
1. Int

The
extrem
availab

their c
help o
is beco

n Corr
E-m

emanue
letizia.t
A principled approach to context schema evolution in a data
management perspective

Elisa Quintarelli, Emanuele Rabosio n, Letizia Tanca
Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, via Ponzio 34/5, 20133 Milano, Italy
Received 15 April 2014
Received in revised form
21 September 2014
Accepted 9 November 2014
Recommended by: F. Naumann
Available online 2 December 2014
roduction

technological scenario of our era
ely large variety of information so
le even to casual users: all kinds

ustomers, suppliers and operations
f the widespread use of mobile term
ming day by day more friendly to a

esponding author. Tel.: þ39 0223993482.
ail addresses: elisa.quintarelli@polimi.it (E. Q
le.rabosio@polimi.it (E. Rabosio),
anca@polimi.it (L. Tanca).
has enabled an
urces to become
of organizations

The contribution of the two recent phenomena Internet of
Things and Social Networking further enriches and com-
plicates the overall scenario.

Such an extensive repository constitutes an unprece-
dented opportunity for users, but at the same time risks to
overwhelm them; often the only way to get the gist of the
collect, maintain and use terabytes of information about
, while, with the
inals, the WWW
ny kind of users.

available information requires that the users know exactly
how to formulate the query, a difficult task when the
dataset structure and meaning are not known a priori.
uintarelli),
Moreover, really large data collections simply cannot be
stored in the increasingly popular portable devices, still
characterized by a relatively limited amount of memory.
 The literature has coped with this research challenge
by proposing techniques for summarizing [1], compressing

http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2014.11.008&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2014.11.008&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2014.11.008&domain=pdf
mailto:elisa.quintarelli@polimi.it
mailto:emanuele.rabosio@polimi.it
mailto:letizia.tanca@polimi.it

t

,

f

f

,

f

[2] and analyzing Big Data [3]. In our opinion, this problem
can be cleverly solved also by applying personalization, so
that the information provided to a user is reduced on the
basis of the user's personal preferences [4], on the user's
current situation [5] – i.e., her context – or even on both
aspects [6]. Note that, even with amounts of data well
below our current idea of “big”, personalization constitutes
an important contribution to data usability.

This work considers context-based personalization. In
order to reduce a large dataset on the basis of the context,
conceptual context models have been introduced (see [7–
11] for surveys), allowing to represent the context through
some perspectives (dimensions): typical such dimensions
are, for example, the user's current role and her location. Also
more sophisticated context parameters can be introduced,
like the current activity of the user, or her main interest
topic. We call data tailoring [12] the activity of selecting, for
each specific context, the relevant information: data tailoring
refers to the capability of the system to provide the users
only with the view (over an overall data representation, like
for instance a global schema) that is relevant for their current
context.

We use the expression context model to indicate the set
of constructs and constraints that allow us to represent the
dimensions of context and their values at a conceptual
level. The activity of designing a context-aware database
requires to produce a context schema, which exploits the
constructs provided by the context model to describe the
set of dimensions and their values relevant for a certain
application scenario. A context instance, or simply a con-
text, represents a particular situation, described according
to a context schema.

A context schema thus represents synthetically the struc-
ture of the context, and as such is useful when reasoning
about the assignment of a data portion (contextual view) to
each context. For example, the work [13] presents a very
effective and efficient method to automatically assign data
views to all the contexts represented by the schema, only by
associating one view with each context dimension value.

Throughout the paper we use a running example in the
movie domain: we consider a company offering services of
video on demand and reservation of cinema tickets. In this
scenario, possible perspectives useful to tailor the data are
the kind of user (e.g., adult, teenager or family with
children), the interest topic (e.g., cinemas or movies), the
situation (e.g., alone or with friends), the time (e.g., day-
time or night) and the zone. The company uses context-
awareness to suggest to its customers the movie(s) which
are most appropriate to their current context.

The useful dimensions for data tailoring depend on the
application requirements that in current systems are
intrinsically dynamic and thus can evolve. Just as in the
case of database schema evolution, requirement changes
can be due to various reasons, including changing business
needs or application and technology developments [14]:
the context representation used to perform the tailoring
process should thus be smoothly adapted to the evolution
of requirements over time.

Consider the movie example above. The company
might change its business policy, deciding to remove the
distinction between daytime and evening schedule; this
would lead to removing the time dimension from the
context representation. Moreover, at a certain point mar-
keting researches might reveal that adult customers and
teenagers show the same behavior, thus making it useless
to distinguish between the two user groups: then the
designer might simplify the representation of the user
type, merging the two categories adult and teenager. In
addition, if the impact of technological changes on the
considered application grows, the designer might deem it
appropriate to tailor the data also on the basis of the kind
of device used for the access, thus inserting a device
dimension in the context representation. The above
changes then become out-of-sync w.r.t. the previously
envisaged contexts, known by the user (and by the
context-aware application) at a given moment; thus the
system must be able to respond to queries and applica-
tions in a seamless way, that is, a way as similar as
possible to the context-aware behavior the users and
applications expect. Note that studying context schema
evolution is also preliminary to understanding context
sharing among different users, a need that may arise in
P2P scenarios [15].

As remarked already, this problem is similar to a problem
of database schema evolution, where the queries designed
to run on old schema versions should be maintained in
order to be still applicable in the face of database schema
changes. After having studied the literature on schema evolu-
tion in various fields, we propose strategies to flexibly manage
the evolution of context schemas in a data managemen
perspective, i.e. keeping in mind that the context is used to
perform data tailoring; the context, in fact, has been employed
in the literature to manage not only data, but also many other
kinds of entities, including mobile sessions [16], services [17]
intelligent spaces [18], etc.

The basic idea of our approach is to introduce a set o
evolution operators to be used by the designer for modify-
ing the conceptual context schema when necessary. These
operators are so conceived as to support the evolution o
the contextual (tailored) views as well. We will show in
this paper that using the techniques proposed by
database schema evolution for solving some typical pro-
blems of context schema evolution can turn out to be very
awkward.

Indeed, our context model provides intuitive constructs
and operations that afford a high level of abstraction with
respect to the application scenario and to the employed
technologies, and permit the management of (hierarchical)
context information of various types, possibly coming from
diverse sources. As pointed out in [19,20], these are
fundamental features of the modern context models, thus
we believe that the results and techniques that we present
in this paper are easily generalizable to other context
models and implementable by means of different pro-
gramming languages and logical data models, e.g. XML or
some object-oriented language. Such implementations
may take advantage of previous schema evolution propo-
sals, however this operation must be performed with some
caution because the semantics do not immediately corre-
spond to each other, as highlighted in Section 9.

Goal and contributions: Built on research already pub-
lished in [21] – which provides the initial formalization o

Fig. 1. A context schema.
schema evolution for context-aware data tailoring – the
main original contributions of this paper are:
�
 The consolidation of the formal basis for context
schema evolution.
�
 An extension of the set of evolution operators intro-
duced in [21], along with their declarative and opera-
tional semantics. This is the basis of our principled
approach to the overall evolution process.
�
 The proof of important properties of the operators.

�
 The study of the impact of context schema evolution

on the lifecycle of context-aware data management
systems.
�
 The optimization of sequences of operator applications.

�
 An engine, implementing the operators, which allowed

us to verify experimentally the feasibility and effective-
ness of the approach.

The paper is organized as follows. Section 2 recalls the
background on the employed context model and its usage
for defining contextual views, while Section 3 examines
the literature on evolution. Section 4 outlines our frame-
work for managing context schema evolution. Section 5
introduces a formal description of the evolution operators,
Section 6 explains how the contextual views are affected
by the evolution process, and Section 7 deals with the
optimization of sequences of operators. Section 8 provides
a full example of the usage of context to tailor data and of
the application of the operators, while Section 9 exploits
this example for a detailed comparison of our approach
with interesting proposals from the literature and explains
what are the fundamental differences with the other
schema evolution proposals. Section 10 describes the
implementation of the context schema evolution system
and, finally, Section 11 draws the conclusions.
2. Background: the context dimension model

In this section we present the Context Dimension
Model (CDM) [13] and an overview of contextual data
tailoring [5].
2.1. Informal overview of the CDM

The CDM allows to represent context schemas (a.k.a.
Context Dimension Trees – CDTs) as trees with nodes of
two kinds: dimensions and dimension values (or concepts).
An example of context schema for the movie scenario of
the running example is shown in Fig. 1. Dimension nodes
are graphically represented as black nodes, while concepts
are drawn as white nodes. Dimension nodes represent the
different perspectives describing a context (e.g. the type of
user and the situation), while concepts constitute the
admissible values of each dimension (e.g., the concepts
adult and teenager are values of the user dimension).
The root is a special concept node representing the most
general context (capturing all the data), and its children
are the main analysis dimensions. Every dimension has
only concept children, and each concept has only dimen-
sion children; the latter are subdimensions further speci-
fying the concept. Dimensions and concepts can be
endowed with attributes that are parameters whose
values can be dynamically derived from the environment
or provided by the users themselves at execution time.
A dimension can be connected to at most one attribute,
used to replace a huge number of concepts when it is
impractical to enumerate them all (e.g., a GPS location). If
this is the case, the dimension does not have any concept
child; e.g., the zone dimension has as child the attribute
zone_id. One or more attributes can be added to concepts
too; in such a situation they are used to select specific
instances from the set of values represented by a concept
node (e.g., the age of an adult customer). Attributes are
graphically represented in Fig. 1 by square nodes.

An instance of a context schema is a set of dimension-
value pairs, and can also be drawn as a tree whose leaves
represent the values taken by the corresponding (sub)dimen-
sions. Fig. 2 shows an instance of the context schema in Fig. 1:
a thirty-five-year-old adult, who is located in the zone with
identifier 20133, is interested in romantic comedies, and is
going to the cinema at night with friends. Note also the
attribute values, written in Fig. 2 within square brackets.
 Note that in real applications context schemas are
usually quite small: an analysis carried out in [5] on several

Fig. 2. A context instance of the context schema in Fig. 1.
Let N be the set of node identifiers. N is partitioned
into two subsets: concept node identifiers ðN ○Þ and dimen-
sion node identifiers ðN �Þ. Let A be the set of attribute
identifiers and L a set of strings. All these sets are pairwise
disjoint. We start by defining the context semischema, that
is a context schema which does not impose the existence
of a concept root:

Definition 1 (Context semischema). A context semischema
is a tuple S¼ ðN; E; r;Att; α; λÞ such that:

application scenarios has shown that it is very unlikely that
context schemas exceed 50 nodes. Context instances are
even smaller: in fact, a context instance contains a subset of
the dimensions of the corresponding context schema, and
each of them is associated with just one concept node or an
attribute.

2.2. A formal definition of the CDM
(i)
 NDN is a set of node identifiers, N¼N○ [N�;
N○DN ○ is the set of concept node identifiers and
N�DN � is the set of dimension node identifiers.
EDN � N is a set of directed edges, rAN is a node
identifier such that (N,E) is a tree with root r, AttDA
is a set of attribute identifiers.
(ii)
 Every generation contains node identifiers of the
same type and this type is different from that of the
immediately previous and following generations, i.e.,
for each ðn1;n2ÞAE, n1AN○) n2AN� and n1AN�)
n2AN○.
(iii)
 α:Att-N is a function assigning a node identifier
to each attribute. If nAN� is a leaf, i.e. if
ð∄n1ANÞððn;n1ÞAEÞ, then jα�1ðnÞj ¼ 1; otherwise,
α�1ðnÞ ¼∅.
(iv)
 λ:N [Att-L is an injective function assigning a
unique label to node and attribute identifiers.
The set E of edges constitutes a binary relation on the
set of node identifiers; its transitive closure is indicated by
Eþ . Moreover, the following sets are defined: leaf dimen-
sions N

� ¼ fn1AN�: ð∄n2ANÞððn1;n2ÞAEÞg, leaf concepts
N

○ ¼ fn1AN○: ð∄n2ANÞððn1;n2ÞAEÞg and leaves N ¼N
� [N

○
.

The Context Dimension Tree is a specialization of the
semischema, as follows:

Definition 2 (Context schema, or CDT). A context schema
is a context semischema ðN; E; r;Att; α; λÞ in which r is a
concept node and λðrÞ ¼ context.

Remark 1. A context schema can be represented as an
XML document, where N is the set of XML elements and
E describes how they are nested; the set Att is represented
by means of XML attributes, associated with the elements
by α. Since the attributes in a context schema are not
associated with any value, each corresponding XML attri-
bute takes as value a default placeholder (e.g., age¼
“$age”).

Let V ¼L [fALLg, where ALL is a special string indicating
that no values have been provided. Context semi-instances
are defined as follows:

Definition 3 (Context semi-instance). A context semi-
instance is a pair I ¼ ðSI ; ρIÞ where:
(i)
 SI ¼ ðNI ; EI ; rI ;AttI ; αI ; λIÞ is a context semischema such
that every dimension node identifier n with no attri-
butes has exactly one child, i.e., for each nAN�

I :
α�1
I ðnÞ ¼∅ there is exactly one n0ANI such that

ðn;n0ÞAEI .

(ii)
 ρI :Att-V is a function assigning a string to each

attribute identifier.
A context instance is a semi-instance of a CDT:

Definition 4 (Context instance). A context instance is a
context semi-instance I ¼ ðSI ; ρIÞ such that SI is a context
schema.

The next definition formalizes the relationship between
a context schema and a context instance:

Definition 5 (Schema–instance relationship). Let I¼ ðSI ; ρIÞ
be a context instance, where SI ¼ ðNI ; EI ; rI ;AttI ; αI ; λIÞ, and
S¼ ðNS; ES; rS;AttS; αS; λSÞ be a context schema. I is said to be
an instance of S if there exist an injective function
hN :NI-NS between instance and schema node identifiers,
and an injective function hA:AttI-AttS between instance
and schema attribute identifiers satisfying the following
conditions:
(i)
 hNðrIÞ ¼ rS;

(ii)
 for all ðn1;n2ÞAEI , ðhNðn1Þ;hNðn2ÞÞAES;

(iii)
 for all nANI , aAAttS, if αSðaÞ ¼ hNðnÞ then there exists

a1Aα�1
I ðnÞ such that a¼ hAða1Þ;
(iv)
 for all nANI it holds that λIðnÞ ¼ λSðhNðnÞÞ, and for all
aAAttI it holds that λIðaÞ ¼ λSðhAðaÞÞ.
Remark 2. Also an instance can be represented as an XML
document, containing a subset of the elements of the
document associated with the related schema, in which
the placeholders of the attribute values are replaced by
actual values.

As in database schema evolution, in this work we need
to make instances of a certain schema “evolve losslessly”,
becoming instances of a different one. The problem of
determining whether a transformation is information-
preserving has been studied in the database literature,
see for example [22,23]. In particular, in this work we are
interested in comparing the quantity of information con-
tained in instances produced by different transformations.
Intuitively, in our case a context instance I can be con-
sidered more informative than another one I0 if it allows to
perform a more precise data tailoring, that is, if I contains
more dimension nodes (or more concept attributes a such
that ρðaÞaALL) than I0. The reason is that each dimension
(or attribute of a concept node) contained in an instance
represents a perspective that contributes to the tailoring
process, and thus to refining the context-aware view.

