumed as dynamically nonlinear [24].

Also structural nonlinearities can lead to LCOs, whether the 
flow is transonic or not, as presented in [23,26,27], but the study 
of this kind of phenomena is not of interest here.

Aeroelastic limit cycles are usually determined in numerical ex-
periments by time marching integrations [5,6]. Such methods seem 
to be used mainly to validate the stability changes predicted by 
Hopf bifurcation analyses with varying dynamic pressure, lead-
ing to stable/unstable responses or LCOs. Here instead, the system 
bifurcation point will be identified through free responses calcu-
lations, checking a posteriori if the system is asymptotically stable 
around the origin or if its behavior converges toward an LCO.

In this work a discrete time recurrent neural network (DTRNN) 
in state-space form [28] is used to identify nonlinear aerodynamic 
responses and compute aeroelastic limit cycle oscillations. Such 
formulation permits to consider the state and the input of the 
network only one step behind the current state, without keeping 
the old values of the input (and output in the case of references 
[15–17]) of several previous time steps in memory.

The present effort has multiple goals: present a novel, neu-
ral network-based ROM technique in the discrete time domain, 
analyze the performance of this methodology in Euler-based aero-
dynamic loads identification, perform nonlinear aeroelastic simula-
tions comparing the results with the related high fidelity outcomes 
and determine the ROM sensitivity to parameter changes.

The work is organized as follows. In Section 2.1 the CFD solver 
employed is presented and all its main features are detailed. In 
Section 2.2 an introduction to neural networks terminology and 
to its recurrent framework for dynamic systems modeling is pro-
vided. Section 2.3 details the training algorithm used to optimize 
the network parameters in order to predict any response of in-
terest. Section 3 presents in detail the results obtained for two 
standard test cases: an airfoil oscillating in pitch and a two degree-
of-freedom typical section undergoing limit cycle oscillations due 
to large shock wave motion. Finally, in Section 4 the most interest-
ing findings of this work are resumed.

2. Numerical methodology

2.1. Aerodynamic solver

For a high fidelity modeling of the aerodynamic problem, the 
in-house solver AeroFoam developed at Politecnico di Milano [29]
is chosen. This application is supported by OpenFOAM libraries 
for the management of the mesh data, the computation of the 
numerical solution and the pre/post-processing phases. It is a 
Reynolds-Averaged Navier Stokes (RANS) density-based solver for 
aero-servo-elastic applications, written exploiting the Arbitrary-
Lagrangian-Eulerian formulation for moving grids. It is a finite 
volume, cell-centered solver, that can treat both structured and un-
structured grids. In the present computations, the Euler flow model 
is chosen, therefore the effects of viscosity and thermal conductiv-
ity will be neglected.

AeroFoam is the first density-based RANS solver implemented 
within the framework of OpenFOAM, realized to overcome the lim-
its of built-in pressure-based solvers in the transonic regime, e.g.
sonicFoam, because their non-conservative formulation does not 
permit to solve accurately transonic and supersonic regimes.

Regarding the present inviscid application, the convective fluxes 
are discretized by the classical Roe’s approximated Riemann solver, 
which is a first order, monotone scheme, blended by the centered 
approximation provided by the Lax–Wendroff scheme, resulting in 
a second order, high-resolution scheme. The spatial discretization 
is completed by the entropy fix of Harten and Hyman and the flux 
limiter by van Leer [30].



The time discretization is performed by an explicit five-stage 
Runge–Kutta scheme, which presents a first order convergence. 
Dual time stepping and a full approximation storage multi-grid 
technique are combined to speed up the convergence of time-
accurate simulations.

An extended illustration of the aeroelastic capabilities of Aero-
Foam can be found in [3,29].

As will be shown in the next sections, this CFD solver will 
be used to generate the input–output time histories required for 
tuning the neural model employed in this work. In the present ap-
plications, the input will be represented by the structural motion, 
while the outputs will be the associated aerodynamic loads.

2.2. Recurrent neural networks

A neural network is a massively parallel distributed process 
made up of simple processing units, the neurons. Using an anal-
ogy with our brain, a large number of interconnected neurons 
would have the natural capability of learning new rules through 
experience, using them when needed. This knowledge is acquired 
through a learning process, and stored in the synaptic connections 
linking the neurons. Neural networks have been widely used in 
nonlinear system identifications because of their abilities in self-
learning, adaptivity and nonlinear modeling.

