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cDepartment of Engineering, University of Agder, Grimstad, Norway

(Received 28 July 2013; accepted 22 December 2013)

In this work, a new methodology for the structuring of multiple model estimation schemas is developed. The proposed filter is 
applied to the estimation and detection of active mode in dynamic systems. The discrete-time Markovian switching systems 
represented by several linear models, associated with a particular operating mode, are studied. Therefore, the main idea of 
this work is the subdivision of the models set to some subsets in order to improve the detection and estimation performances. 
Each subset is associated with sub-estimators based on models of the subset. In order to compute the global estimate and 
subset probabilities, a global estimator is proposed. Theoretical developments based on a hierarchical decision, leading to 
more efficiency in detection and state estimation, are proposed. Naturally, these results can be used for fault detection and 
isolation, using the activation probabilities of operating modes. These results are applied to detect switches in the centre of 
gravity for vehicle roll dynamics.
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1. Introduction

Multiple model estimation methods for Markovian switch-
ing systems, which include an Interacting Multiple Model 
(IMM) and Generalized Pseudo-Bayesian (GPB) 
algorithm, need a priori  knowledge about the mode 
transition proba-bilities represented by a Markov chain 
(Bar-Shalom, Chang, & Blom,  1989; Dong, Wang, & 
Gao, 2013; Dong, Wang, Ho, & Gao, 2011; Hocine, 
Chadli, Maquin, & Ragot, 2008; Karimi, 2011; Magill, 
1965; Wang, Liu, & Liu, 2010; Wang, Shen, & Liu, 2012; 
Wei, Wang, Shen, & Li, 2011; Zhang, & Li,  1998). 
Traditional methods are based on the use of the Kalman 
filter associated with each model. In or-der to improve 
algorithm performances, several studies us-ing techniques 
like an extended Kalman filter (Boers & Driessen, 2005) 
and a finite memory observer (Hocine, Maquin, & Ragot, 
2005) have been reported in the lit-erature. The use of this 
estimator should be theoretically justified to ensure 
suboptimality of the methods. The con-struction of the 
models set is very important and directly affects the results 
of the estimation (Li & Bar-Shalom, 1996) and influences 
the quality of detection. The qual-ity of detection can 
decrease when the set size increases (Li & Bar-Shalom, 
1996; Qu, Pang, & Li, 2009). To solve this problem, the 
authors of Li and Bar-Shalom (1996), Li (2000), and Li, 
Zhao, and Li (2005) introduced a con-cept of variable 
structure multiple model estimator with a variable model 
set. Then, the number of models and there-fore the 
dispersion probability is reduced. These results
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have been recently applied to manoeuvring target tracking 
(Ho, 2011). These works are based on using, at each time, 
a subset of models instead of a whole set using switching 
logic. Unfortunately, these methods lead to good results 
only in the case of known switching sequences. Moreover, 
for an arbitrary switching, it is hard to apply this technique. 
In this paper, a method based on the whole set of models 
is presented. The basic idea is to divide the set of models 
into some subsets. Compared with previous works, the pro-
posed method gives systematic ways to compute Markov 
chains, state estimates and probability of the subsets. The 
study gives a theoretical procedure to construct a new multi-
ple model estimator. The developed structure is adapted to a 
parallel computation for greater speed in real-time working.

The rest of the paper is organised as follows. In 
Sections 2 and 3, procedures of computing transition 
matrices proba-bilities between models of a subset and 
between subsets are exposed, respectively. Then, a 
structured filter for Marko-vian switching systems is 
defined and detailed in Section 4. Afterwards, a detection 
methodology of active mode is given in Section 5, using 
the result of the structured fil-ter. Finally, to show the 
benefit of the proposed algorithm compared to the 
interacting multiple model (IMM) algo-rithm, an 
application of vehicle roll dynamics is given in order to 
detect changes in the centre of gravity (CG).

Notation: Throughout the paper, the following notations 
are used. π ij = P{Mi|Mj} denotes the transition probabili-
ties between the models Mi and Mj, μ

sj (k) is the activation
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probabilities of models belonging to the subset sj, μsj (k) is
the activation probabilities of the subset sj, and μi(k) is the
activation probability of the model j and Ir = {1, 2, . . . , r}.

