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other sectors of the world economy. More recently, the 
awareness of the potential impact of the carbon emissions 
of the ICT sector itself has rapidly increased.

Overall, the combination of the energy consumption of 
service centers and communication networks accounts for 
2–4% of global CO2 emissions (comparable, e.g., to the 
emissions due to the global air traffic) and it is projected to 
reach up to 10% in 5–10 years, fueled by the expected 
massive adoption of Cloud computing [1,2]. Service centers 
investment grew by 22.1% during 2012 and it is expected it 
will further grow by another 14.5% in 2013 [1]. So, one of 
the main challenges for Cloud computing is to be able to 
reduce its carbon and energy footprints, while keeping up 
with the high growth rate of storage, server and com-
munication infrastructures.

Even if computing and networking components of the 
system have been designed and managed quite indepen-
dently so far, the current trend is to have them more 
strongly integrated for improving performance and effi-
ciency of Cloud services offered to end users [3]. The inte-
gration of computing and networking components into a 
new generation of Cloud systems can be used not only to 
provide service flexibility to end users, but also to manage 
in a flexible way resources available in geographically-
distributed computing centers and in the network inter-
connecting them.

A key enabler of Cloud/network cooperation is the use of 
geographically distributed service centers. Distributed 
Cloud service provisioning allows to better balance the 
traffic/computing workload and to bring computing and 
storage services closer to the end users, for a better appli-
cation experience [4]. Moreover, from an energy point of 
view, having geographically distributed service centers 
allows Cloud providers to optimize energy consumption by 
exploiting load variations and energy cost variations over 
time in different locations.

The level of flexibility in the use of resources in different 
service centers depends on the application domains and 
basically comes from the geographic distribution of virtual 
machines hosting service applications, the use of dynamic 
geographically load redirect mechanisms, and the intelli-
gent use of storage systems with data partitioning and rep-
lication techniques. This flexibility in service centers 
management also has a relevant impact on the communi-
cation network mainly for two reasons. First, since the ser-
vice requests from users are delivered through an ‘‘access 
network’’ to service centers hosting the virtual machines, 
moving dynamically the workload among service centers 
can completely change the traffic pattern observed by the 
network. Second, an ‘‘interconnection network’’ is used to 
internally connect service centers and redirect end-user 
request or even move virtual machines and data with, 
again, a non-negligible impact on the traffic load when 
reconfiguration decisions are taken by the Cloud manage-
ment system. Access and interconnection networks can be 
actually implemented in several different ways as private 
Intranets or using the public Internet, depending on the 
Cloud provider policies and the specific application 
domains. In any case, there is a large number of possible 
interaction models among telecommunications and Cloud
providers that regulate their service agreements from a 
technical and economical perspective.

The main contribution of this paper is to explore the 
possibility of jointly and optimally managing service cen-
ters and the network connecting them, with the aim of 
reducing the Cloud energy cost and consumption. We 
develop an optimization framework that is able to show the 
potential savings that can be achieved with the joint 
management and to point out the relevant parameters that 
impact on the overall system performance. Concerning the 
network, we propose two representations, a high level 
approximated model and a detailed one. We show that the 
energy consumption obtained with the approximated 
version is very close to the one obtained with the detailed 
network representation and that the approximated version 
requires significantly smaller computational effort. Thus, it 
is suitable to assess the importance and impact of the joint 
optimization. The resource utilization and load allocation 
scheduling is performed on a daily basis assuming a central 
decision point (one of the service centers) and the avail-
ability of traffic patterns for different time periods. How-
ever, since the computational time is quite small (order of a 
few minutes), the time period length can be decreased, and 
the granularity can be finer, so as to follow better 
unpredictable traffic variation.

The approach proposed is based on a Mixed Integer 
Linear Programming (MILP) model which is solved to opti-
mality with a state-of-the-art solver. The model assumes a 
Cloud service provider adopting the PaaS (Platform as a 
Service) approach and optimizes the load allocation to a set 
of geographically distributed Service Centers (SCs) where 
virtual machines (VMs) are assigned to physical servers in 
order to serve requests belonging to different classes. The 
goal is minimize the total energy cost consid-ering the 
time-varying nature of energy costs and the availability of 
green energy at different locations. The traf-fic can be 
routed to SCs using a geographical network whose capacity 
constraints and energy consumption are accounted for. We 
formally prove that the problem is NP-hard since it is 
equivalent to a Set Covering Problem.

We present a set of numerical results on a realistic case 
study that considers the real worldwide geographical dis-
tribution of SCs of a Cloud provider and the variations of 
energy cost and green energy availability in different world 
regions. Moreover, we show some results to characterize 
the scalability of the optimization framework proposed 
and the sensitivity to workload and green energy predic-
tion errors.

Even if a large literature on the improvement of energy 
efficiency of service centers (see e.g. [5]) and communica-
tion networks (see e.g. [6]) exists, very few studies have 
considered so far the cooperation between Cloud and net-
work providers for a joint energy management, and, to the 
best of our knowledge, no one has proposed a joint optimi-
zation framework able to exploit low energy modes in 
physical servers and networking devices (see Section 5 for a 
detailed analysis of related work). From a practical point of 
view, we assume that the economic advantages coming 
from the energy savings can be managed through service 
agreements between Cloud and network operators



Fig. 1. Reference Cloud system architecture.
taking into account the contributions of different system 
components that can be quantified by the proposed model.

The paper is organized as follows. Section 2 describes 
the integrated approach and the problem addressed. 
Section 3 describes the proposed MILP models. Section 4 
reports on the experimental tests and the obtained results. 
Section 5 overviews other literature approaches. Conclu-
sions are finally drawn in Section 6.
s 

1 It is worth noting that the computational times, discussed in Section 4, 
are such that even a finer granularity planning can be performed with our 
model. Besides, it is possible to solve the model several times during the 
day, thus taking into account unexpected traffic variations that can modify 
the predicted 24 h profile. However, the analysis of more fine grained time 
scales and their interrelationship with the one day ahead planning is out of 
the scope of this paper.
2. The integrated framework for sustainable Clouds

In this work we consider a PaaS provider operating a 
virtualized service infrastructure comprising multiple Ser-
vice Centers (SCs) distributed over multiple physical sites. 
This scenario is frequent nowadays. Indeed, Cloud provid-
ers own multiple geographically distributed SCs, each 
including thousands of physical servers. For example, Ama-
zon offers EC2 services in nine worldwide regions (located 
in USA, South America, Europe, Australia, and Asia) and 
each region is further dispersed in different availability 
zones [7]. We denote with N the set of SCs. Physical sites 
are connected by a wide area network operated by a part-
ner network provider (see Fig. 1). The network is modeled 
considering virtual paths connecting the SCs (a full mesh of 
end-to-end paths is assumed).

The PaaS provider supports the execution of multiple 
transactional services (e.g., e-commerce sites), each repre-
senting a different customer application. For the sake of 
simplicity, we assume that each VM hosts a single service, 
and multiple VMs implementing the same service can be 
run in parallel on different servers.

The hosted services can be heterogeneous with respect 
to computing demands, workload intensities, and band-
width requirements. Services with different computing and 
workload profiles are categorized into independent request 
classes, where the system overall serves a set K of request 
classes.

Given the application workload profiles, the aim is to 
decide which SC serves each request, taking into account 
performance and energy as primary factors. As SC energy 
consumption is considered, the application workload can
be forwarded from one SC to another so as to exploit 
cheaper or green energy where it is available. However, 
this has an impact on the network energy consumption. 
The overall problem consists in assigning application 
workload to SCs in order to jointly minimize SCs and net-
work energy costs.