As demonstrated in the literature [31], neural models are a 
powerful tool for approximating nonlinear dynamic systems, even 
when the system itself is unknown and only the input–output data 
are available. Therefore, they permit a sort of black-box model-
ing of any nonlinear system, avoiding the burden of formulating a 
structured parametrization of the equations describing the physical 
model. In fact, when using neural networks, the model structure is 
determined only by the layout of the network connections, and the 
related parameters are determined either through experimental or 
computational models, thus requiring none or a very little prior 
knowledge at most.

A neural network is generally composed by an input layer, an 
arbitrary number of hidden layers and an output layer.

The input layer receives the input data from the external en-
vironment and passes it to the computational kernel represented 
by the neurons. These units receive a linear combination of the in-
put, whose coefficients are called synaptic weights. This signal is 
passed through the neurons, which are modeled by a nonlinear 
squashing map, e.g. a logistic or hyperbolic tangent function. If the 
network is used to approximate a nonlinear process, then its com-
putational layer should be hidden, meaning that the output of its 
neurons should not be the direct output of the network. Thus the 
real output is usually a linear combination of the outcome of each 
neuron, presented to the external environment by the output layer.

For modeling nonlinear dynamic systems, a memory effect 
should be introduced, therefore a recurrent scheme must be 
adopted. In this way the output of each neuron is fed back as a 
new input, after the application of a time delay. A logical scheme 
of such a network is shown in Fig. 1.

The related mathematical model is given by:{
xn+1 = �

(
Waxn + Wbun

)
yn = Wcxn

(1)

where x ∈ R
nx is the network state, u ∈ R

m is the external in-
put, y ∈ R

p is the output, � : Rnx −→ R
nx is the set of activating 

functions, and Wa ∈ R
nx×nx , Wb ∈ R

nx×m and Wc ∈ R
p×nx are the 

matrices containing the synaptic weights, with nx , m and p be-
ing the state, input and output space dimensions respectively. As 
can be seen by the framework proposed in Fig. 1, only one hid-
den layer will be used in the present work. This architecture has 
Fig. 1. Example of DTRNN.

demonstrated to possess good convergence properties while being 
described by a limited number of neurons [18,31].

From Eq. (1) can be noted that the identified model is assumed 
to be represented by a strictly proper system, i.e. the output yn

does not depend on the input un explicitly. The related output ma-
trix is structured as:

Wc = [
Ip×p 0p×(nx−p)

]
(2)

where I is the identity matrix, 0 the null matrix, whose dimensions 
are shown by their subscripts.

The structure of Eq. (2) points out that the outputs of the first 
p neurons are also those of the network. This framework allows to 
assign physically meaningful initial conditions to Eq. (1), as will be 
seen in the next section.

Following a few preliminary numerical simulations, used to test 
the ability of different sigmoid functions to represent the system 
nonlinearities of interest, the hyperbolic tangent has been found to 
be the best activation function in the considered applications. Its 
mathematical expression is:

φ(v) = tanh(v) φ′(v) = sech2(v) (3)

where v is the neuron potential. Along with its definition, also 
its first derivative is provided, because it plays a significant role 
within the training algorithm as will be seen in the next section.

2.3. Training procedure

The most demanding effort in setting up a meaningful neural 
network model is, without a doubt, played by its training. Differ-
ent strategies have been proposed in the literature, in particular 
for DTRNNs, such as the back propagation through time (BTTP) 
algorithm, for off-line learning, and the real time recurrent learn-
ing (RTRL) algorithm, for on-line implementations. Both algorithms 
have demonstrated good convergence properties within the realm 
of the applications of interest of the present work [28,32].

Nonetheless, especially for systems characterized by strong 
nonlinearities, it has been verified that a simple gradient descent-
based learning, e.g. the approach followed by the BTTP and RTRL 
algorithms previously cited, is somewhat inefficient [33]. Thus 
more robust optimization algorithms should be used, such as the 
Levenberg–Marquardt (LM) optimization method [34] or a genetic 
algorithm (GA) [35].

In fact, the training of a neural network can be viewed as a 
nonlinear least squares optimization problem, which can greatly 
benefit from the knowledge of the system Jacobian matrix.