Let ^Att○I be the set of attributes in an instance I
associated with concept nodes and whose value is speci-
fied, i.e. ^Att○I ¼ faAAttI : αIðaÞAN○

I 4ρIðaÞaALLg. The infor-
mation level of a context instance is defined as follows:

Definition 6 (Information level). Given a context instance
I, its information level is defined as ILðIÞ ¼ jN�

I jþj ^Att○I j.
Given a context semischema S¼ ðN; E; r;Att; α; λÞ and a

node identifier nAN, parentðS;nÞ indicates a node n0AN
such that ðn0;nÞAE. In addition, Table 1 contains some
shorthands denoting useful sets.
2.3. Using context for data tailoring

Context-based data tailoring can be performed on various
data models (e.g., relational [13], XML [24], ontologies [25]),
provided that the employed data model grants: (i) a
mechanism to specify views over a dataset; (ii) a contain-
ment relation between views, formalizing the fact that
a view “contains less information” than another one (see [26]
for the XML model); (iii) an intersection operation
between views, used to identify the portion of information
that is common between the input views. Optionally, the
data model can also provide a union operation ⊎ between
views, with the intuitive meaning.

Data tailoring is a responsibility of the designer, and
consists in associating every context instance with the
view representing the data relevant for that context. Given
a CDT, the great number of possible context instances
makes the manual association of a view with each of them
impractical even at design time. In our solution, the
designer only associates a view with each concept node
and with each dimension node with attributes; then, the
Table 1
Shorthands denoting useful sets.

� childrenðS;nÞ ¼ fn0AN: ðn;n0ÞAEg
� siblingsðS;nÞ ¼ fn0AN:n0an4parentðS;nÞ ¼ parentðS;n0Þg
� descðS;nÞ ¼ fn0AN: ðn;n0ÞAEþ g
� gdescðS;nÞ ¼ descðS;nÞ [fng
� gascðS;nÞ ¼ fn0AN: ðn0 ;nÞAEþ g [fng
system automatically generates one view for each context
by combining these views in a suitable way [13].

Formally, let S¼ ðN; E; r;Att; α; λÞ be a CDT and let
VIEWS be the set of possible views over the dataset of
interest. A functionRel:N○ [N

�
-VIEWS must be defined

by the designer. The view definitions assigned by Rel to
nodes with attributes transform these attributes into
parameters of the view. For example, in the context
schema in Fig. 1 the movie interest topic features the
attribute language, which becomes the parameter lan-
guage of the associated view. Given a node n, the definition
of RelðnÞ may contain all the attributes associated with the
nodes belonging to gascðnÞ. The attribute values are defined
by the function ρI of Definition 3.

Let I ¼ ðSI ; ρIÞ, with SI ¼ ðNI ; EI ; rI ; αI ; λIÞ, be an instance of
the context schema S. The view associated with I is
obtained as the intersection of all the views associated
with the leaves of the tree ðNI ; EIÞ. Let us introduce the
function ViewðIÞ: I-VIEWS:

ViewðIÞ ¼
nANI

RelρI ðhNðnÞÞ ð1Þ

where RelρI ðhNðnÞÞ is the view in which the attributes take
the values dictated by ρI .

This approach affords a high degree of flexibility also
with respect to evolution; indeed the designer, after the
evolution from a context schema to a new one, has only to
revise or add the (limited number of) views associated
with the nodes that have been modified by the evolution
operation, and the combination of these new views with
the other ones to form the new context-related views is
performed automatically.

Note that in this scenario the definition of the Rel
function is manually performed by the designer respecting
the hierarchical structure of the context schema [5]. This
means that, quite naturally, the nodes situated in the lower
parts of the tree are associated with “more detailed” views
than their ancestors, i.e. niAdescðnjÞ) RelðniÞ RelðnjÞ.
If the data model also defines a union operation, the
designer effort can be further reduced by automatically
computing bottom-up the views related to the internal
nodes, as unions of the ones associated with the first
generation of their concept descendants and their dimen-
sion children with attributes:

Rel nð Þ ¼ ⨄
fni AN○ :n ¼ parentðS;parentðS;ni ÞÞg [

fni AN
�
:n ¼ parentðS;ni Þg

Rel nið Þ ð2Þ

In this case, the designer task becomes even lighter, since
she only has to define the views associated with the leaf
nodes. Only the view associated with the root is not
computed by union: by definition, it corresponds to the
whole database.

In a more autonomic scenario [27], the context-aware
views can be learned by the system, which analyzes the
behavior of the various users in the different contexts.
Accordingly, when the designer decides some CDT change,
the context instances are also changed following the policy
we define in this paper, and the associated views are
adapted automatically as the system learns from the user
behaviors in the newly defined contexts.

/

s
.

.
s

t

,
.
s

,

l

t
f

s

.
-

r

t

s

t

-
s
l
3. A brief account of the research on schema evolution

The need of managing schema modifications to make
applications resilient to changing requirements has grown in
the 80s within object-oriented databases, in the scope of CAD
CAM systems [28,29], and periodically becomes relevant again
when new data models or IT components arise in the
technological scenario. More recently, the problem has been
widely studied for relational databases [30–32], ontologie
[33–35], XML [36–38], and in the web domain [39,40]
Historically, two different approaches have been used to cope
with schema modifications [41]: evolution and versioning
When schema evolution is considered, the old schema version i
replaced by the new one, and techniques to keep on dealing
with all the entities associated with the old schemas have to
be provided. In the literature, these entities have been data
instances [28], queries [31], mappings [42], other related
schemas [43]; [44] have considered transformations between
data models, and studied how to update schemas defined in
those data models. On the contrary, in the versioning
approach all the past schemas are retained and kep
operating, with no adaptation needs.

We are interested in the evolution problem. When a
database schema changes, in fact, the new schema is often
just a different way of organizing the same data instances
and thus it is reasonable to keep the old schemas active
By contrast, context schema modifications reflect change
in the modeled reality: the old context schemas describe
context instances now obsolete and no more applicable
and keeping them operating makes little sense.

To the best of our knowledge, the only existing proposa
about context schema evolution is that of De Virgilio and
Torlone [45], which defines a general framework to suppor
the representation and management of a large variety o
context information. They introduce the notion of profile
schemes as trees composed of sets of dimensions, associated
with attributes; profile instances are defined assigning value
to the attributes. In their framework, the designer should
produce mappings associating the old schema versions with
the current one; then, starting from these mappings, the
paper mentions also a translation function for the instances
This methodology is very general, but only sketched; more
over, it requires a very onerous work for the designer.

This paper presents the first full-fledged proposal fo
context schema evolution, also taking into account ideas from
the existing evolution methods in other fields. The literature
on the evolution problem is extensive (see [46] for a recen
survey, or [47] for a complete list of references) and cannot be
exhaustively analyzed here, so we first summarize the main
approaches proposed for the relational, object-oriented and
ontological data models (Section 3.1). Then, the proposal
related to XML, which are the most relevant to our work
because of the hierarchical nature of our context model, are
presented in detail, also analyzing which of the features tha
we considered important for our aims are studied in the
various techniques (Section 3.2). Finally, we describe a very
interesting approach which is not bound to any specific data
model (Section 3.3). The detailed comparison of our metho
dology with the most interesting ones from the literature i
postponed to the end of the paper, in Section 9, where we wil
explain why we chose to develop a framework from scratch
rather than trying to apply one of the existing approaches to
our scenario.

3.1. Schema evolution in relational databases, object-
oriented databases and ontologies

Several schema evolution methodologies have
employed predefined evolution operators. A very cited
system dealing with object-oriented schema evolution is
Orion [28], exploit-ing a set of operators to modify the
schemas and to migrate instance data accordingly; each
schema has to fulfill a set of invariants, and a set of rules
to resolve possible invariant violations caused by the
application of the operators is provided. Operators are
used also in the relational setting in the Prism framework
[31]; each operator is mapped to a logical representation
in terms of disjunctive embedded dependencies that are
used to rewrite queries. Within ontol-ogies, the Kaon system
[33] provides a graphical user interface allowing to apply
sixteen predefined changes, divided in elementary and
composite ones; the changes are then propa-gated to the
instances of the modified ontology as well as to related
ontologies.

Other works, like [48] in the relational setting and [35]
in the ontological one, allow the designer to apply arbi-
trary changes and then try to infer which of the changes in
a predefined set have been applied. The inference may be
approximate and require interaction with the designer.
Since ours is the first attempt to manage the evolution of
context schemas, we suppose that the changes to be
applied are explicitly specified, leaving the change infer-
ence problem as a future work.

Finally, it is worth mentioning that [49] suggests the
applicability of mapping composition techniques to man-
age relational schema evolution: the designer defines the
mappings between the old schema and the new one, and
these mappings are used to migrate instances. However,
proceeding this way the designer has to specify complex
mappings between schemas and, similar to [45], this may
result in a very hard task.

3.2. XML schema evolution

Approaches to define mappings between schemas have
been defined in the scope of XML [50] too, and such
techniques could be adopted to manage schema evolution.
However, similar to the relational case, the mapping
definition may be an onerous task for the designer.

Paper [51] defines some evolution primitives for XML
documents, and the corresponding XQuery extensions
supporting evolution features; however, problems related
to schemas are not considered at all. Other works deal
with the update of XML documents to support their
efficient incremental validation with respect to a fixed
schema: [52–54] consider an XML document as a tree and
define some updating primitives. These approaches con-
sider changing instances w.r.t. to fixed schemas, whereas
we need to study instance adaptation as a consequence of
a schema change.

Some strategies exploit the theory of formal languages:
they represent XML schemas through grammars, and their

evolutions by evolving such grammars. Hashimoto et al. [55]

,
-
)
t

;
l

f

-

t
f

l

f

-

.
t

,

l

propose update operations to modify schemas, proving their
soundness and completeness; however, the corresponding
document adaptation is not considered. Chabin et al. [56]
represent DTDs by means of local tree grammars, and to
update the schema the designer has to provide a new
grammar; the authors propose to cope with the evolution
by finding the least local tree grammar able to generate the
union of the languages associated with the old and the new
one, thus encompassing the old instances as well as the new
ones. Shoaran and Thomo [57] introduce insert and delete
operations to add or remove substrings from the language
associated with the schema with the purpose of making the
schema more tolerant; techniques to find the automaton
recognizing the language connected to the new schema are
proposed. The latter two strategies tackle the evolution
problem with the aim of building a schema more “tolerant”
than the original one, while in our scenario we also have to
consider that the evolution might invalidate some instances.

Other works have considered schema evolution along with
the associated instance adaptation. Tan and Goh [58] define
operators to evolve XSDs, while Klettke [59] and Dominguez
et al. [60] propose to apply the modifications to conceptual
models, and to propagate them first to XML schemas and then
to the documents; these proposals describe systems only
under a practical point of view. Su et al. [36], instead, propose
operators to evolve DTDs, providing detailed descriptions of
preconditions and effects of their applications similar to ours;
however, instance update is covered in a shallow way. An
extension of this framework with high-level operators is given
by Prashant and Kumar [61]. A formal characterization of
operators is introduced by Guerrini et al. [37,38]. They propose
atomic and high-level modification primitives for XSD
describing their preconditions and semantics; algorithms for
partial revalidation and adaptation of documents dependent
on the applied primitives are also defined. This approach is
the most similar to ours, and we will compare it with our
framework in Section 9.

The primary goal of our research is to provide a formal
framework which is sufficiently general to be easily
applicable to other context models, with proofs of sound-
ness and completeness. As a second objective, we want to
propose a usable evolution infrastructure, so we choose to
employ intuitive operators, also providing high-level ones
expressing common evolution needs. Moreover, in our
framework it is necessary not only to adapt the instances
of the most recent schema, but also to deal with older ones
by applying sequences of operators; we will show that in
certain cases these sequences need to be optimized.
Table 2
Operator-based proposals for XML schema evolution.

Instance update Formalization

✓

✓

�
✓

✓

✓ �
✓

Hashimoto et al. [55]
Shoaran and Thomo [57]
Tan and Goh [58]
Klettke [59]
Dominguez et al. [60]
Su et al. [36]
Prashant and Kumar [61]
Guerrini et al. [37,38] ✓ ✓
Table 2 classifies the described operator-based approaches
to XML schema evolution w.r.t. the above-cited needs; �
indicates that the problem is addressed only partially, or that
not enough details are given in the paper. In particular
Guerrini et al. provide an optimization technique in a sub
sequent paper [62], but considering a different (and simpler
set of operators. As noted already, in the case of contex
schema evolution we also have to consider how changes are
propagated to the associations between contexts and views
obviously the works about XML schema evolution do not dea
with such problems.

All the methodologies listed in Table 2 propose a set o
operators deemed useful to evolve XML schemas, expressed
through DTDs, XSDs or conceptual schemas. The table high
lights how all of them do not take into account some aspects
that we believe important for the development of a contex
schema evolution approach. However, we could choose one o
them, represent our context schemas as needed by the chosen
methodology (e.g., with DTD or XSD), and then modify and
extend the methodology in order to deal with context schema
evolution. In Section 9 our techniques are compared in detai
with the strategy of Guerrini et al. [37,38], that according to
Table 2 is the approach that provides some operators and
conditions similar to ours, to show the points in which this
approach cannot represent fully the context modification
operators, since their pre- and post-conditions fall short o
representing the ones that are needed.
3.3. Schema evolution at a conceptual level

Poulovassilis and McBrien [63] propose a formalism to
define schemas as hypergraphs constituted by nodes, edges
and constraints. This formalism can be used to provide a
common representation for schemas defined through differ
ent data models. Instances are described as sets of sets, with a
function putting them in relationship with their schema
The schema transformation and the consequen
instance adaptation problems are tackled by introducing
primitive transformations allowing insertions and deletions
of nodes, edges and constraints. The authors show how the
ER model can be defined in terms of their hypergraphs
and how intuitive ER transformations are expressible by
composing the primitives proposed in this paper.

The framework presented by this paper is very genera
and interesting, thus in Section 9 we will propose a
detailed comparison of our approach also with this
methodology.
Sound./compl. proofs Optimization High-level operators

✓

�

✓

� ✓

l
.

,

.

Sequence of operators
to be applied

Modifies the context
schema applying the
predefined operators

Fig. 3. Framework for context schema evolution.
4. A framework for context schema evolution

Fig. 3 gives an overview of the framework we conceived to
manage context schema evolution, supposing w.l.o.g. that al
the data resides in a global database1 on a central server
There are three actors: the server, the user device and the
designer. The server stores the global database and performs
all the activities needed to manage the context, including
evolution management and data tailoring. At every context
change, the user's device sends to the server the context
instance describing her new situation and requests the related
data. The tailoring module associates each context instance
with a view over the global database, by combining the views
related to nodes as described in Section 2.3.2

During system life-time, the designer may modify the
context schema, but only by using a set of predefined
evolution operators. The sequence of the modifications
performed by the designer is logged by the history of the
applied operators component, making it possible to recon-
struct which operators have led from a version of the
context schema to another one.

The application of the evolution operators modifies the
context schema, possibly obliging the designer to redefine
the views related to some nodes. As will be clear in the rest
of the paper, the operators have been defined in such a way
as to immediately identify the parts of the CDT that have
been modified, and consequently the views that need

1 Note that the fact that the database itself be centralized or not is

irrelevant w.r.t. this discussion. What is important is that the views of
VIEWS be defined over some global schema.

2 In the view-learning scenario of [27], the tailoring module does
nothing more than assigning periodically the view definitions computed
by the learning system to the current context instance.
revision or must be added from scratch. In general, the user
device is unaware of the schema evolution, thus might, at a
certain point, communicate an outdated context instance to
the server. Then, the instance update module converts it into
an instance of the current CDT, named evolved instance in
Fig. 3. This transformation relies on the modification log.