2. Problem statement

We consider a system represented by a set of models M =
{M1, M2, . . . , Mr}, where r is a model number. When Mi is
active, the dynamics of the system is given by the following
equation:

{
x(k) = Aix(k − 1) + Biu(k − 1) + Giw(k − 1)
z(k) = Cix(k) + v(k)

(1)

where x is the state vector, z is the noisy measurement vec-
tor, i is the system mode index which denotes the active
mode, and w and v are noise sequences, with normal dis-
tributions, on mode-dependent process and measurement,
respectively. The system mode sequence is assumed to be a
first-order homogeneous Markov chain with the following
Markovian transition matrix:

� =

⎡
⎢⎣

π11 · · · π1r

...
. . .

...
πr1 · · · πrr

⎤
⎥⎦ . (2)

Division of the set M into some subsets si gives a set of
subsets S = {s1, s2, . . . , sn}, where n represents the number
of subsets and si

⋂
sj = ∅, ∀i �= j ∈ In, and

⋃n
i=1 si =

M .
Each subset is associated with a sub-estimator based

on the models of the subset, si = {M{sj , 1}, M{sj , 2}, . . . ,

M{sj , rj }}, where rj represents a model number of si and
{sj, j} is the model index in the set M. Afterwards, a global
estimator is constructed in order to collect the estima-
tions and probabilities of each sub-estimator to compute
the global estimate and probabilities of subsets.

To construct a global estimator, we need to compute the
Markovian transition matrix �s, which represents transition
probabilities between two subsets si and sj. To get �s, we use
the Markovian transition matrix �, assumed to be known.

3. Markovian transition matrix

To develop the sub-estimator and the global estimator, we
should compute the transition matrix probabilities of each
subset and transition matrix related to the set of subsets.
Using the Markovian switching matrix of the set of whole
model �, we can compute the transition matrix �s from a
subset to another and the matrices �si , i ∈ In governing
the transitions from a model to another in the same subset
si.

3.1. Markovian matrix of subsets transition

Considering the stochastic process of switching as station-
ary, we can now write

γ = �γ, γj =
r∑

i=1

γiπij , j ∈ Ir , (3)

where γ = [γ 1, γ 2, . . . , γ r] is the vector of probabilities
γ j of each model Mi with �r

i=1γi = 1. The γ j allows us to
compute Markovian matrix of subsets transition using the
Markovian transition matrix �.

The transition probability from a subset to another is
given by the following equation:

πsi|sj
=

∑ri

l=1
γl

∑rj

h=1
π{si , l}{sj , h}∑ri

l=1
γl

i, j ∈ In, (4)

where πsi |sj
is the transition probability from the subset

si to subset sj and π{si , l}{sj , h} is the transition probability
from the model l belonging to the subset si to the model h
belonging to the subset sj. These probabilities are provided
directly by the matrix �.

3.2. Markovian transition matrix of subset models

In order to construct the sub-estimators, related to the sub-
sets, we need to compute transition matrices �sj . From the
matrix �, we directly get

π
sj

lh = πlh∑rj

i=1
π{sj , l}{sj , i}

l, h ∈ Irj
, (5)

where π
sj

lh is the transition probability from model l to model
h belonging to subset sj.

4. Estimation procedure

The proposed procedure consists of dividing the set of mod-
els M into subsets si and proposing a sub-estimator for each
subset si. These sub-estimators can be either IMM or GPB
estimators or other kinds of multiple model Bayesian es-
timators. The multiple model estimator gives the state es-
timate, its variance and the activation probability of each
model belonging to the subset. Thereafter, the construc-
tion of the estimator is based on two levels of estimation
(sub-estimator and global estimator).

4.1. Sub-estimator

At time k, the inputs of the sub-estimator are measurements
z(k), and the estimate is given by the global estimator x̂(k −
1|k − 1) and its variance P(k − 1|k − 1) at time k − 1
(Figure 1). These inputs are then used as the input for ri



Figure 1. Sub-estimator.

different Kalman filters associated with the subset si, i ∈ In,
where n is the number of subsets. As the output of filters
we have the estimates x̂

si

j (k|k) for j ∈ Iri
, where ri is the

number of models in the subset i and the associate variances
P

si

j (k|k).
Likelihood function. The likelihood function corre-

sponding to the j th Kalman filter of the ith subset si is
given by

λ
si

j (k) = p[z (k) |Zk−1, M{si , j}], (6)

where j ∈ Iri
is computed using the estimate x̂

sj

i (k−1|k−1)
and its variance

λ
si

j (k) = p[z (k) |M{si , j}, x̂ (k − 1|k − 1) ,

P (k − 1|k − 1)]. (7)

Considering w and v with a normal distribution, we have
the following likelihood function:

λ
si

j (k) = N
[
ν

si

j (k) ; 0, S
si

j (k)
]
, (8)

where ν
si

j (k) = z(k) − C
si

j (Asi

j x̂ (k − 1 |k − 1) + B
si

j u

(k − 1)) and its variance S
si

j (k), with B
si

j , and C
si

j are
associated with the j th model of the subset si.