Such a matrix is referred to the derivative of the system output 
with respect to the parameters to be designed for minimizing a 
given cost function, i.e. in this case the synaptic weights of Eq. (1). 
To such an aim let us define the state Jacobian matrix:



�n = ∂xn

∂θ
(4)

where θ =
(

vec
(
Wa

)T
,vec

(
Wb

)T
)T

, vec (·) being the operator or-

dering a matrix into a vector by stacking its columns. Because it is 
associated to a dynamic system, the above Jacobian matrix will be 
time dependent. As will be shown, this quantity can be computed 
through a simple finite difference approximation of Eq. (4) or by 
the analytical development carried out in this section.

The network training aims at finding out the optimal synaptic 
weight values that minimize a given figure of merit, that in our 
case is a quadratic function of the output error e(t), defined as:

en = ŷn − Wcxn, with en = e(tn) (5)

where ŷ(t) is the output of the reference high fidelity model. The 
associated cost function reads as:

F = 1

2

Nt∑
n=1

eT
n en (6)

where Nt is the number of sampling points. The optimization al-
gorithm will find at least a local minimum of this function with 
respect to the unknown optimal synaptic weights.

It should be noted that, despite its relatively robust convergence 
properties, the LM solver may not converge when started from an 
initial guess point θ0 too far away from the optimal solution.

For this reason, a hybrid technique is implemented here, run-
ning a few iterations of global GA first, resuming LM when the 
genetic solution hooks up an optimum region, that in this work 
is characterized by a cost function value smaller than a selected 
threshold, fixed to 10, chosen after several runs. In the present 
applications, such a value assures a good and fast convergence of 
the LM algorithm in the refinement stage. In fact, beside fostering 
convergence from very rough initial guesses, an added advantage 
of such a hybrid approach resides in avoiding the calculation of al-
most useless initial Jacobian matrices, resuming their calculation 
when LM provides its full advantage of a faster convergence.

In relation to the LM algorithm used in the refinement stage, it 
becomes useful to define the vector:

E(θ) =
(

e1(θ)T e2(θ)T · · · eNt (θ)T
)T

(7)

with E ∈R
Nt ·p .

The associated Jacobian matrix, defined as:

J(θ) = ∂E(θ)

∂θ
(8)

with dimensions R(Nt ·p)×nθ , and split into the blocks of dimension 
R

p×nθ :

J(θ) =
[

J1(θ)T J2(θ)T · · · JNt (θ)T
]T

(9)

can be computed through a simple finite difference discretization 
of Eq. (8):

Jn = en (θk) − en
(
θk−1

)
θi,k − θi,k−1

, n = 1, . . . , Nt (10)

where θi,k is the value of the i-th element of the parameter vector 
describing the network at the k-th iteration of the LM method.

On the other hand, if the knowledge of the network dynamics, 
represented by Eq. (1), wants to be exploited, then each block is 
defined as:

Jn(θ) = ∂en(θ) = −Wc�n(θ) n = 1, . . . , Nt (11)

∂θ
Having defined the state Jacobian matrix in Eq. (4), it is easy to see 
that its dimensions are given by a matrix belonging to Rnx×nθ , with 
nθ = nx · (nx + m) according to the dimensions defined in Eq. (1). 
For a more straightforward computation of its elements, it is fur-
ther split in the blocks:

�n =
[

∂xn

∂W a
ij

∂xn

∂W b
ij

]
(12)

Remembering the size of each vector/matrix involved and the or-
der they have been sorted with, their assembly will result in a 
straightforward operation. Defining the single-entry matrix Ii j , as 
the matrix with a 1 in the position (i, j) and zero elsewhere and 
using the shorthand notation zn = Waxn + Wbun , the direct com-
putation of the blocks of Eq. (12) from Eq. (1) reads:

∂xn+1

∂W a
ij

= �′(zn)

(
Ii jxn + Wa ∂xn

∂W a
ij

)
i = 1, . . . ,nx

j = 1, . . . ,nx
(13)

with �′(zn) = Diagnx

[
φ′

1(z1,n), φ′
2(z2,n), · · · , φ′

nx
(znx,n)

]
. Following

the same procedure for the elements of Wb we obtain the rela-
tion:

∂xn+1

∂W b
ij

= �′(zn)

(
Ii jun + Wa ∂xn

∂W b
ij

)
i = 1, . . . ,nx

j = 1, . . . ,m
(14)

At this point, assembling the different blocks (13) and (14), we can 
define:

Un = [
�′(zn)Ii jxn �′(zn)Ii jun

]
(15)

and

Ân = �′(zn)Wa (16)

ending with a time dependent Jacobian matrix governed by the 
following dynamic model:

�n+1 = Ân�n + Un (17)

Eventually, the coupling of Eq. (1) and Eq. (17) fully defines the 
nonlinear state dynamics of a DTRNN:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

xn+1 = �
(
Waxn + Wbun

)
�n+1 = Ân�n + Un

yn = Wcxn

Jn = −Wc�n

(18)

Thanks to the structure of Wc , highlighted by Eq. (2), it is pos-
sible to assign the initial conditions required by Eq. (18) as the 
first value of the outputs of the related high fidelity simulation. In 
this way, the neural network acquires a basic physical connotation, 
where the value of the first state variables is directly the value of 
the aerodynamic loads. Therefore, prior knowledge is introduced to 
the system represented by Eq. (18) through its initial conditions:

x0 =
(

ŷT
0 0T

)T
(19)

where the size of the null vector is equal to nx − p. On the other 
hand, the initial condition of the state Jacobian matrix is taken 
as a null matrix, meaning that the initial synaptic weights of the 
network reside at a stationary point of Rnθ :

�0 = 0 (20)



Fig. 2. Computational mesh used in the present Euler-based calculations.

Fig. 3. Training signal and related results. The forcing reduced frequency is k = 0.15.
 

 
 

3. Results

3.1. Pitching airfoil in transonic flow

The often used NACA 64A010 airfoil [9,16], pitching around the 
20% of its chord is considered here for a first convergence analysis 
of the proposed DTRNN scheme. The working condition is an air 
flow at M∞ = 0.8.

As shown in Fig. 2, the adopted two dimensional mesh is of a C-
type with 12 200 cells, resulting in a total of 48 800 unknowns,
since density, momentum and total energy are unknown in each 
cell. The present test is a simple aerodynamic load identification, 
leading to a single input (pitch angle), multiple outputs (lift and 
moment coefficients) problem.

Following [16], the network is trained through the imposition 
of a harmonic pitching motion of period T , selected case by case, 
represented by:

α(t) = A(t) sin(ωt) (21)

whose amplitude is:
A(t) =
⎧⎨
⎩

(
t

nT

)r

A0 t < nT

A0 t ≥ nT
(22)

with n = 5, r = 3 and A0 = 8 deg.  The training is tackled over 
two input histories. At first a signal with reduced frequency k = 
ωc/V∞ = 0.15 is presented to the DTRNN, followed by one with 
k = 0.05, aiming at improving the generalization properties of
the network. An example of such signals is given in Fig. 3(a).
These signals are expressed as function of the dimensionless time 
s = V∞t/b, where b is the airfoil semi-chord.

A convergence analysis is carried out here to compare the accu-
racy and the computational time required by the proposed training 
procedure. Let us call A the DTRNN characterized by nx = 8 and 
thus nθ = 72, where again nx represents the number of neurons 
and nθ the total number of parameters describing the network, 
B the network with nx = 10, nθ = 110 and C the network with 
nx = 12, nθ = 156.

The training results are resumed in Table 1, comparing the out-

comes related to the evaluation of the Jacobian matrix in the LM 



 

 

 

 

 

 
 

Table 1
Convergence test of the three different DTRNNs considered in this case.

Model Jacobian matrix
computational method

Computational
time [min]

Final cost
function value

DTRNN A Finite differences 25 1.24
Analytical 6 0.11

DTRNN B Finite differences 38 0.25
Analytical 10 0.032

DTRNN C Finite differences 62 0.055
Analytical 24 0.00069

iterations, either through finite differences or analytically, as de-
tailed in Section 2.3.

The comparison between the two methods is considered here 
to assess if the knowledge of the analytical Jacobian matrix could 
bring improvements to the proposed training procedure in terms 
of precision and convergence to the reference results when com-
pared to a simpler calculation of the same quantity by means of a 
finite difference formula. From Table 1 can be seen that, compared 
to its analytical counterpart, the simpler finite difference evalua-
tion of the Jacobian matrix of the LM method is rather inefficient. 
Moreover, comparing the results achieved by networks A, B and C, 
it appears that B shows the best trade-off between accuracy and 
required computational time.

An example of the training outcomes is shown in Fig. 3(b). 
From this figure can be noted that the present training signal well 
excites the system nonlinearities. In fact, the behavior of the aero-
dynamic moment is clearly nonlinear, because its shape is different 
from the one of the input signal. The coefficient of lift instead is 
rather linear with respect to the harmonic input, because the re-
lated time history is similar in shape to the input’s one. This result 
is common in aerodynamic problems modeled through Euler flows 
[15,16,36].