Let us explain in detail the interaction between the user
device and the system through an example. Consider a user
Alice, who is in the context described by the instance of
Fig. 2. Suppose that, as assumed in our introductory example
the company has decided that the data should not be
tailored any more on the basis of the kind of user; this
entails the deletion of the user dimension from the context
schema of Fig. 1. Moreover, imagine that Alice's client
application, obviously not aware of this change, starts the
interaction with the system sending to the server the context
instance in Fig. 2 (coherent with the old schema, Fig. 1), and
expecting to obtain the related context-dependent view
Together with the instance, Alice's device also sends the
CDT of Fig. 1; this allows the system to understand whether
the received instance is expressed in terms of the current
context schema or of an obsolete one. Since Alice's CDT is
indeed obsolete, the server computes the sequence of
operators that have led from the schema in Fig. 1 to the
current one, and the instance in Fig. 2 is transformed into an
instance of the new schema. In the example this trivially
means eliminating the user dimension and (consequently)
the view associated with the adult node from the intersec-
tion which computes the contextual view. If Alice's client
application is flexible enough to update its internal context
representation, the new schema is now sent to Alice's device;
otherwise, the client application will continue to use the old
schema, and the server will evolve the context instances
produced by the client each time this operation is required.

Fig. 4. Application of the basic atomic operators described in Example 1.
Note that, in both cases, Alice herself is completely unaware
of the evolution management process.

5. Evolution operators

In this section we define (i) the declarative semantics of
the evolution operators used by the designer to update the
context schema and (ii) the transformations that the
instances undergo after the application of each operator.

An evolution operator op describes the features of the
resulting schema in terms of the source one and of some
other parameters. Each operator op is also associated
with a function IEop specifying the effects induced on the
instances; this function adapts the instances to the new
schema, preserving as much information as possible. Each
operator is characterized by a set of preconditions, impos-
ing some restrictions on the schemas to which they are
applicable; preconditions are expressed through first-order
formulas.

Given a context schema SS, the execution of an operator
op with input parameters p1;…; pn produces – if the
preconditions are fulfilled – a new schema ST ¼ op
ðSS; p1;…; pnÞ. The effect of this transformation on a legal
instance IS of SS is the production of a new instance
IT ¼ IEopðSS; ST ; IS;p1;…; pnÞ.

First, we define the set of the atomic evolution operators,
which has the following features: (i) completeness: this
set of evolution operators is sufficient to define the
evolution to any valid target context schema; (ii) soundness:
any sequence of these operators is guaranteed to produce a
context schema complying with Definition 2.
Do note that the application of these operators on a
schema triggers a sound instance adaptation, i.e. the update
induced on the instances produces context instances com-
plying with Definition 4, and maintains the consistency
between the resulting instances and the corresponding
(evolved) schema. We remark that, by contrast, it makes no
sense to require that the instance adaptation be complete: in
fact, instance adaptation is conceived to define how the
instances have to be modified as a consequence of a schema
evolution, and not to transform an instance into another,
arbitrary one.

Finally, the atomic operators along with their effects on
the instances are minimal: for each atomic operator, no
combination of other atomic operators exists that can
produce the same evolved schema and effects on the
instances.

Later, we introduce high-level evolution operators, which
can be expressed as sequences of atomic ones, producing
the same effects on both schemas and instances; they
represent common evolution needs in a more compact
way.

The set of atomic operators is indicated by OPAT , and the
set of high-level operators by OPHL; OP ¼ OPAT [OPHL.
5.1. Basic atomic evolution operators and their completeness

In this subsection we describe the first atomic opera-
tors, Delete and Insert. Their preconditions and semantics,
along with their effect on instances, are formally described
in the appendix (Table A1). A textual description follows.

e
s

,

t

a

e

t
e
-
e
s

l

rt

e
-
-

Delete: The Delete operator eliminates the subtre
rooted in a node n from the source schema SS. A
preconditions, since a dimension must have either an
attribute (when it is a leaf) or at least a concept child
Delete can only be applied to remove either a dimension
node and its subtree, or a concept node – if it has at leas
another sibling – and its subtree. The effect of Delete on an
instance of the input schema eliminates from the instance
the subtree rooted in the node with identifier hNðnÞ, if such
node is present; moreover, if n is a concept, in order not
to produce a leaf dimension, in the instance also the imag
through hN of the parent of n must be eliminated, together
with the edge connecting it with hNðnÞ. In Table A1 this
instance transformation is called IEDelete.

Insert: Given a source schema SS, the operator Inser
inserts a semischema R as a child of a specified nod
identified by n. The identifiers contained in the semi
schema must be different from the ones in SS, and th
correct type alternation between pairs of node generation
must be preserved; moreover, the labels of the nodes and
the attributes in the semischema must be different from
those already used in SS, in order to not introduce labe
conflicts. Since Insert does not alter the existing nodes and
attributes, the instances are not affected at all (see IEInse

in Table A1).
In the figures that follow, for simplicity, nodes and

attributes are identified through their labels.

Example 1 (Basic atomic operators). Fig. 4 shows th
application of the described operators to the CDT illu
strated in Fig. 1 (left-hand side), and the resulting mod
ifications of the instance depicted in Fig. 2 (right-hand
side). The changes are briefly described in the following:

1.
 The dimension labeled time is eliminated; the deletion

is applied to the instance too.

2.

The subdimension labeled time is added under the
movie node; according to the IEInsert semantics, the
insertion in the CDT does not affect the instance.

The set of basic atomic operators is sufficient to express
all the possible schema modifications, i.e., it is complete.
Our notion of completeness is similar to that of [28,36,37].

Theorem 1 (Completeness). Given two arbitrary CDTs S1

and S2, it is possible to find a finite sequence of operators
belonging to {Insert, Delete} that transforms S1 into S2.

Proof. Let us consider two context schemas SS and ST . Let
cS1; …; cSn be the children of rS and cT1; …; cTm the children
of rT . Moreover, let TT1; …; TTm be the subtrees rooted in
cT1; …; cTm.
The following sequence of Delete and Insert operators

builds ST starting from SS:

�
 S0 ¼ SS

�

for i: 1;…;n, Si ¼DeleteðSi�1; cSi Þ
�
 S0 ¼ Sn

�
 for i: 1;…;m, Si ¼ InsertðSi�1; TTi; rSi Þ
�
 ST ¼ Sm □
5.2. Methodological considerations and further atomic
operators
Let us analyze Example 1 in more detail: at step 1, the
subtree rooted in the dimension named time is elimi-
nated from the schema, thus causing the same deletion
from all the instances that contain it. At step 2 a subtree
identical – syntactically and semantically – to the one that
has been deleted is inserted under the concept node
movie; however, according to the IEInsert semantics, the
instance remains unaltered when new information is
added to the schema. Nevertheless, such a sequence of
changes might intuitively represent a “move” operation,
that is, in the designer's intention, the time information
has probably become relevant only for those users who are
interested in movies. The initial instance indicates an
interest both in the movies and in time but, when the
time information is deleted, this aspect is completely lost
in the context instance and does not influence the sub-
sequent insertion. Therefore the (elsewhere reasonable)
effects of the Delete and Insert operators on the instances
in this case result in the loss of the information related to
time, due to the fact that the evolution process “forgets”
the deleted subtree, taking care only of the information
contained in the most recent schema and instances.
A similar issue has been considered also by Lerner [48]
that in the scenario of the evolution of object-oriented
types illustrates a similar need to move an attribute from
a type to another one.

The problem can be solved by storing the eliminated
subtrees in order to facilitate later reintegration, if neces-
sary. We enrich Delete with two functions: the schema cache
SCDelete and the instance cache ICDelete (Table A2 of the
appendix). The former returns the cached content after its
deletion from the schema, while the latter does the same
after the deletion from the instance. The new Delete entails
the caching of the semischema SM ¼ SCDeleteðSS; ST ; nÞ, while
IEDelete is associated with the caching of the semi-instance
IM ¼ ICDeleteðSS; ST ; SM ; IS; IT ; nÞ; for reasons that will be clear
later in the paper, the node nM with which SM was
connected in the source schema is cached too. Note that
SCDelete and ICDelete do not implement any schema or
instance modification: they only define the information to
be cached after a deletion. The stored content is available to
be used by an insertion if this is executed immediately after
the deletion, then it is purged. Note that now, in order to
exploit the content stored during the deletion, a “memory-
aware” insertion operator will be necessary.

Consider now the schema and the instance obtained
after the evolution described in Example 1. Suppose first
that the designer deletes from the CDT the nodes adult
and teenager – children of user – triggering the
removal of the user dimension from the associated
instance; then, she inserts a new node person under
the same dimension user. According to the IEInsert

semantics, the instance remains unaltered, because the
instance where IEInsert is applied now does not carry any
information about the new node. Nevertheless, such a
sequence of changes might intuitively represent a “merge”
operation, that is, in the designer's aims, the added node is
meant as a substitute for both adult and teenager; the

sequence of deletions and insertions, though able to
modify the schema according to the designer's intentions,
did not modify the instance as intended. Again, it turns out
that, even if Insert and Delete are enough to achieve
schema update completeness, the designer might need
more atomic operators inducing useful behaviors on the
instances and not obtainable as combinations of insertions
and deletions.

To satisfy this need we add two atomic operators toOPAT :
a “memory-aware” insertion InsertFromMemory, and then a
Merge operator. We also add a further operator whose need
we have noticed: the ReplaceSubtreesWithAttribute. This is
useful when the designer deems the hierarchy underlying
the dimension node no more interesting. Example 3 shows an
instance of this case. Remark that this set of new operators
has been determined according to our intuition about the
possible changes that may take place as consequences of the
dynamism of the application requirements; therefore, it may
be further widened. Moreover, note also that despite the
memory-aware insertion InsertFromMemory has been defined,
we still retain the standard insertion operator Insert, which is
necessary when the designer wants to insert in the context
schema a completely new semischema, not resulting from a
deletion.

A textual description of the new operators follows,
while their preconditions and semantics are shown in
Tables A3 and A4 of the appendix.

InsertFromMemory: InsertFromMemory is similar to
Insert but takes as additional the cached semischema SM;
the associated function IEInsertFM takes as input also the
semi-instance IM . Therefore ST ¼ InsertFMðSS; SM ;R;nÞ and
IT ¼ IEInsertFMðSS; ST ; SM ; IS; IM ;R;nÞ. The operator InsertFrom-
Memory behaves exactly as Insert does, but the semi-
schema R inserted under the node n is retrieved from
the cache (if any); it is allowed to modify attributes and
labels, while nodes and edges have to remain the same of
the semischema stored in the memory. If n is a concept
node, the memory contains a semi-instance, and the
source instance contains the node corresponding to n,
then IEInsertFM reinserts the stored semi-instance. On the
contrary, if n is a dimension node, the semi-instance is
reintegrated only if the semischema has been reinserted
exactly in the same position, thus simply rolling back the
previous deletion; in fact, if the stored semischema were
moved, the reinsertion would cause the presence of white
siblings in the instance (forbidden by Definition 3). Note
that InsertFromMemory must necessarily follow a Delete
operation. A specific precondition guarantees this fact, by
requiring the presence of a non-empty cached semi-
schema (see the appendix for details), which can only be
produced by a Delete operation. Note also that InsertFrom-
Memory allows only to reinsert a previously eliminated
subtree, and not to duplicate a subtree in a different
position; copying a subtree would produce a context
schema inconsistent with Definition 1, since duplicated
identifiers are not allowed.

Merge: The Merge operator merges a set of concept
siblings fm1;…;mpg into a unique node labeled ℓ; the new
node will have all the attributes previously connected to
the replaced nodes. The root cannot be involved in a
merging. The label ℓ must be different from the labels
already in use in the schema, with the exception of those
of the nodes fm1;…;mpg that are being removed. If an
instance contains a node corresponding to one of the
merged ones, IEMerge substitutes it with a new node
labeled ℓ. It is immediate to see that this operator is
atomic, because its effect on instances IEMerge cannot be
obtained by combining IEDelete and IEInsert .

ReplaceSubtreesWithAttribute: ReplaceSubtreesWith-
Attribute (RSWA) replaces all the subtrees rooted in the
(concept) children of a dimension node identified by n with
an attribute labeled ℓ; the label ℓ cannot be among those
associated with nodes and attributes of the source schema
that are not part of the replaced subtrees. The effect IERSWA

updates an instance if it contains a node identifier k
corresponding to one of the children of n; in such a
situation the subtree rooted in k is replaced by the new
attribute, whose value will be the label of k. This operator is
atomic for the same reason as the previous one.

The following theorem states that after the application
ofMerge the information level of the instances is greater or
equal than after the application of a sequence of Delete and
Insert.

Theorem 2. Given the context schemas SS and
ST ¼MergeðSS; fm1;…;mpg;ℓÞ, and the context instance IS
of SS, let IM ¼ IEMergeðSS; ST ; IS; fm1;…;mpg;ℓÞ. For each
instance ID obtained as the effect of a sequence of Delete
and Insert producing the same results as Merge on the
schema, it holds that:
(i)
 ILðIDÞr ILðIMÞ.

(ii)
 If there exists a “witness node” n1 in IS such that

hNðn1ÞAfm1;…;mpg, then ILðIDÞo ILðIMÞ.
Proof. Suppose that there exists a witness node n1ANIS such
that hNðn1ÞAfm1;…;mpg, and consider the semantics of
IEMerge. By definition of NIT , variations to the set of nodes
concern only concept nodes, therefore N�

IM ¼N�
IS. Moreover,

according to the definitions of AttIM and ρIM some attributes
are added to AttIS, but all of them take the value ALL. Therefore
also ^Att○IM ¼ ^Att○IS , and ILðIMÞ ¼ ILðISÞ. Suppose now that there
is no n1ANIS such that hNðn1ÞAfm1;…;mpg; according to the
IEMerge semantics IM ¼ IS, and so ILðIMÞ ¼ ILðISÞ. Thus, in any
case, after the application of Merge, ILðIMÞ ¼ ILðISÞ.
Let us consider a sequence of insertions and deletions

producing the same schema obtained with Merge, and an
instance ID; such a sequence exists due to Theorem 1.
IEInsert leaves the instances unchanged, so the information
level of ID is determined exclusively by the deletions
included in the sequence. IEDelete can only remove nodes
and attributes from the instance, without adding any-
thing, so ILðIDÞr ILðISÞ. Given that ILðIMÞ ¼ ILðISÞ, we have
ILðIDÞr ILðIMÞ, that is (i).
To prove (ii), consider the situation in which there exists

the witness n1ANIS such that hNðn1ÞAfm1;…;mpg. Let
lANIS be such that hNðlÞAfm1;…;mpg. The sequence of
Insert and Delete required to obtain ST needs necessarily to
eliminate all the subtrees rooted in m1;…;mp from SS, in
order to add the new node n as a child of parentðSS;m1Þ.
The corresponding applications of IEDelete cannot add new
nodes or attributes, but according to the IEDelete semantics

it will surely remove the node
o
parentðIS; lÞ from the

rinstance. As a consequence, jN�
IDj jN�

ISj and jAtt̂○ID j
jAtt̂ ○IS j, and thus ILðIDÞo ILðISÞ ¼ ILðIMÞ. Therefore (ii)
holds. □

Theorems 3 and 4 provide results analogous to
Theorem 2 for ReplaceSubtreesWithAttribute and Insert-
FromMemory. Their proofs are similar to that of Theorem
2, and are omitted for brevity.

Theorem 3. Given the context schemas SS and ST ¼
RSWAðSS; a; ℓÞ, and the context instance IS of SS, let
IR ¼ IERSWAðSS; ST ; IS; a; ℓÞ. For each instance ID obtained as
the effect of a sequence of Delete and Insert producing the
same results as ReplaceSubtreesWithAttribute on the schema,
it holds that:
(i)
 ILðIDÞr ILðIRÞ.