The problem is solved on a daily basis: one day in 
advance, a prediction of the application workload is con-
sidered (as in [8–11]) and requests are assigned to service 
centers for the next 24 h. The considered 24 h horizon is 
discretized and divided into time bands. We denote with 
T the set of time bands. Each SC is characterized by a spe-
cific traffic profile for each time band: the local arrival rate 
for requests of class k 2 K  at the SC i 2 N  at time t 2 T  i
denoted with kt

ik and we assume that the workload profile is 
periodic [12].1

Furthermore, as in [13–15] we assume that the SCs 
implement a distributed file system and data are replicated 
in multiple geographical locations for availability reasons. 
Each SC has a set of different types of VMs L that can serve 
incoming requests. Among the many resources, we focus 
on the CPU and bandwidth as representative resources 
for the resource allocation problem, consistently with 
[16–20]. Different request classes need different kinds of 
VMs and have different bandwidth and CPU requirements. 
Three parameters are used to model such features. Param-
eter mkl is equal to 1 if request of class k can be served by a 
VM of type l, parameter bk represents the bandwidth 
requirement of class k requests, while Dk represents the 
overall CPU demanding time [21] for serving a request of 
class k on a VM of capacity 1. VMs and SCs have capacity 
limits: Pil is the capacity of a VM of type l at the SC i, while 
Ci is the overall SC i computing capacity.



Table 1
Sets and parameters.

N Set of service centers
T Set of time bands
L Set of VM types
K Set of request classes

kt
ik

Local incoming workload arrival rate for request class k at SC i
at time band t

mkl VM requirement parameter: equal to 1 if class k 2 K can be
served by type l VM, 0 otherwise

bk Bandwidth requirement for request class k
Dk Demanding time for serving request class k on a VM of

capacity 1
Pil Capacity of a VM of type l at SC i
Ci SC i overall computing capacity
U average VMs utilization
ail Energy consumption for running a type l VM in SC i
gil Energy consumption for switching on a type l VM in SC i
hil Energy consumption for switching off a type l VM in SC i
qi PUE value for SC i
ct

i Cost for energy in SC i at time band t

Rij Total number of routers in the link ði; jÞ
Qij Maximum bandwidth available on path ði; jÞ
cij Energy consumption for a router in path ði; jÞ
dij Energy consumption for a router in path ði; jÞ in idle state
sij Energy consumption for switching on a router in path ði; jÞ
nij Energy consumption for switching off a router in path ði; jÞ
f t
ij Cost for energy in path ði; jÞ

w0
il

Number of active VMs of type l in SC i at time 0

z0
ij

Link ði; jÞ status at time 0

Ct
i

Green energy available in SC i at time band t

gt
i Cost for green energy in SC i at time band t
Energy consumption varies for different VMs. Further-
more, switching on or off a VM with respect to the previous
time band also requires a certain amount of energy. Param-
eter ail denotes the energy consumption for running a type
l VM in SC i at peak load (in kWh), while gil and hil are the
energy consumption for turning on and off a VM,
respectively.

In order to take into account service centers cooling
energy costs, power distribution and uninterruptible
power supply efficiency, we consider the Power Usage
Effectiveness for SC i, denoted by qi. The Power Usage
Effectiveness is defined as the total service center power
divided by the IT equipment power.

Concerning the network, we assume that it is possible
to jointly optimize its energy consumption with that of
service centers. In the case of multiple autonomous entities
involved (like in the case of Cloud provider and one or
more network providers) we assume that the optimal
point we find is also a convenient solution for all of them.
Other relevant scenarios where objectives of different enti-
ties are conflicting and the system can work on equilib-
rium points are out of the scope of this work.

As for the parameters, we assume that the energy con-
sumption of Cloud service on an end-to-end path is zero if
there is no traffic, while in the presence of traffic it has a
fixed component and a load proportional component. In
order to better estimate these components we consider
the number of physical hops along the path and the energy
consumption of routers interconnecting them (obviously
the mapping of paths to physical links and routers depends
on the network operator policies). We consider two net-
work descriptions: a high level approximated model and
a detailed one. In the approximated description paths are
precomputed and we assume that the number of routers
Rij in the path connecting each pair of SCs i and j is given,
which affects the energy consumption of connecting i to j.
In the detailed representation, paths are the result of the
optimization process. Furthermore, a maximum amount
of traffic Qij can be sent from i to j. In fact a maximum band-
width is available on the links belonging to the path con-
necting i and j, which cannot handle additional traffic
when at full capacity. The energy consumption, in terms
of kW h, for running and keeping idle a single router are
denoted with cij and dij, respectively. Switching on and off
a path consumes energy as well: sij and nij. For each unit
of energy consumed by the path connecting i to j at time t
a cost f t

ij must be paid. We point out here that this model

t

is rather general and can be adapted to the energy profile 
of specific network devices. The assumption of a linear 
energy profile has been adopted in most of the previous lit-
erature on green networking and verified by a number of 
experimental results.

Renewable energy is considered as well, with cost and
availability depending on the sites. We denote with ci

t 

and gi
t the cost for brown and green energy at each SC in 

the time band t, respectively. Ci is the renewable energy 
available at SC i at time t. As for the application workload, 
green energy sources can be evaluated by relying on pre-
diction techniques [22–24].

The overall problem consists of assigning request clas-
ses to service centers, so as to guarantee that all requests
are served by a suitable VM by minimizing SCs and net-
work energy costs, while not exceeding SCs and network 
capacities. The problem solution will provide the fraction of 
incoming workload served at each SC and redirected by the 
load managers to other SCs (see Fig. 1), and the number of 
VMs at each SC to be allocated to each application. The 
main idea behind the approach is that requests coming at 
SC i should be forwarded to another SC if the requests 
redirect is more efficient in terms of energy costs than 
serving the requests locally. Note that, in another SC energy 
costs might be lower thanks to time zone differences.

The problem parameters we will use in this paper are 
summarized in Table 1. We assume to solve the problem on 
a daily basis at a central decision point (any SC). In 
alternative the solution can be also computed in parallel at 
different SCs by sharing the incoming workload predic-tion 
without adding a significant overhead in the system (the 
information is shared once a day).

3. An optimization approach for energy management

The load management problem is formulated as a
Mixed Integer Linear Programming (MILP) optimization
model which takes into account many other important fea-
tures, such as energy consumption, bandwidth and capac-
ity constraints, and green energy generation. For the sake
of clearness, we introduce first the approximated network
representation.



3.1. Variables

The problem can be formulated using several sets of
variables. Continuous nonnegative variable xt

ijkl represents
the arrival rate of requests of class k at SC i, which are
served in SC j by a VM of type l, at time t. In other terms,
xt

ijkl variables represent the optimal configuration of request
forwarding or in-site serving of the Cloud system in the
time interval t. Note that xt

iikl indicates the request rate that
is originated and served locally, i.e.,

P
l2Lxt

iikl 6 kt
ik andP

l2Lxt
iikl ¼ kt

ik if requests are not redirected.
Integer variable wt

il represents the number of VMs of 
type l used in SC i at time band t. Two integer variables rep-
resent the number of VMs of type l to be turned on (and 
off) in each SC i at time band t : wt

il (and respectively, wt
il).

Other variables are associated to the network: zt
ij is a 

binary variable which is equal to 1 if the path connecting 
i to j is active at time t, 0 otherwise. Similarly to SCs, zt

ij 
and zt

ij indicate whether each path has to be turned off with 
respect to time t � 1.

Finally, continuous variable yi
t models the amount of 

green energy used in SC i at time t. The decision variables 
are summarized in Table 2.

3.2. Objective function

As mentioned above, the aim of the problem is to 
reduce energy cost along the considered time horizon 
and to exploit green energy where available. The following 
objective function accounts for these goals.

min
X
t2T

X
i2N

ct
i qi

X
l2L
ðailwt

ilþgilw
t
ilþhilwt

ilÞ�yt
i

" #
þgt

i y
t
i

( )

þ
X
t2T

X
i;j2N

f t
ijRij dijzt

ijþsijzt
ijþnijz

t
ijþðcij�dijÞ

P
k2Kbk

P
l2Lxt

ijkl

Q ij

" #

ð1Þ

The total energy required at SC i at the time band t is
represented by the term qi

P
l2L ailwt

il þ gilw
t
il þ hilwt

il

� �
,

namely the sum of the energy needed to keep the VMs run-
ning and the energy needed to switch them on and off. The
cost for the total energy is split into green and brown
energy costs. The amount of green energy used is simply
Table 2
Decision variables.

xt
ijkl Arrival rate for class k request redirected from SC i to SC j

served with a type l VM

wt
il Number of type l VMs running in SC i at time band t

wt
il Number of VMs of type l turned on with respect to time t � 1

in SC i
wt

il Number of VMs of type l turned off with respect to time t � 1
in SC i

zt
ij Whether the link ði; jÞ is active in time band t (binary)

zt
ij Whether the link ði; jÞ has to be turned on with respect to time

t � 1 (binary)
zt

ij Whether the link ði; jÞ has to be turned off with respect to time
t � 1 (binary)

yt
i Green energy used in SC i at time t
given by the variable yt
i , while the brown energy is the dif-

ference between the total energy needed in the SC and the
green energy actually used.