All of the computations are carried out with a single processor, 
Intel® Core™ 2 Duo CPU, 2.93 GHz of maximum frequency and 4 
GB of RAM memory. The time required for the generation of the 
training signal by AeroFoam is 3 h 10  min for  the first signal and
3 h 50 min for  the second, adopting a time step �t = 10−3 s, equal 
to �s = 0.544 dimensionless time steps.

The maximum number of generations admitted for the GA 
phase is 200, starting from random synaptic weights, while the 
LM method is allowed to reach 300 iterations, with a cost func-
tion threshold value fixed at 10−4 , assessed to be small enough to 
achieve meaningful identification results. To weigh the fitting er-
ror uniformly, both input and output are normalized with respect 
to their maximum value.

For validating the present results, three sinusoidal pitching mo-
tions are considered:

α(t) = A0 sin(ωt) (23)

The first two cases are described by amplitude A0 = 3 deg and 
reduced frequency k = 0.12 and 0.24 respectively. The related sig-
nals frequencies are remarkably different from those used to train 
the DTRNN, and for such a reason this can be considered a good 
generalization test for the present method. Nonetheless, the signals 
amplitude is rather small in this case, thus a weakly nonlinear re-
sponse is expected. For this reason, a third test case is considered 
with A0 = 7 deg and k = 0.1. Such a case is supposed to be highly 
nonlinear because of the large motion amplitude involved and it is 
used to evaluate the ability of the DTRNN in capturing the essen-
tial nonlinear characteristics of the response.

The related results are shown in Figs. 4 and 5. A hysteresis loop,
typical of unsteady aerodynamic responses [37], is obtained. As can 
be noticed from both the figures, all the DTRNNs replicate the ref-
erence results accurately. Nonetheless, it is clear that increasing the 
number of neurons, the precision increases. For example, passing 
from DTRNN A to B permits to reduce the differences with respect 
to the outcomes computed by the CFD code. The results obtained 
with DTRNN C are not shown here because they are almost iden-
tical to those obtained by DTRNN B. It is also interesting to see 
how the loads predicted by the DTRNNs are far more accurate for 
the lift rather than for the moment coefficient. This could be due 
to the strong nonlinear behavior of this latter, which may lead to 
a difficult identification of the relation between the airfoil motion 
and this aerodynamic load.

The results related to the third test case are presented in Fig. 6.
Again, the DTRNNs are able to replicate the reference results with 
good fidelity, showing an improved precision as the number of 
neurons is increased.

To highlight the stronger nonlinear behavior of this last verifica-
tion case with respect to the others, a comparison of the moment
coefficient fast Fourier transform (FFT) is proposed in Fig. 7. As ev-
ident, Fig. 7(b), relative to the third verification signal, shows six
detectable peaks at frequencies multiple of the fundamental one, 
being this a peculiarity of nonlinear systems responses [24]. On the
other hand, in Fig. 7(a), relative to the first case, only two peaks
are detected. It is then clear that an oscillation of 3 deg  at k = 0.12 
is only weakly nonlinear when compared to an oscillation of 7 deg  
at k = 0.1.
Fig. 4. First validation test with A0 = 3 deg at k = 0.12.



Fig. 5. Second validation test with A0 = 3 deg at k = 0.24.

Fig. 6. Third validation test with A0 = 7 deg at k = 0.10.

Fig. 7. Moment coefficient FFT computed using the forcing signals of the first and the third validation cases.



 

 

Fig. 8. Pitching and plunging typical section.

Nevertheless, the DTRNN-based method is able to capture all 
these peaks in both cases, proving to be an efficient tool in the 
identification of nonlinear and unsteady aerodynamic loads.

The computational time required by AeroFoam for such a sim-
ulation is 3 h  and 10 min, with the same time step of the training 
signal. The same simulation carried out using the simpler DTRNN 
based ROM requires only 1 s.  The cost function defined by Eq. (6)
is reduced to a value close to F = 0.001. Thus, even with the very 
low order adopted, i.e. 10 neurons, the accuracy of the reduced or-
der model remains high. As mentioned before, because the DTRNN 
B shows the best trade-off between training time required and fi-
nal accuracy, it will be the one considered in the next applications.