(ii)
 If there exists a node n1 in IS such that hNðn1Þ ¼ αSðaÞ,

then ILðIDÞo ILðIMÞ.
Theorem 4. Given the context schemas SS and
ST ¼ InsertFMðSS; SM ;R;nÞ, and the context instance IS of SS,
let II ¼ IEInsertFMðSS; ST ; IS; SM ;R;nÞ. For each instance ID
obtained as the effect of a sequence of Delete and Insert
producing the same results as InsertFromMemory on the
schema, it holds that:
(i)
 ILðIDÞr ILðIRÞ.

(ii)
 If the instance cache is not empty and either of the

following is true:
(a) n is a white node and there exists a node n1 in IS such

that hNðn1Þ ¼ n,
(b) hNMðrIMÞ ¼ n,
then ILðIDÞo ILðIMÞ.
Note that a consequence of Theorem 4 is that the
information level of the instance produced as an effect of
an Insert is less than or equal to that of the instance
obtained after InsertFromMemory. Intuitively, IEInsert does
not alter the source instance at all, while IEInsertFM may
recover previously cached dimensions and attributes.

Example 2 (InsertFromMemory). Fig. 5 shows two exam-
ples that revise steps 1 and 2 of Example 1 taking into
account the cache functionality: step 10 considers the
extension of the Delete operation with the cache, while
Step 20 mimics step 2 of Example 1, but applying Insert-
FromMemory instead of Insert.
Note that, in the instance obtained after the application

of Insert in Example 1, jN�j ¼ 6 and j ^Att○ j ¼ 2, while in the
instance derived applying InsertFromMemory it holds that
jN�j ¼ 7 and j ^Att○ j ¼ 2; therefore the former instance is less
informative than the latter one.

Example 3 (Merge and RSWA). Fig. 6 shows the applica-
tion of the Merge and ReplaceSubtreesWithAttribute
operators to the context schema obtained after the opera-
tions described in Example 1, and the resulting modifica-
tions of the instance. The changes are briefly described in
the following:
3.
 The nodes labeled adult and teenager are trans-
formed into a unique node labeled person; in the
instance, the node labeled adult is replaced by a
node labeled person. Note that, in the instance
obtained after Merge, jN�j ¼ 6 and j ^Att○ j ¼ 2; if a
sequence of deletions and insertions had been
employed, the instance would not have contained the
user dimension, thus having jN�j ¼ 5 and j ^Att○ j ¼ 1.
As a consequence the instance obtained with Merge is
more informative.
4.
 The subtrees rooted in the dimension labeled movie_
genre are replaced by a new attribute labeled genre;
this change means that the classification among various
kinds of comedies is considered as no more useful for
the application, and that movies with further and
unpredictable genres are expected to come into the
catalog. In the instance the subtree rooted in comedy is
removed, and the new attribute assumes the value
comedy. Note that in the instance obtained after
RSWA jN�j ¼ 5 and j ^Att○ j ¼ 2; if a sequence of deletions
and insertions had been employed, the instance would
have not contained the movie_genre dimension, thus
having jN�j ¼ 4 and j ^Att○ j ¼ 2. As a consequence the
instance obtained with ReplaceSubtreesWithAttribute is
more informative.

5.3. Further fundamental properties of the atomic operators

In Section 5.1 the completeness of the atomic operators
has been proven. In this section, we study two more
fundamental properties of our evolution framework:
soundness and minimality.

The following two theorems deal with the soundness of
the evolution process. If an evolution operator is applied to
a legal context schema fulfilling the preconditions, it
should produce a legal context schema according to
Definition 2. Moreover, the adaptation of an instance as
effect of the evolution must be such that its outcome is: (i)
a legal context instance according to Definition 4 and (ii)
an instance of the schema produced by the evolution
operator, according to Definition 5 [64].

Theorem 5 (Soundness of the schema evolution). Let SS be a
context schema, opAOPAT and p1; …; pn the additional
parameters required by op, then opðSS; p1; …; pnÞ gives as
result a context schema ST .

Proof. The soundness should be proven separately for
each operator. We choose to show the proof for Merge:
the others follow a similar pattern. Note that in the proof
we use the definitions of the components of the target
schema and the preconditions of Merge, whose formal
details can be found in the appendix.
Let fm1; …; mpg �NS and ℓAL be the input parameters of
Merge, and let n be the identifier of the new node

Fig. 5. Application of Delete and InsertFromMemory, as described in Example 2.

Fig. 6. Application of Merge and ReplaceSubtreesWithAttribute operators described in Example 3.
labeled ℓ inserted into the new schema. ST is obtained
from SS by eliminating the concept siblings (preconditions
2 and 3, and definition of NT), the edges involving them
(definition of ET) and inserting the node identifier n;
such a node identifier is connected with the parent of
fm1;…;mpg and to all their children (definition of ET). It is
easy to prove that ST is a context schema. Indeed:
�
 By definition of NT and ET , no dangling edges are
present in ST , and all the nodes are reachable starting
from rT . Therefore, condition (i) of Definition 1 is
satisfied.
�
 Being n a concept node identifier (precondition 1) as
m1;…;mp, the fact that every generation contains node
identifiers of the same type is preserved (condition (ii)
of Definition 1).
�
 By definition of AttT and αT , each attribute is con-
nected to one and only one node in NT ; moreover, the
removed edges are replaced by a new node, therefore
it is impossible to have a dimension lacking both

concept children and an attribute (condition (iii) of
Definition 1).
�
 Precondition 4 prevents label conflicts to arise (condi-
tion (iv) of Definition 1).
�
 The root, not modified according to precondition 2, is
labeled context and is a concept node (Definition 2). □

Theorem 6 (Soundness of the instance adaptation). Let SS
be a context schema, IS an instance of SS, opAOPAT , p1;…; pn
the additional parameters required by op, ST the context
schema result of opðSS;p1;…; pnÞ. The result IT of
IEopðSS; ST ; IS; p1;…; pnÞ is an instance of ST .

Proof. Again, we prove the theorem only for the Merge
operator. Let fm1;…;mpg �N and ℓAL be the input
parameters of Merge and IEMerge.
Two facts have to be proven:
1.
 IT ¼ ðSIT ; ρIT Þ is a context instance: SIT is obtained by SIS by
only replacing, if present, a concept node n1:
hNðn1ÞAfm1; …; mpg with another concept node;
therefore, condition (i) of Definition 3 is satisfied.
Moreover, ρIT correctly assigns a value to all the
attributes in AttIT (condition (ii) of Definition 3).
2.
h0Nðn1Þ ¼
n if n1 ¼ l

hNðn1Þ otherwise

IT ¼ðSIT ; ρIT Þ is an instance of ST : Suppose that hN and hA be
the functions relating IS and SS. Let b1…bk, d1…dk and l be
defined as in the semantics of the instance update (see the
appendix). The functions between SIT and ST are defined as
follows:(

h0Aðn1Þ ¼
di if n1 ¼ bi
hAðn1Þ otherwise

(
h0N and h0A are obtained considering the old node
identifiers as before, and associating the possible new
node identifier in SIT with the new node identifier in ST ;
the new attribute identifiers that the new node identi-
fier takes from the siblings of hNðlÞ in the source schema
are associated with the corresponding ones in the
target schema. The four conditions of Definition 5 are
therefore satisfied. □

The following theorem states that the set of atomic
operators is minimal:

Theorem 7 (Minimality). Given an atomic evolution opera-
tor Op and a schema S, there is no sequence of atomic
evolution operators different from Op producing on S and on
all its instances the same result as the application of Op.

Proof. To prove the minimality of the atomic operators,
we need to build, for each of them, an example of an
evolution that can be performed using that operator, and
cannot be obtained by applying only other ones. Examples
of this kind have already been shown in the paper. Here
we propose a formal proof for Merge; the other proofs
proceed similarly.
For conciseness, let us represent a semischema through
the identifier of its root and the list of semischemas – if
any – that are children of the root, like this: a½b½c�; d½e��.
Labels, attributes and attribute values, when relevant, can
be indicated by explicitly specifying the functions λ, α
and ρ.
We need Merge to evolve S1 ¼ a½b½c; d�� to

S2 ¼MergeðS1; fc; dg;ℓÞ ¼ a½b½e�� with λ2ðeÞ ¼ ℓ, updating the
instance I1 ¼ f ½g½i�� of S1 with hNðf Þ ¼ a, hNðgÞ ¼ b and
hNðiÞ ¼ c to the instance I2 ¼ IEMergeðI1; S1; S2; fc;dg;ℓÞ ¼
f ½g½m�� with hNðmÞ ¼ e and λI2ðmÞ ¼ ℓ. This evolution could
not be performed without involving Merge, because Merge is
the only operation allowing to add to the target instance a
node (like i) that was not present in the source instance or in
previous versions of the instance. □
5.4. High-level evolution operators

In this subsection we define four high-level schema
evolution operators, allowing to move subtrees, rename
nodes or attributes, insert and delete attributes. High-level
operators are shortcuts for sequences of atomic ones: a
high-level schema operator modifies the schema in the
same way as the corresponding sequence of atomic ones,
and triggers an identical update on the instances. Precon-
ditions and semantics of the high-level operators, along
with the semantics of the corresponding effects on the
instances, are formally described in Table A5 of the
appendix. Here follows a textual description, also report-
ing the sequences of atomic operators needed to obtain
the effects of the high-level ones.

Move: The operator Move moves the subtree rooted in
the dimension node n as a child of the concept node
identified by m; the latter cannot be a descendant of the
former. If the moved subtree is also partially present in an
instance, IEMove keeps and moves it only if its new parent is
contained too. If (a part of) the moved subtree is contained
in the instance but its new parent is not present, the
subtree is eliminated. Note that only movements of sub-
trees rooted in dimension nodes are considered; though in
rare cases it could be sensible, e.g. to make romantic_-
comedy a real movie genre and not only a type of comedy,
usually the movement of concepts is not useful, and
therefore we have decided to ignore it in order to keep
the semantics of Move simpler. Move can be expressed
with atomic operators firstly by deleting the subtree
rooted in n ðS1 ¼DeleteðSS;nÞÞ, and then by reinserting it
– with no modifications – under m with InsertFM
ðS1; SM ; SM ;mÞ.

Rename: The operator Rename renames a node or
attribute, with identifier n, assigning ℓ as new label. It is
necessary that the new label be not already in use. If
necessary, IERename performs the same renaming on the
instances. Let R be the semischema obtained modifying
the one rooted in n by changing to ℓ the label of n; Rename
can be realized by using only atomic operators deleting the
subtree rooted in n (S1 ¼DeleteðSS;nÞ), and then reinserting
its updated version with InsertFMðS1; SM ;R; parentðSS;nÞÞ.

InsertAttribute: The operator InsertAttribute inserts a
new attribute labeled ℓ, associating it with a concept node

Fig. 7. Application of the high-level operators described in Example 4 to the resulting schema of Example 3.
identifier n. Moreover, the label ℓ must be different from
the labels already defined in the source schema. If an
instance contains a node identifier corresponding to n,
IEInsertAttribute adds the new attribute to the instance with
the value ALL. Let R be the semischema obtained modifying
the one rooted in n by adding an attribute labeled ℓ
associated with the node n; InsertAttribute can be
mimicked with atomic operators by deleting the subtree
rooted in n ðS1 ¼DeleteðSS;nÞÞ and then reinserting it
incorporating the new attribute, with InsertFMðS1; SM ;
R; parentðSS;nÞÞ.

DeleteAttribute: The operator DeleteAttribute deletes
the attribute identified by a. IEDeleteAttribute updates the
instances eliminating the attribute whose identifier corre-
sponds to a through the function hA, if present. Let R be the
semischema obtained modifying the one rooted in n,
which has a as attribute, by removing the attribute a;
DeleteAttribute can be simulated with atomic operators by
deleting the subtree rooted in n ðS1 ¼DeleteðSS;nÞÞ and
then reinserting it excluding a, with InsertFMðS1; SM ;
R; parentðSS; nÞÞ.

Example 4 (High-level operators). Fig. 7 shows the appli-
cation of the high-level operators, starting from the con-
text schema obtained after the operators in Examples 1
and 3; the resulting modifications of the instances are
shown too. The changes are briefly described in the
following:
5.
 The dimension labeled situation is moved as a
subdimension of person; being both situation and
person included in the instance, the movement is
performed there too.
6.
 The node labeled zone changes its name into
place; the renaming is performed on the instance too.
7.
 The new attribute labeled num_friends is added to
the node labeled withFriends; the attribute is also
added in the instance, where takes the value ALL.

8.

The attributes labeled t_age and a_age are removed; the
instance undergoes the same modifications.

5.5. Evolution algorithms

Up to now we have proposed declarative definitions of
context schemas, context instances, and evolution opera-
tors. In this subsection we give their procedural semantics
providing, as examples, some of the algorithms that
compute schema evolution and modify the instances
accordingly. For this purpose, we consider a more appro-
priate representation of context schemas and instances as
trees: a node of the schema and instance trees is repre-
sented as a data structure (id, label, type, parent, child, att),
where id is the node identifier, label is the node label, type
may be concept or dimension, parent is the parent node,
child is the set of children nodes and att is the set of
attributes associated with the node. An attribute, in its
turn, is a data structure (id, label, value), where the value
field has a value only in context instances. We show the
algorithms that compute the Merge operator because it is
the most complex.

Algorithm 1. Merge.
Require: Source schema tree, identifiers m1 ;…;mp of the nodes to

be merged, label ℓ of the new node
1: node_m1 ¼ findNodeðtree;m1Þ
2: node_f ¼ node_m1:parent
3: Locate node_m2 ;…;node_mp in node_f :child
4: If precMergeðtree;node_m1 ;…;node_mp ;ℓÞ then
5: node_new¼ newNode(genIdðÞ;ℓ; concept;node_f ,

⋃
p

i ¼ 1
node_mi :child; ⋃

p

i ¼ 1
node_mi :att)

6: node_f :child¼ ðnode_f :child\{node_m1;…,
node_mp}) [fnode_newg

7: for all nodeAnode_new:child do
8: node:parent ¼ node_new
9: end for
10: end if
Ensure: tree is updated if the preconditions are fulfilled
11: function PRECMERGE(tree;node_m1 ;…;node_mp ;ℓ)
12: node_f ¼ node_m1:parent
13: for all iA1…p do
14: if node_mi ¼ not_found3node_mi :typeaconcept3

node_mi :id¼ tree:id then
15: return false
16: end if
17: if node_mi :parentanode_f then
18: return false
19: end if
20: end for
21: for all n node or attr. in the tree with root tree do

22: if n:id=2 [
p

i ¼ 1
fnode_mi:idg4node:label¼ ℓ then

23: return false
24: end if
25: end for
26: return true
27: end function

Algorithm 1 takes as input the tree representation of
the source schema, the identifiers of the nodes to be
merged m1; …; mp, and the label of the new node;the
source schema is updated performing the merging. First
of all the node associated with the identifier m1 is located
through the function findNode, implementing a standard
tree-search algorithm, that in the worst case is linear in
the number of nodes;findNode returns not_found if the
requested identifier is not contained in the tree. The
siblings of this node are retrieved at Line 3; this step is
linear in the maximum number of children of a node that
we indicate by max_child. If the preconditions are fulfilled,
at Line 5 a new node is created, generating (in constant
time) a new identifier with the genIdðÞ function;then, the
nodes identified by m1; …; mp are merged into the new
one. Function PRECMERGE checks the preconditions; the
most complex step is that associated with the last one,
checked through the for loop at Line 21 requiring p �
ðjNSjþjAttSjÞ operations. The global complexity of
Algorithm 1 is thus Oðmax_childþp � ðjNSjþjAttSjÞÞ; con-
sidering that max_child {jNSj, p{jNSj and jAttSj{jNSj, we
can simply write OðjNSjÞ.