Concerning the network, the total amount of energy cost
to be minimized is computed summing each path energy
cost, which depends on the cost of keeping the routers
working and the cost of turning on and off the routers.
Besides, the cost of the energy consumed by the routers is
considered, which is proportional to the total bandwidth
in use, namely the fraction with respect to the total band-
width available. Network is assumed not to use green
energy. The energy costs of SC (first term of the objective
function) and network (second term) are jointly minimized.

3.3. Constraints

Several constraints are needed to guarantee a proper
description of the service centers and of the network
behavior.

3.3.1. Workload assignment constraints
First of all, we need to guarantee that all the requests

are served, either by the SC at which they occur or by
another to which they are forwarded. Further, they must
be served by a suitable class of VM. The following con-
straints guarantee that these requirements are satisfied.X
l2L

X
j2N

xt
ijkl ¼ kt

ik 8 i 2 N ; 8k 2 K; 8t 2 T ð2Þ

xt
ijkl 6 kt

ikmkl 8i; j 2 N ; 8k 2 K; 8l 2 L; 8t 2 T ð3Þ
In details, constraints (2) make sure that all the incoming 
traffic is served by any of the SC. Eq. (3) ensure that each type 
of request in each SC is served by the suitable type of VM.

3.3.2. Service center capacity constraints
The following capacity constraints are added to ensure 

that service centers capacity is not exceeded.

wt
il P

X
j2N

X
k2K

Dkxt
jikl

U
8i 2 N ; 8l 2 L; 8t 2 T ð4Þ

X
Pilwt

il 6 Ci 8i 2 N ð5Þ
l2L

Constraints (4) determines the number of VMs of type l 
required to serve the overall incoming workload at site i. 
As in other literature approaches [8,25] and currently 
implemented by Cloud providers (see, e.g., AWS Elastic 
Beanstalk [26]), these constraints force a suitable number 
of VMs to be active in i in time slot t, guaranteeing that 
the average VM utilization is less or equal to a threshold

U. Note that
P

j2N
P

k2K
Dkxt

jikl

wt
il

equals to VMs utilization under

workload sharing. In practice U is usually set around 60%. 
Since wt

il must be integer while the right hand side may 
be not, the constraints may not be tight, and therefore 
inequalities are needed. Finally, constraints (5) ensure that 
the number of VMs running at SC i in time t is lower than 
the available resources.

3.3.3. Network constraints
A network description must be included in the model, 

guaranteeing that the network capacity is not exceeded



and that the network energy consumption is properly
computed.X
k2K

bk

X
l2L

xt
ijkl 6 Q ijz

t
ij 8i; j 2 N ; 8t 2 T ð6Þ

zt
ij ¼ zt

ji 8i; j 2 N ; 8t 2 T ð7Þ

Formula
P

k2Kbk
P

l2Lxt
ijkl compute the portion of link

bandwidth used for both directions of the traffic between 
SC i to SC j, thus determining the bandwidth used on each 
path of the network in each time slot. Constraints (6) 
ensure that traffic on each path does not exceed the avail-
able capacity and force zt

ij to be one if the amount of used 
bandwidth on ði; jÞ is strictly positive, thus determining 
the active paths at time t.

Furthermore, constraints (7) guarantee that if a path is 
active in one direction, it is also active in the other, as paths 
are bidirectional.

Note that parameters Q ij may not be the actual band-
width along the path between i and j, but a reduced value 
that can guarantee that the capacity available for traffic 
load is just a fraction of the total one. This is one of the typ-
ical traffic engineering instruments adopted by network 
operators to control the quality of service experienced by 
traffic flows.

3.3.4. Time continuity constraints
VMs and paths switching on and off must be computed 

along the considered time horizon. The following con-
straints represent the relations between consecutive time 
bands.

wt
il P wt

il �wt�1
il 8i 2 N ; 8l 2 L; 8t 2 T ð8Þ

wt
il P wt�1

il �wt
il 8i 2 N ; 8l 2 L; 8t 2 T ð9Þ

zt
il P zt

il � zt�1
il 8i 2 N ; 8l 2 L; 8t 2 T ð10Þ

zt
il P zt�1

il � zt
il 8i 2 N ; 8l 2 L; 8t 2 T ð11Þ

Concerning SCs, (8) and (9) identify how many VMs 
have to be switched on or off on with respect to time band t 
� 1. Concerning the network, equations (10) and (11) 
define which paths have to be turned on or switched to idle 
mode with respect to the previous time band.

3.3.5. Green energy
The following constraints concerns the green energy 

consumed.

yt
i 6 qi

X
l2L

ailwt
il þ gilw

t
il � hilwt

il

� �
8i 2 N ; 8t 2 T ð12Þ

yt
i 6 Ct

i 8i 2 N ; 8t 2 T ð13Þ

Eq. (12) ensures that the green energy used in each SC does 
not exceed the total energy needed. Eqs. (13) guarantee 
that the availability of green energy sources in each SC is 
not exceeded. The lower cost of green energy (we assume
gi

t < ci
t for all i and t) forces the optimal solution to prefer 

those SCs which have the possibility to exploit green 
energy produced in-site, and to use all the green energy 
available in a site before starting to use brown energy. 
Therefore, requests will be forwarded to those sites where 
green energy is available, provided that the network cost is 
lower than the savings that would be obtained.
3.3.6. Domain constrains
Finally, the model is completed by defining the vari-

ables domains.

xt
ijkl 2 Rþ 8i; j 2 N ; 8k 2 K; 8l 2 L; 8t 2 T ð14Þ

wt
il; wt

il; wt
il 2 N 8i 2 N ; 8l 2 L; 8t 2 T ð15Þ

zt
ij; zt

ij; zt
il 2 f0;1g 8i; j 2 N ;8t 2 T ð16Þ

yt
i 2 Rþ 8i 2 N ;8t 2 T ð17Þ

In Appendix B we show that this problem is NP-hard 
since it is equivalent to an Set Covering Problem.

3.4. Detailed network description model

In this section we describe the formulation of the 
detailed network representation. With such model it is 
possible to take into account other specific features, such 
as the delay introduced in the traffic load.

To represent the network connecting service centers, a 
set of router nodes N R is introduced. Therefore, in the 
graph representing the network, the set of nodes is 
N [N R. The network is not fully connected. It is repre-
sented by a set of links A � ðN  [N RÞ � ðN  [ NRÞ. Param-
eters Q ij; cij; dij; sij; nij and fij

t , which are associated with
predefined paths in the former model, are now associated 
with single links.

Continuous routing variables uodt
ij are added to the

model: /odt
ij represents the bandwidth required by the

requests redirected from SC o to SC d, such that o – d,
through routers i and j. Besides, variables zt

ij; zt
ij, and zt

ij 
are now associated with links in A instead of with paths.
The domain of variables zt

ij; zt
ij and zt

ij (16) is to be changed 
accordingly:

zt
ij; zt

ij; zt
il 2 f0;1g 8ði; jÞ 2 A; 8t 2 T ð18Þ

Objective function takes into account network costs,
associated with links in set A:

min
X
t2T

X
i2N

ct
i qi

X
l2L
ðailwt

il þ gilw
t
il þ hilwt

ilÞ � yt
i

" #
þ gt

i y
t
i

( )

þ
X
t2T

X
ði;jÞ2A

f t
ij dijzt

ij þ sijzt
ij þ nijz

t
ij þ ðcij � dijÞ

P
o;d2Nuodt

ij

Q ij

" #

ð19Þ

Flow balancing constraints are added which ensure that
the overall rate from o served by d is sent on the network
from o to d:X
ði;jÞ2A

uodt
ij �

X
ðj;iÞ2A

uodt
ji ¼ 0; 8i 2 NR; o; d 2 N : o – d

ð20ÞX
ði;jÞ2A

uodt
ij �

X
ðj;iÞ2A

uodt
ji

¼

X
k2K;l2L

bkxt
odkl; i ¼ o

�
X

k2K;l2L
bkxt

odkl; i ¼ d

0; i – o;d

8>>>>><
>>>>>:

; 8i 2 N ; o;d 2 N : o – d

ð21Þ



 
Constraints (20) concern nodes belonging to N R. As
such nodes are not associated with SC, they are neither ori-
gin nor destination of any flow. Therefore, all the flow 
entering in each of them must leave. Instead, constraints
(21) concern SC nodes. For any two data centers o and d, 
such that o – d, the flow, related to request type k and 
VM type l, entering in node i 2 N  must be equal to the rate 
from o to d is i ¼ d. As well, the flow leaving node i must be 
equal to the rate redirected from o to d is i ¼ o. If i – o; d, 
the overall flow entering in i, associated with o and d, must 
leave node i. Besides, constraints (6) and (7) must be 
replaced to take into account the activation of each link 
in A:X
o;d2N

uodt
ij 6 Q ijz

t
ij; 8ði; jÞ 2 A; 8t 2 T ð22Þ

zt
ij ¼ zt

ji; 8ði; jÞ 2 A; 8t 2 T ð23Þ

The model describing not fully connected network
among data center is therefore:

min ð19Þ
s:t: ð2Þ—ð5Þ; ð8Þ—ð15Þ; ð20Þ—ð23Þ; ð17Þ; ð18Þ:

Besides the network connecting routers and service
centers, other features of the problem can be modeled,
such as delay, by setting suitable limits to network
performance. For instance, let us consider delay due to
the network. It can be represented by assigning a delay
lij to each link ði; jÞ 2 A. A maximum delay �l is set by
adding the following constraints:X
ði;jÞ2A

liju
odt
ij 6

�l; 8o;d 2 N ; 8t 2 T
4. Experimental analysis

Our resource management model has been evaluated 
under a variety of systems and workload configurations. 
Section 4.1 presents the settings for our experiments. 
Section 4.2 reports a comparison between the two MILP 
models proposed. Section 4.3 reports on the scalability 
results we achieved while using a commercial MILP solver. 
Section 4.4 presents a cost-benefit evaluation of our 
solution, which is compared to the case where resource 
allocation is performed locally and independently at each 
SC without workload redirection and green energy is not 
available.

4.1. Experimental settings

Our approach is evaluated considering a large set of 
randomly generated instances. The model parameters
Table 3
Performance and energy parameters.

bk ½10;210� KB Dk ½0:1;1� s ail [60, 90] W
cij 3.84 KW h dij 0.768 KW h sij 0.128 KW
were randomly generated uniformly in the ranges reported 
in Table 3.

The number of SCs varies between 9 and 36 considering 
a world wide distribution, while the number of request 
classes varies between 120 and 600. In particular SCs are 
located in four macro-regions: West USA, East USA, Europe, 
and Asia, where most of the SCs belonging to each area 
have the same time band. In order to evaluate the impact 
of interaction among different geographical areas, each 
instance includes at least one SC in several macroregions. 
SCs location has an impact on the energy costs and on 
the availability of green energy sources. This latter also 
depends on the size of the SC if solar energy is considered. 
According to [27] we consider SCs with size in the range 
300–10,000 sqm. Furthermore, the overhead of the cooling 
system is included in energy costs by considering service 
centers PUE according to the values reported in [2].

For what concerns applications incoming workload, we 
consider 24 time bands and we have built synthetic work-
loads from the trace of requests registered at the Web site 
of a large University in Italy. The trace contains the number 
of sessions registered over 100 physical servers for a one 
year period in 2006, on a hourly basis. Realistic workloads 
are built assuming that the request arrivals follow non-
homogeneous Poisson processes and extracting the 
request traces corresponding to the days with the highest 
workloads experienced during the observation periods. 
Some noise is also added, as in [28,29,11]. Fig. 2 shows a 
representative instance of the normalized local arrival rate 
of a given class.

In order to vary also the applications peak workload we 
consider the total number of Internet users [30] for each 
world region where SCs are located and set the kt

ik peak val-
ues proportionally to this number. Overall, the peak values 
vary between 100 and 1000 req/s.

We considered 9 types of VMs varying their capacity in 
the range between 1 and 20, according to current IaaS/PaaS 
provider offers [7,31].

The computing performance parameters of the applica-
tions have been randomly generated uniformly in the 
ranges reported in Table 3 as in [32,29,11,28]. Applications 
network requirements have been generated considering 
the SPECWeb2009 industry benchmark results [33].

The switching energy consumption of VMs has been 
evaluated as in [34], while VMs power consumption has 
been generated according to the results reported for the 
SPECVint industry benchmark [35], considering the peak 
power consumption of the reference physical servers and 
averaging the power consumption among the VMs running 
during a test.

The overall SC capacity has been determined varying 
the number of physical servers between 5,000 and 
16,000 and assuming a 1:8 ratio for the physical to virtual 
resources assignment (i.e., 1 physical core is assigned to 8
h gil [2, 3] W h hil [0.28,14.11] W h
h nij 0.128 KW h qi ½1:2;1:7�



Fig. 2. Normalized local arrival rate over a day (UTC+1).
virtual cores of equal capacity) according to SPECVint 
recent results [35].

For what concerns the wide area network connecting 
remote SCs, paths capacity varies between 0.5 and 1 Gbps. 
A typical path connecting SCs is build up both by physical 
lines (such as optical fibers) and network components 
(such as routers and switches). Thus, we estimate the 
energy consumption of each path as the energy consumed 
by its routers, proportionally to the bandwidth in use. We 
have estimated the number of routers connecting different 
world regions through the traceroute application. Results 
(reported in Table 11 of Appendix B) show that, the num-
ber of hops within the same region is often one, while the 
largest number (17), is achieved when connecting Europe 
with West USA and Asia with East USA.

Due to the difficulty in obtaining detailed energy con-
sumption profiles of commercial routers and the heteroge-
neity of devices used by network providers, we have 
considered a simplified scenario taking into account a sin-
gle reference router. The model considered is the Juniper 
E320 [36], which is quite popular and whose power param-
eters are publicly available and reported in Table 3. Obvi-
ously, the model proposed is general and results can be 
easily extended to other router energy profiles.

Finally, from the cost point of view, we assumed that for 
each path ði; jÞ energy cost is equal to the average energy 
cost between service centers i and j.
Fig. 3. Service centers energy cost du
The cost of energy per MW h varies between 10 and 65 
Euro/MW h. Energy costs data have been obtained by con-
sidering several energy Market Managers responsible for 
those country in which SCs are located, taking into account 
also the energy price variability depending on the time of 
the day. The list of energy Market Managers we have con-
sidered is reported in Table 12 of Appendix B; for China, 
where there is no data disclosure on energy prices we have 
considered an unofficial source [37]. Fig. 3 shows the 
energy cost trend in the four geographical macro-regions 
with respect to time zone UTC+1.

Regarding green energies, we have considered a subset 
of SCs able to produce green energy or close to clean 
energy facilities. For example, Google and other Cloud mar-
ket leaders have launched initiatives aiming at increasing 
the amount of electricity derived from renewable sources, 
rather than relying on electricity produced only with coal 
[38]. In  [39], Google stated that energy coming 
from renewable sources represents the 25% of the 
overall Google’s electricity use in 2010 and it is argued 
that this percentage could grow up to 35% in 2012.

According to [40–42], we have derived the availability 
of renewable energy sources (namely, solar, wind, and geo-
thermal energy), in the four macro-regions. Details are 
reported in Fig. 4.

Finally, for what concerns green energy costs, we 
assume that energy is produced locally within the SC, so
ring each time band (UTC+1).



Fig. 4. Green SCs location.

Table 4
Set of nodes.

DC-Mountain View
DC-Pleasanton
DC-Chicago
DC-Atlanta

(Palo-Alto merged with DC-Mountain View)
San-Diego
Boulder
Washington
(Atlanta merged with DC-Atlanta)
Urbana–Champaign
Ann-Arbor
Lincoln
Princeton
Ithaca
Pittsburgh
Houston
Salt-Lake-City
Seattle
that the only cost to be considered is the capital cost 
required to realize the facilities. Consequently, parameters
gi

t are set to zero.
All tests were run on an Intel Nehalem dual socket 

quad-core CPUs @2.4 GHz with 24 GB of RAM running 
Ubuntu Linux 2011.4. CPLEX 12.2 was use as MILP optimi-
zation solver [43]. CPLEX was installed within a VirtualBox 
VM running Ubuntu Linux 2011.4 with 8 physical cores 
dedicated and 20 GB of memory reserved.