Update activation probabilities of models. Like the
GPB1 algorithm, the use of Bayes’ formula allows the fol-
lowing development:

μ
si

j (k) = 1

c
si

i (k)
λ

si

j (k)
ri∑

l=1

π
si

lj μ
si

l (k − 1), (9)

where μ
sj

i (k) is the activation probability of the model j, at
time k, belonging to the subset sj and c

sj

j is a normalisation
constant given by

c
sj

i (k) =
ri∑

j=1

λ
si

j (k)
ri∑

l=1

π
si

lj μ
si

l (k − 1). (10)



Figure 2. Global estimator.

The weighted estimate of subset sj. The weighted estimate
is given by

x̂si (k |k ) =
ri∑

j=1

μ
si

j (k) x̂
si

j (k |k ) (11)

and its variance

P si (k|k) =
ri∑

j=1

μ
si

i (k)
{
P

si

j (k|k) + [
x̂

si

j (k|k)

−x̂si (k|k)
][

x̂
si

j (k|k) − x̂si (k|k)
]′}

(12)

where the estimate x̂
si

j (k |k ) is an output of the j th Kalman
filter related to the j th model of the subset si.

Each sub-estimator gives a weighted estimate x̂si (k |k ),
and the activation probabilities μ

sj

i (k) , i ∈ Irj
, of models

belonging to the subset sj.
The different steps of the sub-estimator are repre-

sented in Figure 1. As the input of the sub-estimator,
there are the measurement, at time k, and the global state

x̂(k − 1|k − 1), which will be defined in the following sec-
tion. As the output, we have the estimate x̂si (k |k ) related
to the subset si.

4.2. Global estimator

The global estimator structure is similar to the GPB es-
timator structure. Instead of Kalman filters in the GPB,
the n parallel filters in the global estimator are the n sub-
estimators presented above.

The inputs of the global estimator are the measure-
ment z(k) and the estimate at time k − 1, x̂(k − 1|k − 1),
and its variance P(k − 1|k − 1). These inputs are used
as the input for each sub-estimator. The global estimator
(Figure 2) gives the estimate x̂(k|k) at time k and its variance
P(k|k). During the estimation, we compute the probability
activation of the subsets μsi (k), i ∈ In.

Likelihood function. The likelihood function related to
the ith sub-estimator is given by

λsi (k) = p[z(k)|Zk−1, si] (13)



Figure 3. Linear bicycle model with a roll degree of freedom.

with i ∈ In. It is computed as follows:

λsi (k) = p [z (k) |si, x̂ (k − 1 |k − 1) , P (k − 1 |k − 1) ] .

(14)
Then, we have the following likelihood function:

λsi (k) = N [νsi (k) ; 0, Ssi (k)] (15)

with νsi (k) = z(k) − Csi (k)(Asi (k)x̂ (k − 1 |k − 1) + Bsi

(k)u (k − 1)) and it variance Ssi (k).
In a similar way to x̂sj (k|k) in (11), Asi (k), Bsi (k) and

Csi (k) can be represented as

Asi (k) =
ri∑

j=1

μ
si

i (k) A
si

j ,

Bsi (k) =
ri∑

j=1

μ
si

i (k) B
si

j ,

Csi (k) =
ri∑

j=1

μ
si

i (k) C
si

j ,

(16)

where A
si

j , B
si

j and C
si

j are the matrices of the j th model
of the subset si. The subset si is represented by the matri-
ces Asi (k), Bsi (k) and Csi (k). These matrices are the sum
of matrices related to si subset models, weighted by the
activation probabilities μ

si

j (k).