Even though this simple example application does not show the 
full potential of the DTRNN as reduced order model, because the 
computational cost comparison is made over only one simulation, 
it is demonstrated how the network is able to generalize input 
signals that were never seen during the training phase, nonetheless 
reproducing reliable results.

3.2. Two degree of freedoms typical section

The DTRNN is applied here to a plunging (h, positive down-
ward) and pitching (θ , positive clockwise) typical section with the 
same airfoil and flight condition as for the previous applications. 
A basic  layout of such a mechanical system is shown in Fig. 8. The 
related non-dimensional equations of motion are given by:
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Table 2
Data of the typical section case.

xθ r2
θ ωh/ωθ μ

0.25 0.75 0.5 75

where xθ and rθ are the dimensionless static unbalance and mo-
ment of inertia, respectively, ωh and ωθ the uncoupled natural 
circular frequencies of the mechanical system. The dynamic model 
is written in terms of the non-dimensional time τ = ωθ t , and the 
bifurcation parameter is represented here by the reduced veloc-
ity V ∗ , defined as:

V ∗ = V∞
ωθ b

√
μ

(25)

being b the semi-chord and μ the fluid to mass ratio. The parame-
ter θ0 in Eq. (24) is a non-null pre-twist angle that will be used to 
test the model performance outside its training set, computed con-
sidering θ0 = 0 deg. Of course the effect of such a parameter will 
be to make the resulting aeroelastic LCOs no more symmetric.

The model can be written in the following compact form:

Mu′′ + Ku = f + K0θ0 (26)

while the parameters of the case considered here are summarized 
in Table 2.

Differently from what presented in [15,16], the training signal 
used in this case is designed without considering the actual aeroe-
lastic coupling. Its generation comes from a purely aerodynamic 
simulation with imposed boundary conditions, which should be 
able to catch all of the motion amplitudes and frequencies of 
interest. The designed training signal excites a range of reduced 
frequencies up to k = 0.6. White noise-like signals, as the ones 
shown in Fig. 9 are selected because they seem to possess good 
properties for such a nonlinear identification [17]. The FFT of these 
signals is depicted in Fig. 10, where it is evident how the reduced 
frequency range k = 0.05–0.6 is  well excited, while out of it the
signal strength is rather low. It may also be noted that the reduced 
frequency k = 0 is  not excited because no steady state components 
of the signal are used in the training.

Because the discrete time framework presented in Section 2.3 
is limited by the fact that the adopted time step is fixed once for 
all when the training phase has been accomplished, this must be 
carefully chosen small enough to represent any response of inter-
est in the analyses that follow the training. A physical time step of 
Fig. 9. Training signal used in the two degree-of-freedom typical section case.



Fig. 10. Training signal FFT used in the two degree-of-freedom typical section case.

Fig. 11. Aerodynamic loads identification resulting from the training phase.
 

�t = 2 · 10−3 s (or  �s = 1.088 in dimensionless time) is set in the 
simulation of the training signal, with this value considered to be 
adequate for the series of analyses that will be performed in this 
section.

The solver AeroFoam generates the related training data in 
about 20 h. The training results, obtained with a network charac-
terized by nx = 10, are shown in Fig. 11. The training time required 
is 2 h 50 min.  Such a large increase with respect to the previous
test case is due to the longer training horizon and to the wide fre-
quency spectrum excited. The cost function defined by Eq. (6) is 
brought down to F = 0.08.

It is then possible to couple the DTRNN-based aerodynamic 
model to the structural system, so obtaining a nonlinear aeroelas-
tic model, which is described by:⎧⎪⎨
⎪⎩

Mü + Ku = f + K0θ0

fn = BWcxn

xn+1 = �
(
Waxn + Wbun

) (27)

with B = (V ∗)2

π
Diag (1, 1/2). After assigning an initial condition, 

the dynamic system is integrated forward in time. In this case, 
the reduced velocity V ∗ is the bifurcation parameter, which de-
termines the system stability properties.
Such a time integration can be carried out with explicit or im-
plicit schemes. While explicit methods are usually the first choice 
thanks to their simplicity of implementation, they are constrained 
to limit their time steps because of numerical stability issues. Im-
plicit methods permit larger integration time steps, albeit at the 
cost of solving a nonlinear algebraic problem at each step. This fact 
does not cause any major drawback if the system has a relatively 
small size or if it presents a simple analytical expression.