4.2. Approximated vs. detailed models comparison

In order to evaluate the impact of detailed network 
modeling, we consider a small example with a 4 service 
centers, including Atlanta, Mountain View, Pleasanton, 
and Chicago. Green energy is not available. We consider a 
network from the SNDLib [44] Library, Nobel US. The Nobel 
US network has 14 nodes. We integrate the Nobel US net-
work with the 4 service centers. We collapse two service 
center nodes with two close router nodes belonging to 
N R. We added the remaining two service centers, and con-
nected each of them to three close router nodes. Therefore 
the example has jN Rj ¼ 12 and jN j ¼ 4. The set of nodes 
and arcs are reported in Table 4 and 5. Each link in A has 
one router. All the other parameters have been derived in 
the same way as for previous examples. Results are 
reported in Table 6.

The model with the approximate network representa-
tion is solved to optimality in less than one second. Instead, 
the full network description model is not solved to opti-
mality within one hour. The provided optimality gap, com-
puted as UB�LB, where UB is the best feasible solution found,

LB
and LB is the best relaxation found, is 3.6%.

Although the impact of network energy cost on the 
overall consumption is greater if the network is fully 
described, the increase is balanced by a decreasing in the SC 
consumption, resulting in a difference between objec-tive 
functions for the two cases of about 0.5%. Therefore, the 
network approximate model can be profitably used
to evaluate the overall impact of redirecting, as it provides 
reliable insights in negligible computational time. Besides, 
network cost is not increasing when including a full net-
work description.

If green energy is assumed to be available in two service 
centers the problem with full network description 
becomes more time consuming, and the optimality gap 
rises up to about 13% with a one hour time limit.

The approximated model is based on precomputed 
paths, which are usually applied to obtain heuristic solu-
tions when enumerating all the possible paths is too 
expensive [45]. The approximated model allows to achieve 
a good trade-off between cost accuracy and optimization 
time required for managing jointly the network and multi-
ple distributed service centers, as the difference between 
the global optimal solution of the detailed network model 
and the approximated one is around 0.5%, which is a good 
approximation for any heuristic approach. Thus, in the fol-
lowing we will only present the results of the approxi-
mated model.



Table 5
Set of arcs.

DC-Mountain View San-Diego
DC-Mountain View Salt-Lake-City
DC-Mountain View Seattle
San-Diego Houston
San-Diego Seattle
Boulder Lincoln
Boulder Houston
Boulder Salt-Lake-City
Washington Princeton
Washington Ithaca
Washington Houston
DC-Atlanta Pittsburgh
DC-Atlanta Houston
Urbana–Champaign Lincoln
Urbana–Champaign Pittsburgh
Urbana–Champaign Seattle
Ann-Arbor Princeton
Ann-Arbor Ithaca
Ann-Arbor Salt-Lake-City
Princeton Pittsburgh
Ithaca Pittsburgh
DC-Pleasanton Seattle
DC-Pleasanton DC-Mountain View
DC-Pleasanton San-Diego
DC-Chicago Ann-Arbor
DC-Chicago Pittsburgh
DC-Chicago Washington

Table 7
CPLEX solver execution time.

Test set jN j jKj Exe time (s)

S1 11 150 28.40
11 300 69.29
11 450 90.20
11 600 135.63

S2 10 300 58.10
15 300 124.84
20 300 177.46
25 300 385.29

S3 9 120 15.37
17 180 38.60
24 300 115.51

S4 11 150 28.29
19 300 88.66
4.3. Scalability analysis

In order to evaluate the scalability of commercial MILP 
solvers in dealing with our approximated optimization 
model, we performed a large set of experiments.

We generated four sets of randomly generated 
instances. The rational was to include several time zones 
in the analysis and to be representative of real SCs location 
around the globe according to the main Cloud providers 
practice (see also the following section).

In the first set S1, the service centers number and loca-
tion is fixed in the four macro-regions, namely West Amer-
ica, East America, Europe, Asia, and the scalability of the 
solver varying the number of classes is investigated. The 
set S2, vice versa, investigates the scalability of our 
approach varying the number of SCs in East America and 
Europe, while keeping constant the number of classes. 
Finally, in sets S3 and S4 the number of SCs and the num-
ber of classes are jointly varied by considering three (i.e., 
West America, East America, and Asia) and the four 
macro-regions.

Table 7 reports the average optimization time required 
by CPLEX. The average values reported in this Section have 
always been computed by considering 35 instances with 
the same size. Results show that CPLEX is very efficient 
and can solve problem instances up to 600 classes and 25
Table 6
Comparison between full and approximate network representations.

Network representation DC energy consumption

Overall Computing Sw

Approximate 15.62 15.17 0.4
Full 14.11 13.80 0.3
SCs in about seven minutes. The size of the solved 
instances is limited by the available memory of the hosting 
VirtualBox VM. Therefore, our MILP-based approach is 
suitable for the one day ahead planning. Besides, it could 
be applied to solve the problem several times during one 
day, so as to exploit updated data. In fact, thanks to the 
small computational effort, the approach can be extended 
quite easily to scenarios where load predictions on a 24 h 
horizon are not reliable and predictions must be adjusted 
according to real time traffic measurements. The proposed 
approach can be modified using a sliding time window 
(24 h or shorter) that is shifted ahead every time a new 
load prediction is available. At each update the optimiza-
tion is re-executed. Depending on the accuracy of the traf-
fic values, also the time granularity of the window can be 
modified. However, such analysis and use of our approach 
is out of the scope of this paper.

4.4. A case study

In this section we perform a cost-benefit evaluation of 
our solution with respect to a base scenario in which the 
system cannot exploit the network infrastructure to move 
requests between sites, which is the approach currently 
used for Cloud resource allocation. Analyses evaluate the 
costs savings that can be achieved through load redirec-
tion, exploiting energy costs variability and green energy 
availability in multiple locations.

Furthermore, we also evaluate the greenhouse gas 
emission reduction with respect to a brown scenario where 
no green energy is available. CO2 emission has been com-
puted through the U.S. Environmental Protection Agency 
web tool [46].

In the following, we consider a case study inspired by 
the Google infrastructure where we also varied the number 
of searches to be performed per day. Although Google
Network energy consumption

itching Overall Fixed and switching Flow

5 2.49 1.52 0.83
1 3.92 2.45 1.38



tends to be quite secretive about its SCs technology, the 
geographical location of its SCs is known. Google owns 
36 SCs spread all over the world [47], in order to have a 
huge amount of computational resources to satisfy the tens 
of billions of user requests per day. SCs have been setup 
near large urban areas close to the end-users in order to 
reduce network latency. Fig. 13 and Table 13 in Appendix 
B details where SCs are placed.

For what concerns SCs capacity, since no specific data is 
available but only aggregated values have been undis-
closed [48], we assume that the servers are almost spread 
uniformly among SCs (a Gaussian random deviation from 
the mean for each SC is added).

For the PUE value, [49] reports an average value close to 
1.8. However, considering SCs geographic location, we can 
adopt a lower value of PUE for those SCs placed in regions 
with suitable climatic conditions, like the ones placed in 
North Europe. In fact, in most moderate climates with tem-
peratures lower than 13 �C for 3000 or more hours per 
year, new cooling techniques based on free air can elimi-
nate the majority of chillers runtime. For example, the SC 
in Belgium eliminates chillers, running on free cooling 
100% of the time, and reaching in this way a PUE value 
close to 1.2 [49]. Fig. 14 in Appendix B shows the PUE value 
assumed for each SC.

Finally, in order to estimate the total amount of 
green energy produced by each SC during a single day
Fig. 5. Overall cost comparison with

Fig. 6. Energy split f
t(parameters Ci ), we assumed that the green energy was 
proportional to the SC area. The values we used are 
reported in Appendix B by Fig. 15, while details on SC 
location and time zone are reported in Table 13.