Updating activation probabilities of a subset. The sub-
set activation probabilities are updated as follows:

μsi (k) = 1

csi (k)
λsi (k)

n∑
j=1

πsj |si
μsi (k − 1) (17)

with a normalisation constant

csi (k) =
n∑

i=1

λsi (k)
n∑

j=1

πsj |si
μsi (k − 1). (18)

Global estimate. From (17) and (11), we have

x̂ (k |k ) =
n∑

i=1

μsi (k) x̂si (k |k ) . (19)

To compute the global estimate x̂ (k |k ), we need to have the
estimate issues from the sub-estimator related to the subset
si with i ∈ In and the associated probabilities.

The variance of x̂ (k |k ) is as follows:

P (k |k ) =
n∑

i=1

μsi (k)
{
P si (k |k ) + [x̂si (k |k ) − x̂ (k |k )]

× [x̂si (k |k ) − x̂ (k |k )]′
}
. (20)

In summary, the proposed estimation schema uses r
Kalman filters related to r operating models. They are di-
vided into n sub-estimators, each containing rj Kalman fil-



ters. As the output of sub-estimators, we have the estimates
x̂si from Equation (11) and activation probabilities μ

sj

i from
Equation (9) of models belonging to the subset si. The sub-
estimates are used to compute the global estimate x̂ (k |k )
and activation probabilities μsj (k) of the subset sj.

5. Active model detection

From the proposed estimation procedure, two kinds of prob-
abilities are computed:

• The activation probability μ
si

j of the model j belong-
ing to the subset si. It is computed by considering
only the subset containing this model.

• Activation probability μsi of the subset si.

Several decision schemas can be performed based on the
use of these two kinds of probabilities.

5.1. Direct decision

The activation probability of the model Mj = M
si

l mj ∈ si

is the product of the activation probability μsi of the subset
si with the activation probability of the model in its subset
μ

si

l :

μj (k) = μsi (k)μsi

l (k). (21)

At given time k, the decision-making about the active
mode is directly performed using μj(k) as follows: we de-
clare the model Mj active if μi(k) is the greatest probability
activation. There is no decision-making about the active
model if μi(k) is under a given threshold.

5.2. Hierarchical decision

We may consider, at time k, two-level decision-making:
(1) Decision on active subset: In the first level, we make

a decision about the active subset using activation proba-
bilities μsi (k) of the subset si. To decide which subsets are
active, we consider the subset with the highest probability
μsi (k), then the attribute is value 1, and attribute value 0 to
the other activation probabilities of subsets, so we can write.
If we have i as μsi (k) > μsj (k), j ∈ In, then we impose
μsi (k) = 1, else μsj (k) = 0.

(2) Decision on active model: In the second level, we
detect the active model using the activation probabilities
μ

sj

i (k) of the models belonging to the active subset chosen in
the first level. Then, the activation probabilities μj(k) of the
models can be computed by μj (k) = μsi (k)μsi

l (k) which is
to write μj = μ

si

l (k) for Mj ∈ si, Mj = M
si

l , and μj(k) = 0
for Mj �∈si.

From probabilities μi(k), we can decide which model
is active at time k. As in the direct decision, we cannot
take a decision (no active model) if probabilities μj(k) are

Table 1. Simulation parameters.

Parameter Description Value Unit

m Vehicle mass 1300 (kg)
g Gravitational constant 9.81 (m/s2)
Vx Vehicle longitudinal speed 30 (m/s)
δ Steering angle (rad)
Jxx Roll moment of inertia of the

sprung
400 (kg m2)

mass measured at the CG
Jzz Yaw moment of inertia of the

chassis
1200 (kg m2)

measured at the CG
L Axle separation, such that L =

lv + lh

(m)

T Track width (m)
lv Longitudinal CG position

measured
1.2 (m)

with respect to the front axle
lh Longitudinal CG position

measured
1.3 (m)

with respect to the rear axle
h CG height measured over the

ground
0.7 (m)

c Suspension damping
coefficient

5000 (kg m2/s)

k Suspension spring stiffness 3600 (kg m2/s2)
Cv Linear tyre stiffness

coefficient for
60, 000 (N/rad)

the front tyre
Ch Linear tyre stiffness

coefficient for
90, 000 (N/rad)

the rear tyre
β Sideslip angle at the vehicle

CG
(rad)

φ̇ Roll angle measured at the roll
centre

(rad/s)

φ Roll rate measured at the roll
centre

(rad)

�t Sampling time 0.05 (s)

under a given threshold. The hierarchical decision allows
the elimination of the effect of the models belonging to the
other subsets. This subset is declared not active by the first
level of decision. Therefore, the second level uses only the
active subset models instead of the whole set of models.