When integrating forward in time the reduced order model rep-
resented by the present structural model and the DTRNN, this is 
indeed the case. Therefore an implicit time-marching scheme, like 
the one developed in [38], is adopted here for the integration of 
the continuous part of Eq. (27), while the DTRNN is simply up-
dated through its recursive framework. The application of such a 
method results in a two-step, L-stable scheme of the type:

zn+1 = a0zn + a−1zn−1 + b1R (zn+1) + b0R (zn) + b−1R (zn−1)

(28)

where the subscript n characterizes the solution z at the n-th time 
step. The term R (z) represents the right hand side of Eq. (27). 
As shown in [38], the coefficients ai and bi will depend on the 
adopted time discretization and the desired level of numerical dis-
sipation.



Fig. 12. Sample of LCOs obtained with the DTRNN-based model at different flight speeds. (For interpretation of the colors in this figure legend, the reader is referred to the
web version of this article.)

Fig. 13. Comparison of LCO amplitude trends.
Fig. 12 shows a few LCO solutions obtained at three different 
reduced velocities using such an integration method. From this 
figure, it can be noted that as the reduced velocity is increased, 
the LCOs amplitude increases as well. Physically, in transonic flows 
mainly influenced by compressibility effects, LCOs are brought into 
the system due to the large motion of strong shock waves inter-
acting with the oscillating airfoil. Such an increase of amplitude is 
therefore related to the larger distance swept by the shock wave 
during one LCO cycle.

In addition, it is now possible to compute the LCO amplitude 
trends for varying reduced velocities, of the types shown in Fig. 13, 
where the results are compared with those obtained by Aero-
Foam and the method developed in [16], that employs an approach 
based on radial basis function networks, labeled as RBF. The same 
kind of comparison is shown in Fig. 14 about the LCO frequency 
trends. As can be noticed from these figures, the ROM-based aeroe-
lastic model predicts LCOs very similar to those computed by the 
high fidelity CFD code. Having a further look at Fig. 13, it is evi-
dent how the LCOs are a strongly nonlinear phenomenon, because 
they involve plunge motions of about 25% the airfoil chord and ro-
tations in the order of 4 degrees. Such results demonstrate that 
the proposed ROM can evaluate correctly these peculiar nonlinear 
responses, even on the base of a training that does not consider 
a harmonic signal as input. Clearly, the main advantage of such a 
model is the huge saving in computational time compared to the 
Table 3
CFD-based simulations, computational time required.

Time-accurate CFD simulations (7 points) 244 h 06 min

Table 4
ROM-based simulations, computational time required.

Generation of the training input–output data pair by AeroFoam 20 h 00 min
Training time 2 h 50 min
Envelope simulation time (20 points) 5 min
Total time required 22 h 55 min

LCO trends obtained by CFD-based calculations. The required com-
putational efforts are shown in Tables 3 and 4 respectively. From 
such a comparison, it is evident that the DTRNN permits to reduce 
the computational time of the LCO trends by a factor of 10, while 
maintaining a good accuracy.

Having proven the convergence of the DTRNN-based aeroelas-
tic system to the results obtained by high fidelity simulations, it 
is now time to test the performance of the system when some 
key parameters are changed. In the following analyses, perturba-
tions of ±15% are applied to μ, xθ and ωr , with their meaning 
resumed by Eq. (24). All the results are presented at the reduced 
velocity V ∗ = 0.74, and the comparison between the DTRNN- and 
CFD-based responses is provided in the phase space, to highlight 



Fig. 14. Comparison of LCO frequency trends.

Fig. 15. Comparison of LCO responses with different values of fluid-to-mass ratio μ. (For interpretation of the colors in this figure legend, the reader is referred to the web
version of this article.)
 

 

the variations of the LCO shape induced by the changes of such
variables. In Fig. 15 are depicted the responses obtained with var-
ious values of the fluid-to-mass ratio μ. As can be noticed, such 
variations do not introduce large modifications in the LCOs shape, 
which remains almost circular for all the values of μ considered. 
Also in this perturbed case, the DTRNN is able to reproduce ac-
curate responses compared with CFD calculations. Giving a further
look at Fig. 15, it seems that the reduced order model is more pre-
cise in predicting the LCO amplitude rather than the LCO velocity, 
even if these differences may be considered negligible, since the 
related relative error is always smaller or equal than 10%.