Fig. 5 shows the cost savings that can be achieved by our 
solution with respect to the base scenario varying the 
number of searches to be performed per day. The savings 
are very significant, ranging between 40% and 56% for the 
lightest loaded instance. This can be expected, since only 
a small set of SCs can rely on green energy. Our model for-
wards as many requests as possible to these sites, until the 
VMs utilization threshold is reached or the upstream band-
width is saturated. Additional requests cannot be served 
and need to be routed elsewhere, possibly to a nongreen-
enabled SC. Therefore, saving are smaller when the overall 
workload is higher. This argument is confirmed also by the 
data reported in Figs. 6 and 7, which show how the energy 
consumption is split among the network and the SCs. 
Whilst the network energy consumption fraction is almost 
constant and around 15–20%, the test cases with a larger 
number of daily requests are characterized by a higher 
usage of brown energy. As it can be expected, with a larger 
amount of green energy available, a Cloud provider would 
experience not only savings (due to the lower cost 
assumed for green energy), but also massive reduction of 
CO2 emission, as will be further discussed in the following. 
It is worth noticing that for the heaviest load instance the
respect to the base scenario.

or our model.



Fig. 7. Percentage energy split for our model.
base scenario cannot find a feasible solution. Hence, the 
requests redirection allows also to exploit remote SCs 
available capacity when local resources are saturated.

While our approach can achieve lower cost with respect 
to the base scenario, it may cause a larger energy con-
sumption. As shown in Fig. 8, this is due to the network 
transfers and routers crossed along the path between two 
sites. However, our model especially fosters the maximum 
possible amount of ‘‘clean’’ energy usage, unlike the base
Fig. 8. Energy consumption compa

Fig. 9. Percentage of gre
scenario, which is limited in relying on local energy only. 
This consideration is confirmed by Fig. 9, which reports the 
percentage of green energy used in our model and in the 
base scenario. The plot clearly shows how our model 
performs better on all accounts, i.e., it is able to exploit 
as much green energy as possible by forwarding the 
requests to the green SCs.

Furthermore, as a representative example, Fig. 10 shows 
the number of active servers for each time band,
rison with the base scenario.

en energy usage.



Fig. 10. Number of active servers for each time band (UTC+1).
distinguishing the four macro-regions where SCs are 
located, while serving 30 billion requests a day. As it could 
be expected, the trend of each macro-region appears oppo-
site to the energy cost, presented in Fig. 3: the number of 
active servers increases when the energy cost decreases, 
and vice versa. For example, requests are executed in Asia 
only in the first time bands, where in fact the energy cost 
has a minimum, while in most of the other time bands the 
majority of the requests are forwarded to East and West 
USA, since the energy cost appears always lower with 
respect to the other areas. However, since also the network 
costs and the network and SC capacities have to be taken 
into account, a small amount of requests is served locally 
also in areas where the energy cost is not optimal.

An interesting comparison can also be made between 
our model and the brown scenario (see Fig. 11, where the 
overall energy consumption is reported). When the work-
load is light, the energy consumption of our model is 
higher, while being almost equal in the other cases. It has 
to be reminded that, for our model, more than 50% of the 
energy consumed in lightly loaded instances comes from 
green sources, thus the CO2 emission results to be lower, 
as will be discussed in the following. The main explanation 
for a higher energy consumption is that, considering in 
particular the 2 billion requests per day scenario, our 
model consumes more energy for the network, since it
Fig. 11. Comparison of the energy consumptio
has to forward more requests (in percentage) to remote 
SCs to exploit green energy sources. In the other instances, 
this problem is marginal, since all the green energy is sat-
urated. Requests are forwarded according to the same cri-
teria as the brown model, thus consuming the same 
amount of energy.

Finally, Fig. 12, reports the CO2 emissions of the brown 
scenario and of our model. The maximum absolute reduc-
tion (around 25 tons of CO2) occurs in the 40 billion 
requests per day instance. Our model is able to reduce up 
to 57% the environment pollution derived from greenhouse 
gases for the lightest loaded scenario, while this percent-
age reduces with the workload, advocating a larger adop-
tion of green energy sources for the largest Cloud 
providers.

4.5. Sensitivity analysis for the case study

We performed some tests to evaluate the impact on the 
problem solution of an error in the prediction of the work-
load or the amount of green energy produced.

We consider a total workload around 2 billions 
requests/day (k�), which corresponds to the worst case sce-
nario for the green energy sensitivity (recall from Fig. 9 
that most of the energy consumed by SCs is green in that 
case).
n of our model with the brown scenario.



Fig. 12. CO2 gas emissions comparison with respect to the brown scenario.

Fig. 13. Map of Google SCs location considered in our model.

Fig. 14. Google SC PUE values considered in our analyses.
Let us first consider the impact of a variation of work-
load estimate. As in [29], we solve the model cost with one 
hour of time limit for a traffic equal to k�, and we
compare it with the solution obtained within the same
time limit when the amount of workload is perturbed.
Workloads of all SCs are reduced (or increased) by the



Fig. 15. Total kW h produced by green Google Service Centers during a single day.

Table 8
Impact of green availability prediction error.

Green energy reduction (%) Objective function increase (%)

100 68.98
50 41.35
25 24.00
same parameter f. For instance, if we consider f ¼ 1:1 the
perturbed workload associated to SC i, time slot t and
request type k is 1:1k�tik . Two values of f are considered:
0.9 and 1.1.

The ratio between the objective function associated
with the perturbed workload and the original one shows
that the variation of the workload has a small impact on
objective function variation. The variation is almost line-
arly proportional to the perturbation. In fact, as the num-
ber of VMs is large, it behaves almost as a continuous
variable, and therefore VMs cost varies linearly with the
workload. Besides, the link switching costs are the only
stepwise costs, and they are usually smaller than the
VMs costs. Therefore, the variation of the objective func-
tion depends in a linear way on the workload variation,
unless one link is switched on or off when the workload
changes.

We also considered the case where workloads are per-
turbed independently in a random way, with their value
uniform in the interval �10% around the predicted level.
We compared the optimal solution value obtained solving
the model with the nominal workloads and the values
obtained according to the following procedure. We com-
pute the optimal solution with the nominal workload, then
we fix the values of the routing and network variables (i.e.,
the maximum traffic between any pair of service centers
and the network activation variables) and recompute the
objective function considering the perturbed workloads.
This comparison scenario corresponds to the practical case
where the load balancing between service centers is fixed
according the optimal solution computed with the pre-
dicted workloads and any unexpected variation of the
workload is handled locally in each service center reducing
or increasing the local load. Results show that the differ-
ence is always below 4% over 100 randomly generated
scenarios.

Then we evaluated the impact of an error in the predic-
tion of green energy availability. We consider the conser-
vative case in which the available green energy is smaller
than the forecasted one and the percentage error is the
same for all SCs provided with green energy generation.
Starting with a known solution, we reduce the amount of
green energy available in each SC. Then, keeping the loads 
for each SC as they are in the starting solution, we compute 
the increase of brown energy use, if reduced green energy 
available in a SC in not enough to deal with SC load. Due to 
such increase, we compute the increase in the objective 
function. The percentage objective function increase is 
reported in Table 8 for three values of percentage predic-
tion error: it is the same for all the SCs and it is equal to 
100%, 50% and 25%.

Results show that, although we consider a very conser-
vative case in which the prediction error affects simulta-
neously all the SC, and green energy availability is never 
greater than the forecasted value, the impact of the overall 
energy cost is limited.
5. Related work

As discussed before, for many years energy manage-
ment of Cloud systems has been studied considering sepa-
rately the service centers and the network components.

From the service center side, three main approaches
have been developed: (i) control theoretic feedback loop
techniques, (ii) adaptive machine learning approaches, and
(iii) utility-based optimization techniques.

A main advantage of a control theoretic feedback loop is 
system stability guarantees. Upon workload changes, these 
techniques can also accurately model transient behavior 
and adjust system configurations within a transitory per-
iod, which can be fixed at design time. A previous study 
[28] implemented a limited lookahead controller that 
determines servers in the active state, their operating fre-
quency, and the allocation of VMs to physical servers. 
However, this implementation considers the VM



placement and capacity allocation problems separately, 
and scalability of the proposed approach is not considered. 
A recent study [50,51] proposed hierarchical control 
solutions, particularly providing a cluster-level control 
architecture that coordinates multiple server power con-
trollers within a virtualized server cluster [50]. The higher 
layer controller determines capacity allocation and VM 
migration within a cluster, while the inner controllers 
determine the power level of individual servers.