Remark 1: Note that the hierarchical decision can be used
for systems where similar models are regrouped (for in-
stance, models around the same operating point, represent-
ing the same kind of failure or model of the same size. . .),
whereas the direct decision can be used where the activation
probabilities of subsets are very close and where a decision
on the active subset cannot be made.

6. Application to vehicle detection mode
The developed result is applied for the detection of param-
eter changes in automobiles. Detection of right parameters
is very important, especially in active control design. In-



Figure 4. Simulation conditions: steering angle (input δ(t)), output (φ(t)) and output with noise.

Figure 5. Activation probability (direct method).



Figure 6. Activation probability (hierarchical decision).

deed, knowing a real value of the CG is a necessary con-
dition to guarantee switching stability in the roll vehicle 
dynamics subject to rapid changes in CG position. Differ-
ent vehicle models exist in the literature in nonlinear form 
and corresponding linear models under some assumptions 
(Ackermann, Bartelett, Kaesbauer, Sienel, & Steinhauser, 
1993; Bakker, Pacejka, & Linder, 1989; Dahmani, Chadli, 
Rabhi, & El Hajjaji, 2013a; Ryu & Gerdes, 2004). These 
nonlinear models describing vehicle lateral and roll 
dynam-ics consider the nonlinear tyre characteristics 
(Ackermann et al., 1993; Bakker et al., 1989) or tyre 
characteristics in their fuzzy form (Dahmani et al., 2013a; 
Dahmani, Chadli Rabhi, & El Hajjaji, 2013b). In this 
paper, we consider a lin-ear bicycle model (Figure 3) with 
a roll degree of freedom where the coupled lateral and roll 
dynamics assumes that δ(t), φ(t) and β(t) are small and that 
all the vehicle mass is sprung (Solmaz, 2007). Using a 
first-order approximation for the matrix exponentials, the 
discrete time equivalent of the system can be expressed as 
follows (Solmaz, Shorten, Wulff, & O’Cairbre, 2008):

x (k+1)

=

⎡
⎢⎢⎢⎣

1− σ
mV x

Jxeq

Jxx
�t

(
ρ

mV 2
x

Jxeq

Jxx
−1

)
�t − hc

JxxVx
�t

h(mgh−k)
JxxVx

�t
ρ
Jzz

�t 1− κ
JzzVx

�t 0 0

− hσ
Jxx

�t hρ
VxJxx

�t 1− c
Jxx

�t mgh−k
Jxx

�t

0 0 �t 1

⎤
⎥⎥⎥⎦ x (k)

+

⎡
⎢⎢⎢⎣

Cv

mV x

Jxeq

Jxx
�t

Cvlv
Jzz

�t
hCv

Jzz
�t

0

⎤
⎥⎥⎥⎦ δ (k) ,

where x=[ β ψ̇ φ̇ φ ]T is the state vector, σ=Cv+Ch,
ρ=Cvlv+Chlh, κ=Cvl

2
v+Chl

2
h and Jxeq = Jxx + mh2, with

the parameters given in Table 1.
Our aim is to detect the CG change of the given ex-

ample, applying the proposed structured filter when only
the roll angle φ is measured. Assuming that the CG height
of the vehicle can switch between any of the values h1 =
0.7, h2 = 0.8, h3 = 0.9 and h4 = 1, we get, respectively, four
models M1, M2, M3 and M4. Therefore, these models are
regrouped in two subsets with two models for each of them.
Two sub-estimators are developed for the two subsets and
the global estimator makes a fusion of the sub-estimators.
The expected result is the detection of active mode, us-
ing the activation probabilities following the sub-estimator
μ

si

l (k) and global estimator μsi (k).
We propose a scenario to test and compare the per-

formance of the proposed methods (direct, hierarchical and 
mixed-decision) with the IMM algorithm. The results of this 
comparison are presented in Figures 5 and 6.The switches 
are generated using a Markov matrix � given by

� =

⎡
⎢⎢⎣

0.9 0.033 0.033 0.033
0.033 0.9 0.33 0.033
0.033 0.033 0.9 0.033
0.033 0.033 0.033 0.9

⎤
⎥⎥⎦

Figure 4 represents the steering angle profile (δ(t)), the 
output (φ(t)) and the output with noise used in the
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