Resulting from similar analyses, in Fig. 16 are shown the re-
sponses obtained with various values of the dimensionless static 
unbalance xθ . Differently from the previous case, these variations 
introduce visible modifications in the LCOs shape, especially the 
one related to the pitch degree of freedom. Furthermore, when xθ 
is reduced by the 15% of its original value, the system is stable 
and does not show any LCO behavior at this flight speed. Again, 
the DTRNN is still able to reproduce these stability changes when 
compared with the reference CFD results.

In Fig. 17 are presented the responses obtained with various 
values of the frequency ratio ωr . Once again, these variations mod-
ify substantially the LCOs shape, and when ω is reduced by the 
r 
15% of its original value, the system results stable at this flight 
speed.

Finally, the influence of a non-null pre-twist angle θ0 , intro-
duced in Eq. (24), is shown. Responses with θ0 = ±1 deg  are
considered, while all the other variables are kept at their nomi-
nal value. Similarly to variations of μ, the present perturbations 
do not introduce large modifications to the LCOs shape, which 
remains almost circular for the values considered. The reduced or-
der model is robust enough to maintain a good accuracy in this 
case also, even if the perturbation introduced by θ0 leads to re-
sponses not included in the training set, since they present a 
non-null mean value, as depicted in Fig. 18. Notice that the vari-
ables on the vertical axes are now �h/b and �θ , computed as 
[max (LCO) − min (LCO)] /2, because the LCOs are no longer sym-
metric in this case.

Obviously, increasing the value of the pre-twist, for example at 
2 degrees, the response of the aeroelastic system changes its na-
ture and the DTRNN is no longer able to follow the reference LCO 
trends computed by the CFD. This fact is well shown in Fig. 19, 
where it is clear that the CFD results present a very different trend 
with respect to the one computed with a null pre-twist, while 
the DTRNN still replicates an envelope similar to those shown in 
Fig. 13. This misleading behavior could be fixed considering train-



Fig. 16. Comparison of LCO responses with different values of the dimensionless static unbalance xθ . (For interpretation of the colors in this figure legend, the reader is
referred to the web version of this article.)

Fig. 17. Comparison of LCO responses with different values of the frequency ratio ωr . (For interpretation of the colors in this figure legend, the reader is referred to the web
version of this article.)

Fig. 18. Comparison of LCO responses with different values of the pre-twist angle θ0. (For interpretation of the colors in this figure legend, the reader is referred to the web
version of this article.)



Fig. 19. Comparison of LCO amplitude trends with a pre-twist angle θ0 = 2 deg.
ing signals with a non-null mean value. Such a solution is currently 
under investigation by the authors, but it goes beyond the scope of 
the present work.

The present result demonstrates that there is still a lot of work 
to do if an ‘infinitely’ robust ROM is desired. Nonetheless, it has 
been proven that the present DTRNN-based ROM is robust to key 
parameters variations greater than 10% of their nominal value, and 
this could be considered a good level of robustness already. If more 
robust reduced order models are needed, then techniques belong-
ing to the field of uncertainty quantification should be employed, 
and this option is currently under consideration by the authors.

4. Concluding remarks

This effort has detailed the development of a neural network-
based aerodynamic reduced order model, trained on input–output 
data pairs generated by a generic CFD code, followed by its use in 
the calculation of aerodynamic harmonic responses and aeroelastic 
limit cycles. The related performances have shown a level of accu-
racy dependent on the type of nonlinear functions considered in 
the model, the number of neurons employed and the signal am-
plitude and frequency used in the training of the neural network. 
The reduced order model has proven to be quite robust in the face 
of variations of the reduced velocity and other key parameters. For 
this reason, a model built only on the results of pure aerodynamic 
simulations can be employed in any aeroelastic system at various 
reduced velocities and for a large set of model parameters, with 
the only restriction of maintaining the Mach number fixed.

The efficiency of the presented reduced order model is there-
fore quite appealing, and thanks to its limited computational effort 
compared to full order analyses, in the future it might make possi-
ble the inclusion of nonlinear dynamics phenomena even in the 
first stages of an aircraft design, maintaining an adequate level 
of accuracy. Nevertheless, it is believed that to fully verify the 
strength and weaknesses of this reduced order model methodol-
ogy, there remains the need of focusing on more complex and 
realistic applications, e.g. flexible wings with control surfaces, de-
formable free-flying aircraft, and finally testing the robustness of 
the reduced order model in the face of Mach number variations.
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