Algorithm 2. IEMerge.

Require: Source instance inst, source schema sch, identifiers
m1 ;…;mp of the nodes to be merged in the schema, label ℓ of
the new node, identifier n of the new node in the schema

1: for all miAfm1;…;mpg do
2: mi_i¼ convertðinst; sch;miÞ
3: node_mi_i¼ findNodeðinst;mi_iÞ
4: if node_mi_ianot_found then
5: node_new¼ newNodeðgenIdInstanceðnÞ;ℓ; concept,

node_mi_i:parent, node_mi_i:child,
node_mi_i:attÞ

6: node_mi_i:parent:child¼ fnode_newg
7: for all nodeAnode_new:child do
8: node:parent ¼ node_new
9: end for
10: end if
11: end for
Ensure: inst is updated

Algorithm 2 supplies an implementation of IEMerge;
note that it does not require the target schema as an
input. The algorithm looks for each of the merged nodes,
and if one of them is present it is substituted with the new
node. The function convert at Line 2 computes the instance
node identifier mi_i such that hNðmi_iÞ ¼mi; we suppose
that this can be done in constant time. The function
genIdInstance () at Line 5 generates in constant time the
identifier of the new node on the basis of the correspond-
ing one in the schema. The complexity of Algorithm 2 is
determined by the findNode function, so it is linear in the
number jNISj of nodes in the instance.

Similar to Merge, also the algorithms associated with
the other operators are at most linear in the number of
nodes of the input schema or instance.

6. Context-aware view evolution

The node-based view definition approach, introduced
in [13] and summarized in Section 2.3, guarantees a high
flexibility with respect to evolutions: after a context
schema modification has taken place, in order to update
the corresponding view definitions the designer has only
to revise the views connected with the nodes affected by
the change, and subsequently the new views associated

is

with the possible context instances can be automatically
determined using Eq. (1). The flexibility is even higher if
the data model also provides a union operation: in that
case, the only views that the designer must redefine are
the ones regarding the leaf nodes involved in the schema
evolution. Moreover, the node-based view definition
approach is consistent with the schema evolution strategy,
since the introduced operators allow to easily understand
which nodes are affected by an evolution step.

In such a scenario, the system may help the designer
identify the nodes whose views have to be adjusted during
the evolution process. To give more details we illustrate
the case that affords the highest flexibility, in which the
underlying data model provides a union operation. Similar
considerations hold also when a union operation is not
available.

After the application of an evolution operator, two sets
of nodes are defined: NDEF and NCOMP . The former contains
the nodes whose views have to be revised, or defined
from scratch, while the latter contains the nodes whose
views must be automatically recomposed using Eq. (2) of
Section 2.3; NDEF contains only leaf nodes, while NCOMP

contains only internal nodes.
A formal description of the NDEF and NCOMP sets after

the application of the evolution operators, in terms of
their source and target schemas, is given in the appendix
(Table B1). Here follows a textual explanation of the view
updates needed for each evolution operator.3

Delete: It is used to delete a subtree rooted in node n.
The parent node p¼ parentðSS;nÞ of n may become a
concept leaf, and, if this is the case, it needs an associated
view ðpANDEF Þ. Moreover, all the views related to each
ancestor a of p have to be recomposed ðaANCOMPÞ; if p has
not become a leaf, it is internal and thus also its view
needs to be recomposed ðpANCOMPÞ.

Insert: After the new subtree has been inserted, the
views associated with its leaves have to be defined. Also,
the views related to nodes with a descendant among the
new leaves must be automatically recomposed bottom-up.

InsertFromMemory: When inserting the cached con-
tent in the context schema, two cases have to be analyzed:
the subtree may be inserted in a different position with
respect to the one it had before the deletion, or it may be
inserted at the same position. The first case occurs when
the node connected with the cached subtree is not the
node n under which it is reinserted, i.e. nMan. In this first
case InsertFromMemory behaves exactly as Insert in terms
of views: all the views related to the leaf nodes in the
inserted subtree need to be redefined. On the contrary, if
the stored subtree is reinserted in its original position, the
operation results in a simple rollback of the deletion; the
effects of the deletion must be discarded, i.e. not consid-
ered when computing the union of the sets NDEF and NCOMP

associated with the operators in the evolution sequence,
and the views are updated on the basis of the possible
modifications of the Att set. Note that if an attribute
3 Note that for the data models that do not provide a union operation
the NCOMP set is empty and the designer has to redefine the views of all
the nodes.
associated with a node n1 has been inserted or deleted,
the views related to the leaves in the descendants of n1

have to be revised, because they may exploit the deleted/
inserted attribute.

Merge: If the new node n replaces concept leaves, its
view must be defined and the ones connected to its
ancestors must be recomposed. By contrast, if n replaces
internal nodes no new views are defined, and only the
view associated with n needs to be recomposed on the
basis of those of its descendants.

ReplaceSubtreesWithAttribute: The dimension con-
nected with the new attribute is a leaf, therefore it needs
the definition of a view. Moreover, the views related to the
ancestors of this node must be automatically recomposed.

Move: After the Move of a subtree t rooted in n, the
views associated with the leaves of t need revision; more-
over, if the old parent of n has become a leaf, a view must
be defined for it. In addition, all the views related to the
ancestors of both the old parent and the new parent of n
have to be automatically recomposed; also the view of the
old parent must be recomposed, unless it has been defined
from scratch.

Rename: The Rename operator affects the context
schema only in the labeling function, requiring no views
to be revised or recomposed.

InsertAttribute: The insertion of an attribute con-
nected to a node n makes necessary the revision of all
the views related to the nodes that may employ the new
attribute, i.e. the ones associated with the leaves among
the descendants of n. Moreover, the views of the concepts
that are ancestors of the nodes whose view is revised must
be automatically recomposed.

DeleteAttribute: After the deletion of an attribute asso-
ciated with a node n, the views of the nodes that may employ
that attribute – i.e., the ones associated with the leaves among
the descendants of n – must be revised. Moreover, the views
of the concepts that are ancestors of the nodes whose view
revised must be automatically recomposed.

Example 5 (View update). Let us consider the evolutions
shown in the Examples 1–4. The necessary views to be
revised or recomposed after the application of each
operator are explained in the following. For brevity, in this
example nodes are identified by means of their labels.
1.
 Delete: the deleted subtree is rooted in time, a
child of the root, thus no views need to be
redefined nor recomposed.
NDEF ¼∅; NCOMP ¼∅
2.
 Insert: daytime and night are the inserted leaves,
therefore only their views must be defined; more-
over, the ones associated with their ancestors must
be automatically computed.
NDEF ¼ fdaytime;nightg; NCOMP ¼ fmovieg
20.
 InsertFromMemory: the root time of the reinserted
subtree is connected to a different node with
respect to its previous parent. Therefore, the effect
of the previous deletion does not have to be
discarded. The view of time must be redefined,

and the ones of its ancestors must be recomposed.
NDEF ¼ fdaytime; nightg; NCOMP ¼ fmovieg
3.
 Merge: the view of the new concept node person

has to be defined. It does not have concept
ancestors different from context, therefore no
views have to be automatically recomposed.
NDEF ¼ fpersong; NCOMP ¼∅
4.
 ReplaceSubtreesWithAttribute: the view of
movie_genre, become a leaf, has to be defined.
Moreover, the view of its ancestor movie has to be
automatically recomposed.
NDEF ¼ fmovie_genreg; NCOMP ¼ fmovieg
5.

Move: the view of the leaves contained in the
moved subtree, rooted in situation, has to be
redefined, while the one of the ancestor person

must be recomposed.
NDEF ¼ falone;withFriendsg; NCOMP ¼ fpersong

6.

Rename: by definition, this operation does not
affect view definitions.
NDEF ¼∅; NCOMP ¼∅
7.

InsertAttribute: the view of the node with-

Friends, connected to the new attribute, must
be redefined; the view of the ancestor person has
to be recomposed.
NDEF ¼ fwithFriendsg; NCOMP ¼ fpersong

8.

DeleteAttribute: the view of the node connected to
the deleted attribute is redefined; it has no con-
cept ancestors excluding the root, therefore no
views must be automatically recomposed.
NDEF ¼ fpersong; NCOMP ¼∅

The NDEF sets can be computed for all the operators in

linear time with respect to the number of nodes in the
schema. The most complex task necessary to evaluate
NCOMP is the computation of the set of nodes having a
descendant in NDEF , often needed to determine NCOMP; this
step requires jNT jjNDEF j operations. Assuming jNDEF j{jNT j,
also NCOMP can be determined in linear time.

Note that, in a more autonomic, self-managing sce-
nario, the system can govern view evolution by means of
machine learning techniques [27]. In this case all the
affected nodes belong to NDEF , and the definition of the
associated views is left to the system, which computes and
associates new views with the new context instances by
automatically detecting new interests of the users in the
corresponding contexts.

7. Optimization of sequences of operators

So far we have considered the evolution operators from
a formal viewpoint. However, we can well imagine that in
real life the design task be supported by a GUI where
graphical components implement the operators. A generic
schema evolution task may involve the application of a
sequence of operators where, since design is seldom a
straightforward process, the designer might change or
even cancel her decisions. For instance, she may decide
to rename a certain node, and later delete a subtree
including that node; it is obvious that the deletion makes
renaming useless, and thus the employed sequence of
operators is not optimal. Hence the opportunity to com-
pute a non-redundant sequence of steps that evolves from
a schema version Si to obtain Sj, finding the optimized
evolution sequence between the two schema versions.

The optimization of evolution transformations has been
studied in the literature in the scope of object-oriented
databases [65,66], conceptual schemas [67], and XML
[68,62] with the main objective of minimizing execution
time. As we will show in the experimental section, due to
the small sizes of schemas and instances, these benefits
are not particularly relevant in our framework. However,
the optimization is still important for two reasons:
�
 Sequence optimization allows the designer to monitor
the system history more effectively: it must be noted
that the sequence of the applied operators, if logged, is
useful not only to update the instances as illustrated in
the architecture of Fig. 3, but also because it allows the
designer to inspect and check the transformations
undergone by the schema; to this aim, it is very
important to have a representation of the actual “net
effect” of the changes occurred between a schema
version and the following one, without redundancy.
Moreover, in some situations the optimization of longer
sequences is also needed. In fact the designer, in her
monitoring activity, could be interested in a synthetic
description of the difference between two arbitrary non-
consecutive versions Si and Si þ k, for example because
many clients are using one of them. This difference is
expressed by the optimal evolution sequence between Si
and Si þ k. Indeed, clearly, this sequence cannot be
computed simply as the concatenation of the optimal
sequences defined between each pair of consecutive
schemas on the path leading from Si to Si þ k.
�
 Sequence optimization may have a significant impact on
the computation of the schema nodes whose views need
revising after evolution: suppose, for instance, that during
the latest design session the designer has first added an
attribute to node n, and subsequently deleted it. The set
NDEF of the nodes whose views have to be redefined is
computed by merging those associated with the two
operators and, according to the definitions in Table B1,
the system would suggest to the designer to revise the
views of the leaf nodes in the subtree rooted in n. This
suggestion is not appropriate, since the schema has not
changed at all. In addition, after the performed operators
also the NCOMP set is non-empty, and this entails the
useless recomposition of some views. Therefore, to
improve the behavior of the view update module, redun-
dancy should be detected and eliminated.
As we will see in the experimental section, the optimi-
zation process is rather fast. So, each time the designer
updates the schema, we suppose that the evolution
sequence she applies is optimized by the system, enabling

the view-update module to produce the right suggestions
about the nodes whose views need to be redefined or
recomposed. In addition, the optimization is also run every
time the designer wants to monitor the optimal evolution
sequence between two arbitrary schema versions.

Let Δ be a sequence of evolution operators applied to a
schema S1, and ΔI the corresponding sequence of instance
evolution operations. Δi indicates the (i-th) operator of Δ that
transforms the schema Si into the schema Si þ 1, and Δi…j is
the subsequence of Δ including the operators between i and j
(i and j included); l denotes the length of the sequence jΔj,
and the last operator

I
Δl transforms Sl into Sl þ 1. Given an

instance I1 of S1, Δ ðI1Þ indicates the instance of Sl þ 1
obtained applying the instance effect functions correspond-
ing to the operators in Δ to I1. We define the notions of
correct sequence and equivalent sequences:

Definition 7 (Correct sequence). A sequence Δ of evolution
operators is correct iff the preconditions of each operator
in Δ are satisfied.

Definition 8 (Equivalent sequences). Two sequences Δ, Δ0

of schema evolution operators are equivalent iff S1 ¼ S1 0,
Sl þ 1 ¼ Sl0 þ 1

0 and, for each instance I1 of S1, ΔI ðI1Þ ¼ Δ0I ðI1Þ.
In the rest of this section we propose techniques for the

optimization of context schema evolution sequences. Our
strategy relies on a sound and minimal set of optimization
rules, in the spirit of [62].

7.1. Optimization rules

Each optimization rule transforms an input evolution
sequence by eliminating a pair of operators or replacing
them with a unique one, and can be applied if the two
operators involved satisfy certain conditions.

One difficulty is that after each deletion the removed
semischema is cached, and it can be possibly reinserted by
an immediately subsequent application of InsertFromMemory.
InsertFromMemory inserts the content of the semischema
specified as a parameter, with the constraint that this
semischema has the same nodes and edges as the cached
one. However, the application of an optimization rule may
change the operator sequence, and therefore the intermedi-
ate schemas. Suppose that an optimization rule modifies an
intermediate schema altering also some nodes and edges
contained in a semischema eliminated by Delete: this
implies that the semischema cached after the deletion
changes. The result is that if Delete is immediately followed
by an application of InsertFromMemory, the latter necessa-
rily violates its preconditions, because the semischema it
specifies cannot have the same nodes and edges of the
cached one. The solution to this problem varies depending
on the applied optimization rule, therefore each rule has
also to specify how to deal with such inconsistencies. Note
that [62] does not discuss these problems, because their
operators do not support cache functionalities.

Let D be the set of possible evolution sequences. An
optimization rule might specify that two operators opi and
opj are both eliminated, or replaced by another operator
either at position i or at position j, or that only one of them
is kept.
Definition 9 (Optimization rule). An optimization rule is a
function D-D specified by a tuple ðopi; opj; opnew;C; polÞ,
where:
�
 opi is the operator at position i in the input sequence;

�
 opj is the operator at position j in the input sequence;

�
 opnew is an operator that replaces opi and opj in the

output sequence, and has position new, with new¼ i or
new¼ j; the operator may also be undefined for some
optimization rules;
�
 C is a set of conditions that must hold in the input
sequence for the rule to be applied;
�
 pol is a policy to solve the inconsistencies arising with
the operator InsertFromMemory when the sequence is
modified.

The conditions in the set C mainly express constraints
on the operators that are allowed in the sequence between
opi and opj in order for the rule to be applicable. In the
definition of the conditions we employ the following
predicates, formally summarized in Table C1 of the appen-
dix, referring to the operators between positions i and j in
the input sequence:
�
 no_useðnÞ ¼ true iff no operators use n as a parameter;

�
 no_use_subðnÞ ¼ true iff no operators use as a para-

meter any node in the subtree rooted in n;

�
 no_ins_labeðℓÞ ¼ true iff no nodes or attributes labeled

ℓ are inserted;

�
 no_ins_label_subðnÞ ¼ true iff no nodes or attributes

with label equal to one of the labels used in the subtree
rooted in n are inserted;
�
 no_unique_childðnÞ ¼ true iff n does not remain a
unique child.