Machine learning techniques are based on live system 
learning sessions, without a need for analytical models of 
applications and the underlying infrastructure. A previous 
study [52] applied machine learning to coordinate multiple 
autonomic managers with different goals, integrating a 
performance manager with a power manager in order to 
satisfy performance constraints, while minimizing energy 
expenses exploiting server frequency scaling. Recent 
studies provide solutions for server provisioning and VM 
placement [53] and propose an overall framework for 
autonomic Cloud management [54]. An advantage of 
machine learning techniques is that they accurately cap-
ture system behavior without any explicit performance or 
traffic model and with little built-in system-specific 
knowledge. However, training sessions tend to extend over 
several hours [52], retraining is required for evolving 
workloads, and existing techniques are often restricted to 
separately applying actuation mechanisms to a limited set 
of managed applications.

Utility-based approaches have been introduced to opti-
mize the degree of user satisfaction by expressing their 
goals in terms of user-level performance metrics. Typically, 
the system is modeled by means of a performance model 
embedded within an optimization framework. Optimiza-
tion can provide global optimal solutions or sub-optimal 
solutions by means of heuristics, depending on the com-
plexity of the optimization model. Optimization is typically 
applied to each one of the five problems separately. Some 
research studies address admission control for overload 
protection of servers [55]. Capacity allocation is typically 
viewed as a separate optimization activity which operates 
under the assumption that servers are protected from 
overload. VM placement recently has been widely studied 
[18,56,57]. A previous study [8] has presented a multi-layer 
and multiple time-scale solution for the management of 
virtualized systems, but the trade-off between perfor-
mance and system costs is not considered. A hierarchical 
framework for maximizing Cloud provider profits, taking 
into account server provisioning and VM placement prob-
lems, has been similarly proposed [58], but only very small 
systems have been analyzed. The problem of VM place-
ment within an IaaS provider has been considered [59], 
providing a novel stochastic performance model for esti-
mating the time required for VMs startup. Finally, frame-
works for the co-location of VMs into clusters based on an 
analysis of 24-h application workload profiles have been 
proposed [60,61], solving the server provisioning and 
capacity allocation problems.

Due to the increasing trend towards more communica-
tion intensive applications in data centers, the bandwidth 
between VMs is rapidly growing. These features raise new 
interest in the specific study of VMs migration
strategies, and in the joint optimization of the network 
underling the Cloud and the data center structure [62–
65]. In  [66] the authors propose a data center virtual-
ization architecture called SecondNet. The central idea it is 
to allocate as a unit of resource a virtual data center, 
instead of single/groups of VMs. The authors propose a 
greedy algorithm based on clustering of servers to simplify 
the problem and reduce the dispersion of VM inside the 
real data center. The method first assign the set of VM to 
servers, then construct the communication network. In [67] 
authors propose dynamic programming algorithm for 
computing the optimal embedding on special structured 
networks, namely both network and requests topologies 
are trees. They showed that the problem of embedding it is 
still NP-hard, but proposed a specialized method to deal 
with this subproblem, representative of a large class of 
service and enterprise workloads.

All these works are devoted to consider the bandwidth 
usage within the Cloud, but in recent years the increase of 
Cloud dimensions and requests applications to take into 
account aroused the interest in considering geographical 
Clouds. In this context the consumption of the network 
between Clouds and the communication delays introduced 
by migration of VMs among different Clouds must be con-
sidered to manage efficiently the overall system. An 
energy-aware traffic engineering in the geographical net-
work is the optimization instrument necessary for this 
purpose.

From the network side, research on improving energy 
efficiency has been attracting a growing attention during 
the last years [6], but a limited number of works have been 
devoted to energy-aware traffic engineering. Some recent 
studies evaluate the potentialities and the effective appli-
cability of energy-aware routing procedures [68–74]. Main 
differences between considered approaches are related to 
the use of flow-based label-switching techniques, or short-
est path routing. In [75] a MPLS (Multi Protocol Label 
Switching) framework is considered and traffic routing is 
optimized according to a multi-period schedule in order to 
switch off routers and/or their line cards for saving energy. 
The approach proposed in [76] aims at switching off the 
line-cards (network links) guaranteeing QoS constraints 
(maximum utilization and maximum path length 
constraints) in a scenario where an hybrid MPLS/OSPF 
(Open Shortest Path First) scheme is adopted. In [77] the 
authors describe some heuristics that, given a traffic matrix 
and a fully powered network, are able to switch off nodes 
and links while respecting traffic constraints. In [78] some 
on-line Energy-Aware Traffic Engineering (EATe) 
techniques are presented for optimizing links and routers 
power consumption, by considering their rate-dependent 
energy profiles. In [79], models and algorithms for setting 
link weighs (routing metric) used for shortest path calcula-
tion are used in order to optimize traffic and minimize the 
energy consumption.

To the best of our knowledge, very few approaches has 
provided an integrated framework for service centers and 
network, and no one has included an accurate model of 
the network energy management. On the other side, sev-
eral recent papers have considered the problem of geo-
graphical load balancing with the aim to reduce energy



cost by exploiting differences of electricity price and 
weather conditions across different regions (see e.g.,[13–
15]). In [80] the focus is on the impact of local temper-ature 
on the energy efficiency on the flexibility allowed by batch 
workload in shifting the energy consumption. The problem 
of interactive workload routing and capacity allo-cation for 
batch workload is formulated as a MILP model and a 
distributed algorithm is proposed. The interesting issue of 
the interaction between the smart grid and data centers is 
investigated in [81,82] where the different objec-tives of 
data centers interested in cost minimization and grid 
interested in power load balancing over time and space are 
taken into account.

The energy cost is a central point in managing Cloud 
system, however optimizing energy costs without taking 
into account energy consumption, can lead to the collateral 
consequence of increasing the amount of energy. For this 
reason, some new works are devoted and centered on 
greening the network consumption and reducing energy 
amount instead of reducing merely energy costs. In [83] the 
problem of managing the energy usage in data centers that 
can exploit on-site power production is considered and 
dynamic algorithms that are able to optimize the energy 
consumption and the use of energy from local sources and 
from the electric grid are defined. In [84,85] authors 
consider the problem of geographical load balanc-ing with 
the aim of utilize green energies. They propose a discrete-
time model where the two decision taken are the amount 
of traffic routed from a given source and a given data center 
and the number of servers active at each data center. The 
delay is modeled as a network delay (depending on the 
couple source and data center) and a queueing delay 
depending on the traffic served by the data center and the 
number of active servers. The objective function takes into 
account energy consumption and total delays, the model is 
linearized leading to a continuous optimization model. In 
[86] authors present an optimization based framework to 
manage the consumption of energy in multi-data-center 
services. The framework manages to assign requests across 
data centers with the aim of reducing the total energy 
costs, but at the same time respecting Service Level 
Agreements (SLAs). The frame-work take into account 
energy costs and sources, and the possibility to introduce 
caps on brown energy. The model of the data centers and 
SLA is very simplified. Different decisions are taken at 
different time scales. At time scale of one year the 
proportion of green and brown energy used is decided; at 
time scale of one hour, distribution of requests with a 
simplified model that consider all requests of the same 
type. The resulting model is a non-linear optimization 
model and it is solved using a simulated annealing strategy 
with online re-optimization. The network connecting the 
data centers is not considered, data center capacity is 
evaluated by the algorithm, and after that serv-ers are 
managed as a consequence (servers are kept on to manage 
20% more capacity then the one evaluated by the 
algorithm). In [87], the same authors modified their model 
to take into account the use of UPS batteries to manage dif-
ferent costs of energy in different times of the day. In this 
work they do not consider any more brown vs. green 
energy, but use different costs of energy for different
geographical regions and time of the day (cost data are
drown from real life).