In the following, with a slight abuse of notation, we apply the
operators also to semischemas; we will see that this is needed
to modify, during the optimization, the semischemas added
through Insert. We define the following predicate, which
applies to the sequence independently of i and j:
�
 pðR; opxÞ ¼ true iff the semischema R satisfies the
preconditions of the operator opx.

About the last component of the optimization rule, the
policy pol, we define three possible policies:
�
 recomp: recompute the semischema inserted by Insert-
FromMemory on the basis of the cached one, modifying
labels and attributes according to the information
contained in the inserted semischema.
�
 apply_opj: apply the operator opj to the semischema
inserted by InsertFromMemory.
�
 apply_∅: do nothing.

In the rest of this section, similar to [65], we identify
three categories of rules: overriding, cancelation and
insertion rules. Overriding rules (O) eliminate operators
whose effects are erased by those of a subsequent one,

Fig. 8. Semischemas inserted by the operators Δ1 and Δ7 of Example 6.
cancelation rules (C) eliminate pairs of operators whose
effects are one the inverse of the other, while insertion
rules (I) collapse operators acting on inserted nodes or
attributes together. The optimization rules are formally
described in Table C2 of the appendix, and the following
subsections provide a textual explanation of their way of
operating.

7.1.1. Overriding rules
An operator is overridden by another one if the latter

erases the effect of the former, making it redundant in the
sequence. This usually happens when the schema compo-
nents involved by an operator are successively deleted.
Overriding rules eliminate such operators, and are for-
mally described in the upper part of Table C2 of the
appendix; all of them eliminate opi and keep opj without
modifications, so new ¼ j and opnew ¼ opj.

Rules O1–O7 remove the operators involving nodes or
attributes in the subtree eliminated by a Delete or by a
ReplaceSubtreesWithAttribute. If opi inserted nodes or attri-
butes, they must not be referred by the operators between
i and j. Moreover, rule O1 removes the insertion of a
subtree potentially rooted in a concept node; in the last
case, to keep the sequence correct, it must not happen that
all its siblings are deleted. If an operator that removes
some nodes/attributes is eliminated, the components that
were removed remain in the schema, so it is necessary to
guarantee that they cause no label conflicts. Finally, if opj is
a ReplaceSubtreesWithAttribute, the children of the node
whose subtrees are eliminated must not be altered,
because their labels might be used during the instance
update to assign a value to the new attribute.

Rules O8–O10 remove renamings of nodes/attributes
later replaced, deleted or further renamed, taking care of
possible label conflicts.

Rule O11 eliminates a Move that shifts a semischema S1
located in the semischema S2 under a different node in S2,
when S2 is successively deleted. Nothing must happen
within S1 between i and j, because the same operations
might not be valid in the new position; moreover, label
conflicts have to be avoided.

Recall that the InsertFromMemory operator must be
handled with care: rules O1–O4 and O11 act on the tree
structure, thus it is necessary to recompute the semischema
to be reinserted. On the contrary, rules O5–O10 affect only
attributes or labels, therefore the inserted semischema is
different from the cached one only in terms of attributes and
labels; such modifications are allowed by the semantics of
InsertFromMemory, and are anyway voided by the deletion at
position j. As a consequence, no actions need to be taken.

Example 6 (Overriding rules). Consider the following
sequence Δ of operators applied to the schema in Fig. 1,
referred to as S1, where for simplicity nodes and attributes
are identified through their labels:

1.
 S2¼ Insert(S1, R1, daytime)

2.
 S3¼ InsertAttribute(S2, night, hour)

3.
 S4¼Merge(S3,{adult, teenager}, person)

4.
 S5¼Rename(S4, person,individual)

5.
 S6¼Delete(S5, user)
6.
S7¼Delete(S6, time)

7.
 8¼ (7, 2, movie)S InsertFM S R

8.
 S9¼DeleteAttribute(S8, hour)

9.
 S10¼Merge(S9, {early_morning, late_morning},

morning)
Fig. 8 reports the semischemas R1 and R2 inserted at steps
1 and 7.
The Rename at position 4 renames the node person, and

can be removed according to rule O7, because at position 5
the subtree rooted in user, that is the parent of person, is
deleted. The Merge at position 3, which merges the
existing concepts adult and teenager into person,
can be eliminated too for the same reason using rule O2.
However, the removal of the Merge can take place only
after that of the Rename: indeed, the Rename modifies
person, and the removal of Merge would make it refer to a
nonexistent node.

7.1.2. Cancelation rules
Cancelation rules eliminate pairs of operators such that

the latter undoes the modifications due to the former. The
rules are formally described in the middle part of Table C2
of the appendix; all of them eliminate both the involved
operators, therefore opnew is not defined.

Rules C1 and C2 eliminate a pair insertion/deletion of
subtrees or attributes, if no operators use the inserted
components. Rule C2 also requires that no dimensions
remain without children nor attributes between positions i
and j. Rule C3 removes a couple of renamings when the
second restores the name changed by the first, if no label
conflicts arise.

Rule C1 influences nodes and edges, therefore it is
necessary to recompute the semischemas inserted by
InsertFromMemory. Rules C2–C3 affect only attributes and
labels; to avoid that an InsertFromMemory restores the
insertion/renaming performed by opi, opj has to be applied
also on the inserted semischema.

Example 7 (Cancelation rules). Consider the operators Δ2

and Δ8 of the evolution sequence Δ in Example 6; the latter
deletes the attribute hour, inserted by the former. The two
operators can be eliminated according to rule C2. The
semischema inserted by InsertFromMemory at position 7
has to be modified removing the attribute, as shown in Fig.
9.

7.1.3. Insertion rules
 Insertion rules merge an Insert or InsertAttribute opera-
tor with subsequent ones affecting the inserted subtree or

Fig. 9. Semischema inserted by the operator Δ7 after the application of
the rules of Example 7.

Fig. 10. Semischemas inserted by the operators Δ1 and Δ7 after the
application of the rules of Example 8.
attribute. In fact, for example, it is useless to insert a
subtree and then merge a couple of nodes belonging to it
in a new node: it is worth inserting directly a subtree
already carrying the new node.

Insertion rules – formally described in the lower part of
Table C2 of the appendix – eliminate the second operator,
executing the required evolution on the inserted semi-
schema. As a consequence, new ¼ i. All the rules can be
applied if no label conflicts arise; in addition, rules I1–I7
and I9 also require that the inserted semischema satisfy
the preconditions of opj.

Rules I1–I4, I9 affect nodes and edges, making the
recomputation of the semischema inserted by InsertFrom-
Memory necessary. Rules I5–I8, instead, affect labels
and attributes, and the modifications caused by opj have
to be applied also to the semischema inserted by
InsertFromMemory.
Example 8 (Insertion rules). Consider the operators Δ1 and
Δ9 of the evolution sequence Δ of Example 6. The latter
merges the nodes fearly_morning; late_morningg,
located in the subtree R1 inserted by Δ1. Rule I2 eliminates
Δ9 performing the merge directly on the inserted semi-
schema R1. Moreover, the semischema R2 inserted by the
operator InsertFromMemory at position 7 has to be recom-
puted according to the policy recomp. The new R1 and R2,
also considering the modifications introduced in Example
7, are shown in Fig. 10.
7.2. Properties and application of the optimization rules

An optimization rule is sound if it transforms a correct
input sequence into a correct, equivalent one.
Theorem 8 (Soundness of the optimization rules). Given an
optimization rule applied to a correct sequence Δ, the
resulting sequence Δ0 is:
(i)
 correct,

(ii)
 equivalent to Δ.
Proof. A different proof should be provided for each single
optimization rule. We choose to show the proof for rule
O2, the others follow a similar pattern.
Let n be the identifier of the new node replacing

fm1;…;mpg.
The sequence Δ0 differs from Δ only for the lack of Merge

at position i. Therefore, the schemas S1;…; Si are identical
to S01;…; S0i. Moreover, if the schemas S0iþ1;…, S0j�1 are well-
defined (i.e., if the sequence Δ0

iþ1…j�1 is correct), they
differ from Siþ2;…; Sj only by the possible presence of
fm1;…;mpg in the place of n; since n is anyway deleted by
Δj and condition Δjþ1a InsertFMð…Þ prevents its reinser-
tion, Sjþ1;…; Snþ1 is identical to S0j;…, S0l0 þ1.
Similarly, given an instance I1 of S1, the instances

ΔI
1…1ðI1Þ, …, ΔI

1…i�1ðI1Þ are identical to Δ0
1…1IðI1Þ, …,

Δ0
1…i�1IðI1Þ. Moreover, if it is not true that fm1;…;mpgD

childrenðSj;n0Þ with opj ¼ RSWAðSj;n0;ℓÞ – which would
cause the label of n to be used after the position j – the
fact that Δ0

i…j�1 is correct guarantees also that

ΔI
1…jðI1Þ;…;ΔI

1…lðI1Þ are identical to Δ0
1…j�1I;…;Δ0

1…l0 IðI1Þ.
According to the previous considerations, and because

the applicability conditions ensure that if opj ¼ RSWA then
fm1;…;mpg⊈childrenðSj;n0Þ, to prove both (i) and (ii) we
have to show that Δ0

i…j�1 is correct. To this aim, we prove
the following five facts:
1.
 All the operators act on nodes/attributes of the source
schema: indeed, the only node that is not present any
more after the application of O2 is n. The condition
no_useðnÞ ensures that no operators between i and j
use n.
2.
 The correct alternation of concepts and dimensions is
preserved: this is true because n and m1;…;mp are all
concepts.
3.
 No label conflicts arise: indeed, label conflicts may arise
if a node or an attribute with the same label as one of
m1;…;mp were inserted between positions i and j; the
conditions no_ins_label prevent such a possibility.
4.
 The operator InsertFromMemory inserts a semischema
with the same nodes/edges of the cached one: in fact, the
elimination of Merge may change the tree nodes and
edges, but the policy recomp ensures that the constraint
on InsertFromMemory is satisfied.
5.
 Each InsertFromMemory is preceded by a Delete: rule O2
does not eliminate any Delete operator. □

The proposed set of optimization rules is minimal:

Theorem 9 (Minimality of the optimization rules). Each
optimization rule produces an effect on the evolution
sequences that is not obtainable using the other ones.

Proof. To show the minimality of our optimization rule
set it is needed to provide, for each of the 23 rules, an
example of optimization that can be obtained using that
rule but not using other ones. To prove that a rule r is
necessary, we show a sequence of two operators where we
can easily verify, by trying to apply each of the other 22
rules, that only rule r can produce the desired optimiza-
tion. We show a sample optimization for one rule of each
category; the proof for the other rules follows a similar
pattern. Context semischemas are synthetically repre-
sented as in the proof of Theorem 7.
Given the sequence ðInsertða½b½c��; d;bÞ, Delete ða½b½c;

d��; bÞÞ, it can be transformed into ðDeleteða½b½c; d��; bÞÞ only
by using rule O1. In fact, no other rule can remove an
insertion followed by the deletion of a semischema con-
taining the inserted nodes.
Given the sequence ðInsertða;b½c�; aÞ;Deleteða½b½c��; bÞÞ, it

can be transformed into the empty sequence only by using
rule C1. In fact, no other rule can eliminate both an
insertion and a following deletion when the latter removes
exactly the same semischema introduced by the former.
Given the sequence ðInsertða; b½c�; aÞ; Insertða½b½c��; d½e�; cÞÞ,

it can be transformed into ðInsertða; b½c½d½e���; aÞÞ only by
using rule I1. In fact, no other rule is able to merge two
insertions. □

We now propose an algorithm to apply the optimiza-
tion rules. We consider the operator sequence from the
beginning to the end, and for each operator opj perform a
scan of the sequence backwards looking for another
operator opi such that an optimization rule can be applied
to the pair ðopi; opjÞ. If a suitable rule is found, the
reduction is executed. The pseudocode of the procedure
is shown in Algorithm 3.

Algorithm 3. Rule application.

Require: Sequence of operators Δ, initial context schema S1
1: Build the sequence of context schemas S1;…; Sjþ1

2: repeat
3: for j¼ 1…n do
4: for i¼ j…1 do
5: for all optimization rule do
6: if the rule is applicable to Δi ;Δj then
7: Update Δ according to the rule
8: Recompute the context schemas between

Si and Sj
9: end if
10: end for
11: end for
12: end for
13: until some optimization is applied
Ensure: Δ is optimized
Note that Algorithm 3 imposes a precise ordering in
rule application, and that in some cases different rule
orderings may lead to different (maybe more) optimized
sequences. Since we work with short evolution sequences
and the execution time is in general limited (see Section
10), for the time being we do not consider this as a crucial
issue. However, a deeper investigation of the problems
related to the rule ordering is part of our future work.

Let N be the set of nodes in the schema. The initializa-
tion step at Line 1 has to apply l operators, so it is
performed in OðljNjÞ time. At most l rules may be executed,
and for each rule the sequence of schemas must be
updated recomputing up to l schemas; the cost of rule
application is Oðl2jNjÞ. In a single execution of the algo-
rithm, the applicability of the rules can be verified Oðl2Þ
times, and the check requires to scan the sequences of
rules and schemas between positions i and j; the check of
the conditions of a rule on a schema is OðjNjÞ. The
algorithm can be executed up to l times, so the complexity
of the applicability checks, and of the whole procedure, is
Oðl4jNjÞ. Consider that N is not very large, in general no
more than 50 nodes [5], and that, as a consequence, also
the length l of the evolution sequence is usually reason-
able. In addition, recall that, as we have explained in detail
at the beginning of Section 7, it is worth optimizing a
redundant evolution sequence independently of the length
of the sequence itself, since (i) the optimized sequences
provide a better representation of the changes that the
schema have undergone between two different versions,
(ii) the optimized sequences can avoid the useless redefi-
nition of some views after a schema modification session.
8. An example: context-aware data tailoring over XML
data

In this section we exemplify the data tailoring process
of an XML document D. Informally, a view over D is
defined by an XQuery expression, which identifies a subset
of the elements contained in D. A view is contained ()
into another one if the latter contains all the XML elements
present in the former. According to the XQuery semantics,
the intersection () among views keeps the common
elements, while the union () contains all the informa-
tion present in at least one of them.

Let us consider as global dataset D an XML document
storing information in the movie domain; Fig. 11 contains
an intuitive graphical representation of (a portion of) the
schema of this document. The show elements describe
which movies are programmed in which cinemas, with
date and time.

The views associated with concept and leaf dimension
nodes are defined as sets of XQuery expressions; since the
language provides a union operation, the views for inter-
nal concept nodes need not be specified and can be
derived by composition. We report the associations for
the context schema in Fig. 1, considering only the nodes
involved in the context instance in Fig. 2. For simplicity,
the dimensions situation and zone are ignored. For
brevity, nodes are identified by their labels.

� Adults are potentially interested in all movies and cinemas, thus RelðadultÞ contains the whole database: doc

(“movies.xml”)/root/n
� Relðromantic_comedyÞ is:

docð“movies:xml”Þ=root=movie½$language¼ “language” and genre¼ “romantic_comedy”� The views related to
dramatic_comedy, horror and thriller are defined similarly. Moreover:

� RelðcomedyÞ ¼Relðromantic_comedyÞ⊎Relðdramatic_comedyÞ.
� RelðmovieÞ ¼RelðthrillerÞ⊎RelðhorrorÞ⊎RelðcomedyÞ.
� RelðnightÞ includes the movies screened later than a certain time, and does not apply any filter on cinemas. The view is

specified as:
docð“movies:xml”Þ=root=cinema union

docð“movies:xml”Þ=root=show½time420� unionð
let $ Movies≔doc ð“movies:xml”Þ=root=show½time420�=@movie_id
for $m in doc ð“movies:xml”Þ=root=movie
where some $s in $ Movies satisfies $s¼$m/@movie_id
return $m)
The context instance I in Fig. 2 (excluding the dimen-
sions situation and zone) is therefore associated with
ViewðIÞ ¼RelρI ðadultÞ RelρI ðromantic_comedyÞ
elR ρI ðnightÞ. This view can be expressed by means of a

unique XQuery, and contains the romantic comedies
programmed during the night.

Suppose now that the designer revises the schema decid-
ing first to merge the concepts adult and teenager into a
unique node person, and then to eliminate the whole subtree
rooted in user; she also performs another change, moving
the time dimension as a child of movie. The resulting schema
is shown in Fig. 12(a). When the designer has finished with
the modifications, the system optimizes the sequence remov-
ing the merge, overridden by the subsequent deletion. Then,
the system alerts the designer signaling some views that
have to be redefined: the deletion of user does not need any
view redefinition, while the movement of time, according to
Table B1, requires the redefinition of the views connected
with daytime and night. A possible redefinition for the
view associated with night in the new position excludes the
show and cinema elements, keeping only the ones associated
with the movies described by the third expression of the
previous definition.

Then, suppose that the user, whose context has not
changed and is still described in terms of the old context
schema, nevertheless requires an update of her data.
The system applies IEDelete and then IEMove, obtaining the
context instance in Fig. 12(b). As a consequence, the
Fig. 11. Schema of a portion of
new portion of data provided to the user, excluding
the dimensions zone and situation, is ViewðIÞ ¼
RelρI ðromantic_comedyÞ RelρI ðnightÞ. Therefore, the
movies are not filtered any more on the basis of the
user information; note also that the data contained in
RelρI ðnightÞ is changed.
9. Comparisons

Now we exploit the example developed in the
previous section to compare our approach with other
evolution methodologies presented in the literature,
in order to motivate why we have not applied one of
them to solve the context schema evolution problem.
In particular, we consider the general technique of
Poulovassilis and McBrien [63] and the proposal by
Guerrini et al. [37,38] that have been identified as the
most interesting in Section 3.

To solve the context schema evolution problem with a
methodology of the literature, not explicitly conceived for
context schemas, two steps are required: (1) provide a
representation of context schemas and instances in the
data model employed by the specific methodology; (2)
provide a representation of our operators, that we have
identified as useful and necessary for context schema
evolution, in terms of the transformations defined by the
specific methodology. In the following these two aspects

are analyzed for the proposals of [63] and [37,38].

the XML movie database.

Fig. 13. Representation of the context schema in Fig. 1 according to the
model of [63].

Fig. 14. Representation of the context instance in Fig. 2 according to the
model of Poulovassilis and McBrien [63].

Fig. 15. Evolution of Section 8 using the transformations of Poulovassilis
and McBrien [63].

Fig. 12. Context schema and an instance obtained after the evolutions
described in Section 8. (a) Context schema and (b) Context instance.
Let us start by representing context schemas and
instances with the formalism of Poulovassilis and McBrien
[63]. In this work schemas are represented as hypergraphs
with nodes, edges and constraints. We need a hypergraph
node for each node of the context schema, and one for
each attribute. Moreover, edges can connect nodes with
other nodes or attributes. Finally, we need some con-
straints to restrict the possible instances: the root of the
context schema must be associated with one and only one
element in an instance, each node and attribute of the
context schema must have at most one element associated
in an instance, sibling concept nodes cannot be part of an
instance, an attribute cannot appear if the corresponding
node is not part of the instance, and a node cannot appear
if its parent is not part of the instance. Ref. [63] does not
distinguish labels and identifiers, so we identify the nodes
through their labels. Fig. 13 contains an excerpt from such
a representation for the context schema in Fig. 1. Note that
the schema representation is not very intuitive, especially
because dimension nodes, concept nodes and attributes
are represented through the same construct. In [63]
instances are sets of sets, with a function ExtS;I connecting
the schema elements with their extension in the instance.
An excerpt from the representation of the context instance
in Fig. 2 is in Fig. 14.

We now express the evolution in Section 8 by using the
transformations of Poulovassilis and McBrien [63]. For
brevity, we consider only the deletion of user and the
movement of time as a child of movie. The transforma-
tions are in Fig. 15. The methodology of Poulovassilis and
McBrien provides only the possibility of eliminating single
nodes and edges, so the deletion of the subtree rooted in
user is translated in a sequence of such basic deletions;
these basic deletions correctly remove the associated
nodes and edges from the instances too. In order to move
time, it is necessary to delete the old edge connecting
time to context and insert a new edge connecting time
to movie. Note that the second parameter of addEdge is a
query, specified in a language of choice, that allows to
select which elements of the instances have to be asso-
ciated with the new edge. Thanks to this query, it is
possible to obtain on the instances the behavior specified
by the semantics of our Move. It is possible to represent
with the formalism of [63] also the other operators that we
have proposed, even if the representations of Merge and
InsertFromMemory are quite involved. Similar to our opera-
tors, also the transformations of [63] envisage precondi-
tions. However, such preconditions are referred to general
hypergraphs, and are not suitable for the semantics of
context schemas. For instance, no one would prevent us
for moving the subtree rooted in time as a child of
another dimension node, or even as a child of an attribute,
since in the hypergraph nodes and attributes of the
context schema are represented in the same way.

As a conclusion, the work [63] proposes a general,
formal framework at the same level of abstraction as ours,

Fig. 18. Evolution of Section 8 using the primitives of Guerrini et al.
[37,38].
but representing the primitives needed for context evolu-
tion implies modifications to their operators.

The methodology of Guerrini et al. [37,38] deals with
XML schema evolution, so we need to provide an XSD
representation of context schemas. This can be achieved
by representing both concepts and dimensions with com-
plex types, while the context schema attributes are repre-
sented with XML attributes. Also in this case there is no
distinction between identifiers and labels. An excerpt from
an XSD representation of the context schema in Fig. 1 is in
Fig. 16, while the XML document in Fig. 17 is a part of the
representation of the context instance in Fig. 2. Again, note
that this kind of representation is by far less intuitive than
the one we have discussed in Section 2.

Fig. 18 shows the same evolution executed with the
XML schema modification primitives described in [37,38].
Fig. 17. XML representation of the context instance in Fig. 2.

Fig. 16. XSD representation of the context schema in Fig. 1.
10. System implementation and experiments

We have implemented a Java engine to validate the
effectiveness of our approach.

The schema update module is used by the designer to
modify the context schema in the design phase by means
of the atomic and high-level evolution operators. The
module checks the preconditions, alters the schema, and
evaluates the sets of views that have to be redefined or

The deletion of the subtree rooted in user is implemented
through the remove_substructure primitive that removes
the subtree also from the instances; after the deletion of
the substructure, the corresponding complex type may be
eliminated too. The only way to alter the schema moving
the subtree rooted in time as a child of movie exploiting
the primitives of Guerrini et al. [37,38] is deleting it using
remove_substructure, and then reinserting it in the new
position with insert_local_element. Operating in this way,
however, the algorithms of [37,38] modify the instances
removing the subtree rooted in time, but then they do not
reinsert it in the new position. Therefore, the desired
behavior of Move on the instances cannot be achieved. It
is not possible to correctly simulate even Merge, Replace-
SubtreesWithAttribute and InsertFromMemory. To apply the
methodology of [37,38] in our framework, therefore, the
set of their primitives should be extended and modified.
Moreover, the preconditions envisaged by the primitives of
[37,38] deal with general XML schemas, thus being not
suitable for context schemas. Therefore for example, simi-
lar to [63], no one would prevent us to move the subtree
rooted in time as a child of another dimension, or to leave
dangling dimensions, and so on.

As we have seen, also this approach falls short of
expressing the operators and conditions that are needed
to specify the evolution fully. Nevertheless, it can be used
to implement our operators adapting its data model and
applying the necessary modifications to the framework.

This is true also for the other schema evolution frame-
works: for instance, we might provide a relational repre-
sentation of context schemas and then found our work on
the framework of Curino et al. [31], introducing the
necessary modifications and extensions.

One could argue that an intermediate representation
based on a previous work could have been anyway
adopted at least in the implemented software. However,
our engine, that will be described in Section 10, is rather
simple and fast, and at the design time we have not seen
any advantage in integrating it in a more complex system
envisaging an additional layer to manage an intermediate
representation for context schemas.

recomposed. We have adopted a tree-based representation
of schemas, and implemented the algorithms for all the
operators. These algorithms are in the same style as the
one shown in Section 5.5 for Merge.

The instance update module receives a context instance
from a client device and applies to the instance (online) a
sequence of modifications corresponding to the effects of a
schema evolution. The client sends the instance to the
server in XML format. This XML document is loaded into
the server memory, and then the modifications are
applied. The instance adaptation algorithms are like the
one proposed in Section 5.5 for IEMerge. Moreover, since in
the tool the instances are expressed in XML, we also
provide an alternative implementation of the instance
algorithms relying on the XQuery Update Facility [69],
and we compare it with our procedures.

The optimization module, finally, takes as input sequences
of evolution operators, and minimizes them.

Note that we are reasoning in terms of milliseconds,
and thus possible performance gains would have no
impact on the usage of the tool. We just provide an
alternative implementation of the instance update module
using the XQuery Update Facility, because such an imple-
mentation proved to be rather immediate and intuitive.

10.1. Experiments

We have measured the execution time associated with
the three tasks of our engine with respect to the sizes of
input schemas and instances and, where appropriate, with
respect to the length of the operator sequences. Schemas
and instances of various sizes have been randomly gener-
ated; to check the performance of our system in all
situations, huge context schemas have been employed
too, considering even (unrealistic) sizes up to 2000 nodes.
We have also generated uniformly distributed random
sequences of operators. Again, we have produced also very
long evolution sequences, up to 1000 operators; we
remark that in general extremely long sequences make
no sense, since the schemas are usually quite small.

All the experiments have been performed on a
2.50 GHz Intel Core 2 Duo machine with 3 GB main
memory, running Windows Vista. To implement the

 Fig. 19. Execution time of the application of the schema operators against

schema size.
instance adaptation algorithms with the XQuery Update
Facility we have adopted Saxon EE 9.3.0.5 [70], a popular
XQuery processor implemented in Java. All the experi-
ments have been repeated a hundred times, and the
graphs have been built computing the median of the
results obtained in the repetitions. The various repetitions
have led to very similar measurements, with the exception
of a few outliers whose effect has been neutralized
through the computation of the median.

Schema update: Fig. 19 represents the average time
taken to apply our operators as a function of the number
of nodes. The growth is linear, and this is the expected
result since both the schema modification and the com-
putation of the nodes whose views need update are linear.
Moreover, the computation time is always very low, under
2.5 ms also for huge schemas, thus allowing online
execution.

Instance update: Fig. 20(a) shows how the time to apply a
realistic sequence of 90 operators to a context instance grows
with respect to the number of nodes. In order to evaluate the
impact of the initializations on the time required to update
an instance, in Fig. 20(a) we draw two lines: one represents
the time required to load in memory the XML file describing
the instance, and the other represents the processing time to
perform the adaptation. Fig. 20(b), on the contrary, describes
the execution time to update an instance of 61 nodes with
operator sequences of increasing length.

First of all we observe that, as expected, the processing
time follows a trend which is linear in the number of
nodes of the initial schema, and that the initialization time
is linear too. By contrast, the growth of the processing time
with respect to the number of operators in the sequence is
linear as expected in the first part, but then seems to grow
slowly; this happens because when the sequence is long,
the presence of several Delete and ReplaceSubtreesWithAt-
tribute operators may significantly reduce the size of both
schema and instances. Moreover, all the evaluated com-
putations are very fast also for big schemas or long
sequences, and therefore they can be run on the fly. Finally,
the figures suggest that, even for long evolution sequences,
the processing time is dominated by the time required for
the initialization.

Fig. 20(c) and (d) presents the execution time when
using the alternative implementation exploiting XQuery
Update. We observe that the results seem to not depend
on the number of nodes of the tree, at least for the tested
sizes. However, the measured values are much higher than
those obtained employing the algorithms which directly
manipulate the trees. In fact, XQuery Update is designed to
be efficient also for XML documents of several MBs, and so
it relies on internal data structures that are complex to
initialize and process. Even the biggest (and unrealistic)
context schemas that we have tested do not exceed 60 KBs,
and in these circumstances simple algorithms like the one
for IEMerge described in Section 5.5 are definitely more
convenient.

Optimization: Fig. 21(a) and (b) reports the time to
optimize sequences of operators, with respect to the
number of nodes and the number of operators in the
initial sequence; in the first case we have used a fixed
length of 90 operators for the sequences, and in the second

Fig. 21. Performance of the optimization methodology. (a) Execution time against schema size and (b) execution time against sequence length.

Fig. 20. Performance of the instance update. (a) Execution time against instance size, (b) execution time against sequence length, (c) execution time against
instance size, using XQuery Update, and (d) execution time against sequence length, using XQuery Update.
a fixed size of 166 nodes for the schemas. As estimated, the
execution time is linear in the initial number of nodes. On
the other hand, the complexity evaluated for Algorithm 3
in terms of the length of the sequence suggests a poly-
nomial trend with degree greater than one, and the graph
in Fig. 21(b) behaves coherently with the theoretical result
in the initial portion; then it slows down, again because of
the reduction of the size of the schema that occurs when
many operators are applied.

The graphs prove the effectiveness of the approach: the
designer can obtain the optimal sequence of operators joining
two versions in some milliseconds if the initial sequence
is short, and just waiting a few seconds even if the
initial sequence is long. Moreover, the employed random
sequences have been reduced remarkably in our experi-
ments: for example, a sequence of 270 operators is reduced,
on the average, of 51%. In a real situation, of course, the
extent of the reduction heavily depends on the amount of
redundancy introduced by the designer during the design
process.

To conclude we observe that, if optimized sequences
have been computed, it is worth using them also for

instance adaptation. However, Fig. 20(a) and (b) has shown
that the time necessary for instance update is determined
mainly by the initializations. Since the initialization time is
independent of the length of the evolution sequence, as
anticipated in Section 7, the performance gain brought by
the optimization may be moderate.
11. Conclusions and future work

In this paper we have investigated the problem of context
schema evolution, paying special attention to its impact on
context-aware data management. A set of evolution operators
has been introduced, and their semantics has been formally
defined; we have proven the soundness and the completeness
of the evolution process, and explained how context schema
evolution affects data tailoring. We have also proposed a
technique to optimize sequences of evolution operators.
Finally, a prototype system has been implemented, showing
the effectiveness of our strategies.