Differently from these previous papers, our work pro-
vides a fully integrated management of service centers
and communication network considering variable traffic,
energy cost, and green energy availability. We proposed a
new MILP model for the integrated problem and we show
that it can be solved to the optimum in relatively short
time (order of minutes) for realistic size instances without
the need to rely on heuristic algorithms. Our extended
model is the first one that model accurately the energy
consumption of the network even in the presence of man-
agement strategies that can put in sleep some parts of the
network following load variations.
6. Conclusions and open issues

In this paper we propose a new optimization frame-
work for the management of the energy usage in an inte-
grated system for Cloud services that includes both 
service centers and communication networks for accessing 
and interconnecting them. The optimization framework 
considers a PaaS scenario where VMs serving an applica-
tion can be allocated to a set of SCs geographically distrib-
uted and traffic load coming from different world regions 
can be assigned to VMs in order to optimize the energy 
cost and minimize CO2 emissions. We propose two repre-
sentations of the network interconnecting SCs. We have 
shown that the approximate description provides a very 
close energy consumption value and therefore can be 
applied to provide very good approximate solution in rea-
sonable computational time. We have shown that, despite 
its quite good level of detail in modeling the energy con-
sumption of different system components and the compu-
tation and bandwidth constraints, the proposed problem 
can be solved to optimality in relatively short time (order 
of minutes) with realistic size instances.

The numerical results presented in previous Sections 
provide interesting insight in the factors that influence 
optimal energy management policies. In particular, it is 
worth pointing out that the availability of green energy 
has a remarkable impact on the energy management and 
that in most cases exploiting clean energy comes at the 
cost of an higher global energy consumption mainly 
because of the impact of the communication network. 
We expect that in more complex scenarios than that con-
sidered here, where also the impact on the network of 
VMs migration and data replication is considered, this 
effect may be even more evident.

We believe that the optimization instrument proposed 
in this paper is flexible and efficient enough to be used 
for exploring possible energy management policies in real 
Cloud systems beyond the results presented here.
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Appendix A. Problem complexity

We prove that our approximated problem is NP-hard 
reducing the Set Covering Problem to it. A set of elements 
M ¼ f1; . . .  ; mg and a set of subsets fN ¼ fN1; . . .  ; Nng
ðNj � MÞ are given. A cover is a set F # N, such that
[Nj 2FNj ¼ M. The decision version of Set Covering is defined 
as follows: Is there a cover F such that its cardinality is at
most equal to a given threshold j?

The decision version of Set Covering can be reduced in 
polynomial time to the considered problem. Let consider 
that Ci ¼ 0; 8i 2 N  (green energy is not available).

Each item of the set M is represented by a SC. Each sub-
set Nj is represented by a SC, as well. Let us call N 1 the set 
of SCs representing the elements of M, and N 2 the set of 
SCs representing the elements of N. Thus, the set of SCs 
N ¼ N 1 [N 2. Since, by construction, N 1 \ N 2 ¼ ;; jN j ¼ 
jMj þ jNj. We consider jT j ¼ 1; jLj ¼ 1; jKj ¼ 1; m11 ¼ 1; 
b1 ¼ 1; U ¼ 2jMj. Parameters associated with SCs are 
defined in a different way for the two subsets of SCs and are 
summarized in Tables 9 and 10.

The arrival rate k in SCs representing elements of M is 
equal to 1, while it is 0 for SCs representing elements in 
N. As the SCs belonging to N 1 have no capacity, and VM 
energy consumption equal to 10j, in any feasible solution, 
whose value is lesser or equal than the threshold j, the 
arrival rate of SCs belonging to N 1 must be assigned to 
SCs belonging to N 2. On the other hand, the average utili-
zation rate of SC belonging to N 2 is high enough to deal 
with all the requests. If a SC belonging to N 2 is activated, 
at most one VM can be activated, due to the value of Ci.
Table 9
Reduction parameters: nodes.

Parameter i 2 N 1 i 2 N 2

ki 1 0
Ci 0 1
ai 10j 1

D 1 1
Pi 1 1
gi 0 0
hi 0 0
qi 1 1
ci 1 1

Table 10
Reduction parameters: links.

Parameter i 2 N 1;

j 2 N 1

i 2 N 1;

j 2 N 2

i 2 N 2; j 2 N 1 i 2 N 2; j 2 N 2

Rij 1 1 1 1
Qij 1 1 1 1
cij 1 1 1 1
dij 1 1 1 1
sij 0 0 0 0
nij 0 0 0 0
f t
ij 10j 0 if

i 2 Nj ,
10j 10j

10j if
i R Nj
The corresponding energy consumption is equal to 1: thus
the energy consumption associated to active VMs corre-
sponds to the cardinality of activated SCs. Switching on
and off cost are assumed with value zero.

Network costs are used to represents the coverage
matrix. Each SC j 2 N 2 corresponds to one subset Nj. Only
the requests of SCs in N 1 associated to the elements of Nj

can be served by SC j. Therefore, the energy cost on the net-
work are set so as to guarantee that any unfeasible solution
for the Set Covering has a cost higher than the threshold.
We consider only costs associated to activation, while
switching cost are considered with value zero. The number
of routers between two SCs i and j is always 1. The energy
cost is 10j for any pair of SCs which represents an unfea-
sible assignment for the Set Covering Problem, while it is
equal to zero if the assignment is feasible.

If a solution of the considered problem is found, whose
cost is below j, the corresponding solution of Set Covering,
which has the same cost, can be derived as follows. The set
of selected subsets F is the set of SCs inN 2 in which one VM
is active; each element in M is covered by at least one of the
selected subsets, as each element belonging to N 1 is redi-
rected toward SCs belonging to N 2 with a network cost
equal to 0. On the other hand, if no solution of the consid-
ered problem is found whose cost is below the threshold,
then no feasible solution for Set Covering with cardinality
at most j exists. In fact, either one SC in N 1 is activated
or a SC i 2 N 1 is assigned to j 2 N 2 such that i R Nj.
Appendix B. Model parameters details

In this section we report the details of the parameters
we used for performing the paper numerical analyses.
Table 11
Number of network hops among world regions.

Region Region Number of hops

Europe West USA 17
Europe East USA 11
Europe Asia 15
Asia East USA 11
Asia West USA 14
West USA East USA 11

Table 12
Energy market managers considered in the experimental analyses.

Country Market manager

Brazil Electric Energy Commercialization
Chamber

Italy GME (Gestore dei Mercati Energetici)
Canada IESO (Independent Electricity System

Operator)
France Powernext
Germany EEX (European Energy Exchange)
Ireland SEMO
Japan JEPX (Japan Electric Power Exchange)
Netherlands, UK, and

Belgium
APX-ENDEX

Russia ATS (Trade System Administrator)
USA California ISO, New England Market,

and PJM



Table 13
SC locations details.

Service center City Country Time zone

DC1 Mountain View California (USA) UTC�08
DC2 Pleasanton California (USA) UTC�08
DC3 San Jose California (USA) UTC�08
DC4 Los Angeles California (USA) UTC�08
DC5 Palo Alto California (USA) UTC�08
DC6 Seattle Washington (USA) UTC�08
DC7 Portland Oregon (USA) UTC�08
DC8 The Dalles Oregon (USA) UTC�08
DC9 Chicago Illinois (USA) UTC�05
DC10 Atlanta Georgia (USA) UTC�05
DC11 Reston Virginia (USA) UTC�05
DC12 Ashburn Virginia (USA) UTC�05
DC13 Virginia Beach Virginia (USA) UTC�05
DC14 Houston Texas (USA) UTC�05
DC15 Miami Florida (USA) UTC�05
DC16 Lenoir North Carolina (USA) UTC�05
DC17 Goose Creek South Carolina (USA) UTC�05
DC18 Pryor Oklahoma (USA) UTC�05
DC19 Council Bluffs Iowa (USA) UTC�05
DC20 Toronto Canada UTC�05
DC21 Berlin Germany UTC+01
DC22 Frankfurt Germany UTC+01
DC23 Munich Germany UTC+01
DC24 Zurich Switzerland UTC+01
DC25 Groningen Netherlands UTC+01
DC26 Mons Belgium UTC+01
DC27 Eemshaven Netherlands UTC+01
DC28 Paris France UTC+01
DC29 London England UTC+00
DC30 Dublin Ireland UTC+00
DC31 Milan Italy UTC+01
DC32 Moscow Russia UTC+03
DC33 San Paolo Brazil UTC�03
DC34 Tokyo Japan UTC+09
DC35 Hong Kong China UTC+08
DC36 Beijing China UTC+08
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