In the future, we intend to thoroughly study the
behavior of the optimization strategy when the application
order of the rules varies. Another research that we are
going to carry out is related to the application of the
techniques developed in this paper to the automatic
learning of contextual views introduced in [27], in order
to perform the inference correctly even when the context
schema evolves over time. Finally, we plan also to enrich
our prototype by developing a full-fledged user interface
that the designer can use to apply the operators.
Table A1
Preconditions and declarative semantics of the basic atomic evolution operator

Delete operator Modifications ind
Delete:S �N-S IEDelete:S � S � I �
DeleteðSS ;nÞ ¼ ST IEDeleteðSS ; ST ; IS ;nÞ ¼
� NT ¼NS\

gdescðSS ;nÞ � NIT ¼ fn1ANIS:hN

� ET ¼ ES\fðn1;n2ÞAES:n2A gdescðSS ;nÞg �EIT ¼ fðn1;n2ÞAEIS
� rT¼rS � rIT ¼ rIS

� AttT ¼ AttS\fa1AAttS: αSða1ÞA gdescðSS ;nÞg � AttIT ¼ fa1AAttIS:

� αT ða1Þ ¼ αSða1Þ if a1AAttT � αIT ða1Þ ¼ αISða1Þ if
� λT ðn1Þ ¼ λSðn1Þ if n1ANT [AttT � λIT ðn1Þ ¼ λISðn1Þ if

� ρIT ða1Þ ¼ ρISða1Þ if
Preconditions
(1) nANS , (2) nAN○

S) siblingsðSS ;nÞa∅, (3) narS
Insert operator Given R¼ ðN; E; r;Att; α; λÞ Modifications ind
Insert:S � SS �N-S IEInsert :S � S � I �
InsertðSS ;R;nÞ ¼ ST IEInsert ðSS ; ST ; IS ;R;n
� NT ¼NS [N � NIT ¼NIS

� ET ¼ ES [E [fðn; rÞg � EIT ¼ EIS
� rT¼rS � rIT ¼ rIS
� AttT ¼ AttS [Att � AttIT ¼ AttIS

� αT ða1Þ ¼
αSða1Þ if a1AAttS
αða1Þ otherwise

(� αIT ¼ αIS

� λT ðn1Þ ¼
λSðn1Þ if n1ANS [AttS
λðn1Þ otherwise

(� λIT ¼ λIS

� ρIT ¼ ρIS
Preconditions
(1) nANS , (2) N \ NS ¼∅, (3) Att \ AttS ¼∅, (4) ð8n1A ðNS [AttSÞÞð8ðn2AN [

nAN�
S) α�1ðnÞ ¼∅
Acknowledgments

This research has been partially funded by the Politec-
nico di Milano Polisocial Award 2013 project ObiGame, by
the Italian MIUR-PRIN project GenData 2020, by the Italian
project MOTUS of the program “Industria 2015”, and by
the Italian project SHELL CTN01_00128_111357 of the
program “Cluster Tecnologici nazionali”.

The authors wish to thank Jan Hidders for the helpful
discussions on the formalization of the context model.

Appendix A. Preconditions and semantics of the
operators

Notation: We indicate by S the set of all possible
context schemas, by SS the set of all possible semische-
mas, by I the set of all possible context instances and by
SI the set of all possible semi-instances.

Appendix B. Context-aware view evolution

Notation: The set N̂REC indicates the nodes having a
descendant contained in NDEF : N̂REC ¼ fn1AN○

T : ð(n2A
NDEF Þðn2Adescðn1ÞÞg.

Appendix C. Optimization rules

Notation: Given an operator opx, ref ðopxÞ is the set of
nodes and attributes mentioned among its parameters; for
instance ref ðMergeðSS; fn1;n2;n3g;ℓÞÞ ¼ fn1;n2;n3g.
s.

uced on the instances IS of SS
N-I
IT
ðn1ÞANT 4 ðn1AN�

IS) ð∄n2AchildrenðSIS ;n1ÞÞðhNðn2Þ ¼ nÞÞg
: ðhNðn1Þ;hNðn2ÞÞAET 4 ðn2AN�

IS) ð∄n3AchildrenðSIS ;n2ÞÞðhNðn3Þ ¼ nÞÞg

hAða1ÞAAttT g
n1AAttIT
n1ANIT [AttIT
a1AAttIT

uced on the instances IS of SS
SS �N-I
Þ ¼ IT

AttÞÞðλSðn1Þaλðn2ÞÞ, (5) nAN○
S) rAN� , (6) nAN�

S) rAN○ , (7)

Table A3
Preconditions and declarative semantics of InsertFromMemory.

InsertFromMemory operator Given R¼ ðN; E; r;Att;α; λÞ
SUInsertFM :S � SS � SS �N-S
SUInsertFM ðSS ; SM ;R;nÞ ¼ ST
� NT ¼NS [N

� αT ða1Þ ¼
αSða1Þ if a1AAttS
αða1Þ otherwise

(
� ET ¼ ES [E [fðn; rÞg

� λT ðn1Þ ¼
λSðn1Þ if n1ANS [AttS
λðn1Þ otherwise

(
� rT¼rS
� AttT ¼ AttS [Att

Modifications induced on the instances IS of SS
IEInsertFM :S � S � SS � I � SI � SS �N-I
IEInsertFM ðSS ; ST ; SM ; IS ; IM ;R;nÞ ¼ IT
Let e1;…; ek be the system-assigned identifiers for the attributes f 1 ;…; f k of the inserted semischema defined as follows:

f iAAtt: ð(n1ANIMÞðαðf iÞ ¼ hNMðn1Þ4 ð∄a1AAttIMÞðf i ¼ hAMða1ÞÞÞ

� NIT ¼
NIS [NIM if NIMa∅4ððnAN○

T 4 ð(n1ANISÞðhNðn1Þ ¼ nÞÞ3hNMðrIM Þ ¼ nÞ
NIS otherwise

(

� EIT ¼

EIS [EIM [fðn1 ; rIM Þ:hNðn1Þ ¼ ng if NIMa∅4nAN○
T 4 ð(n1ANISÞðhNðn1Þ ¼ nÞ

EIS [EIM [fðn1;n2Þ:hNMðn2Þ ¼ n

4hNðn1Þ ¼ parentðSS ;nÞg

)
if NIMa∅4hNMðrIMÞ ¼ n

EIS otherwise

8>>>><>>>>:
� rIT ¼ rIS

� AttIT ¼

AttIS [fa1AAttIM :

ð(n1AN; a2AAttÞða2 ¼ hAMða1Þ
4αMða1Þ ¼ αða1Þ ¼ n1Þg [fe1;…; ekg

9>=>; if NIMa∅4 ððnAN○
T 4ð(n1ANISÞ

ðhN ðn1Þ ¼ nÞÞ3hNMðrIMÞ ¼ nÞ

AttIS otherwise

8>>>><>>>>:
� αIT ða1Þ ¼

αIMða1Þ if a1AAttIM
fn1ANIM : αðf iÞ ¼ hNMðn1Þg if a1 ¼ ei ; eiAfe1 ;…; ekg
αISða1Þ otherwise

8><>:
� λIT ðn1Þ ¼

λIMðn1Þ if n1ANIM [AttIM
λðf iÞ if n1 ¼ ei ; eiAfe1 ;…; ekg
λISðn1Þ otherwise

8><>:
� ρIT ða1Þ ¼

ρIM ða1Þ if a1AAttIM
ALL if a1Afe1 ;…; ekg
ρISða1Þ otherwise

8><>:
Preconditions
(1) nANS, (2) N ¼NM , (3) E¼ EM , (4) Att \ AttS ¼∅, (5) ð8n1AðNS [AttSÞÞð8n2AðN [AttÞÞðλSðn1Þaλðn2ÞÞ, (6) nAN○

S) rAN� , (7) nAN�
S) rAN○ , (8)

nAN�
S) α�1ðnÞ ¼∅, (9) NMa∅

Table A2
Schema and instance cache.

Delete schema cache Delete instance cache
SCDelete:S � S �N-SS ICDelete:S � S � SS � I � I �N-SI
SCDeleteðSS; ST ;nÞ ¼ SM ICDeleteðSS ; ST ; SM ; IS ; IT ;nÞ ¼ IM
� NM ¼NS\NT � NIM ¼NIS\NIT

� EM ¼ ES\ðET [fðparentðSS ;nÞ;nÞgÞ

� EIM ¼

EIS\ðEIT [fðn1 ;n2Þ:
n1 ¼ hN ðparentðSS ;parentðSS ;nÞÞÞ
4n2 ¼ hNðparentðSS ;nÞÞgÞ

9>=>; ifð(n1AN○
ISÞ

ðhNðn1Þ ¼ nÞ

EIS\ðEIT [fðn1 ;n2Þ:
n1 ¼ hN ðparentðSS ;nÞÞ4n2 ¼ hN ðnÞgÞ

)
otherwise

8>>>>>>><>>>>>>>:
� rM ¼ n

� rIM ¼

n1ANIS: ð(n2ANISÞ
ðn1 ¼ parentðSIS ;n2Þ4n2 ¼ hNðnÞÞ

)
ifð(n1AN○

ISÞ
ðhNðn1Þ ¼ nÞ

n1ANIS:hNðn1Þ ¼ n

)
ifð(n1AN�

ISÞ
ðhNðn1Þ ¼ nÞ

undefined otherwise

8>>>>>>><>>>>>>>:
� AttM ¼ AttS\AttT � AttIM ¼ AttIS\AttIT
� αMða1Þ ¼ αSða1Þ if a1AAttM � αIMða1Þ ¼ αISða1Þ if a1AAttIM
� λMðn1Þ ¼ λSðn1Þ if n1ANM [AttM � λIMðn1Þ ¼ λISðn1Þ if n1ANIM [AttIM
� nM ¼ parentðSS ;nÞ � ρIMða1Þ ¼ ρISða1Þ if a1AAttIM

Table A4
Preconditions and declarative semantics of the Merge and ReplaceSubtreesWithAttribute atomic operators.

Merge operator
Merge:S �℘ðN Þ � L-S
MergeðSS ; fm1 ;…;mpg;ℓÞ ¼ ST
Let n the system-generated identifier for the new node labeled ℓ.
� NT ¼ ðNS\fm1;…;mpgÞ [fng � rT¼rS
� ET ¼ ðES\ðfðparentðSS ;miÞ;miÞ:miAfm1 ;…;mpgg [fðmi ;n1ÞAES:miAfm1 ;…;mpg4n1ANSgÞÞ [fðparentðSS ;m1Þ;nÞg [fðn;n1Þ: ð(miAfm1 ;…;mpgÞððmi ;n1ÞAESÞg � AttT¼AttS

� αT ða1Þ ¼
n if αSða1ÞAfm1 ;…;mpg
αSða1Þ otherwise

(

� λT ðn1Þ ¼
ℓ if n1 ¼ n

λSðn1Þ otherwise

(
Modifications induced on the instances IS of SS
IEMerge:S � S � I �℘ðN Þ � L-I
IEMergeðSS ; ST ; IS ; fm1 ;…;mpg;ℓÞ ¼ IT
Let l be the identifier generated, if necessary, by the system for the new node labeled ℓ. Let b1;…; bk be the identifiers generated, if necessary, for the attributes d1;…; dk of the target schema defined in this

way: diAα�1
T ðnÞ: ð∄ciAAttISÞðdi ¼ hAðciÞÞ. The attributes d1;…; dk are the ones associated with the nodes belonging to fm1 ;…;mpg that do not have a corresponding node in the instance.

� NIT ¼
ðNIS\fn1ANIS:

hN ðn1ÞAfm1;…;mpggÞ [flg

)
ifð(n1ANISÞðhNðn1ÞAfm1…mpgÞ

NIS otherwise

8>><>>:

� EIT ¼

ðn1 ;n2ÞAEIS:hNðn1Þ;hNðn2Þ=2fm1 ;…;mpgg [fðl;n1Þ:
ð(n2ANISÞððn2 ;n1ÞAEIS4ðð(miAfm1 ;…;mpgÞðmi ¼
hNðn2ÞÞÞÞg [fðparentðSIS ;n1Þ; lÞ: ðhNðn1ÞAfm1 ;…;mpgÞg

9>=>; if ð(n1ANISÞðhNðn1ÞAfm1…mpgÞ

EIS otherwise

8>>>><>>>>:
�rIT ¼ rIS

� AttIT ¼
AttIS [fb1 ;…; bkg if ð(n1ANISÞðhNðn1ÞAfm1…mpgÞ
AttIS otherwise

(

� αIT ða1Þ ¼
n if hNðαISða1ÞÞAfm1;…;mpg3a1Afb1 ;…; bkg
αISða1Þ otherwise

(

� λIT ðn1Þ ¼
ℓ if n1 ¼ l
λT ðdiÞ if n1 ¼ bi ;biAfb1;…; bkg
λISðn1Þ otherwise

8><>:
� ρIT ða1Þ ¼

ALL if a1Afb1 ;…;bkg
ρISða1Þ otherwise

(

Preconditions

(1) nAN ○ , (2) ð8miAfm1 ;…;mpgÞðmiAN○
S \frSgÞ, (3) ð8mi ;mjAfm1…mpgÞðparentðSS ;miÞ ¼ parentðSS ;mjÞÞ, (4) ð8n1A ðNS [AttSÞ\fm1;…;mpgÞðλSðn1ÞaℓÞ

RSWA operator
Modifications induced on the instances IS of SS

RSWA:S �N � L-S IERSWA :S � S � I �N � L-I
RSWAðSS ;n;ℓÞ ¼ ST IERSWAðSS ; ST ; IS ;n;ℓÞ ¼ IT

Let a the system-generated id. of the new attribute labeled ℓ. Let b be the id. generated, if necessary, by the system for the new attribute labeled ℓ.
� NT ¼NS\descðSS;nÞ � NIT ¼ fn1ANIS:hNðn1ÞANT g
� ET ¼ ES\fðn1;n2ÞAEIS:n2AdescðSS ;nÞg � EIT ¼ fðn1 ;n2ÞAEIS: ðhNðn1Þ;hNðn2ÞÞAET g
� rT¼rS � rIT ¼ rIS
� AttT ¼ ðAttS [fagÞ\fa1AAttS: αSða1ÞAdescðSS ;nÞg � AttIT ¼

fa1AAttIS:hAða1ÞAAttT g [fbg if ð(n1ANISÞðhNðn1Þ ¼ nÞ
AttIS otherwise

(

� αT ða1Þ ¼
n if a1 ¼ a

αSða1Þ otherwise

(
� αIT ða1Þ ¼

n1ANIS: hN ðn1Þ ¼ n if a1 ¼ b

αISða1Þ otherwise

(

� λT ðn1Þ ¼
ℓ if n1 ¼ a

λSðn1Þ otherwise

(
� λIT ðn1Þ ¼

ℓ if n1 ¼ b

λISðn1Þ otherwise

(

� ρIT ða1Þ ¼
λISðn2Þ:
ð(ðn1;n2ÞAEISÞðhNðn1Þ ¼ nÞ

)
if ð(n1ANISÞ

ðhNðn1Þ ¼ nÞ
ρISða1Þ otherwise

8>><>>:
Preconditions
(1) nAN�

S , (2) α
�1
S ðnÞ ¼∅, (3) ð8n1AðNS [AttSÞ\ðdescðSS;nÞ [fa1AAttS: αSða1ÞAdescðSS ;nÞgÞÞðλSðn1ÞaℓÞ

Table A5
Preconditions and declarative semantics of the high-level operators.

Move operator Modifications induced on the instances IS of SS
Move: S �N �N-S IUMove:S � S � I �N �N-I
MoveðSS ;n;mÞ ¼ ST IUMoveðSS ; ST ; IS;n;mÞ ¼ IT
�NT ¼NS

�ET ¼ ðES\fðparentðSS;nÞ;nÞgÞ [fðm;nÞg
�NIT ¼

NIS
�

if ð(n1 ;n2ANISÞðhN ðn1Þ ¼ n4hNðn2Þ ¼mÞ

NIS\fn1ANIS:hNðn1ÞA gdescðST ;nÞg otherwise

8><>:
�rT ¼ rS
�AttT ¼ AttS

�EIT ¼
ðEIS\fðn1 ;n2ÞAEIS:hNðn2Þ ¼ ngÞ
[fðn1;n2Þ:hNðn1Þ ¼m4hNðn2Þ ¼ ng

)
if ð(n1 ;n2ANISÞðhNðn1Þ ¼ n4hNðn2Þ ¼mÞ

EIS\fðn1 ;n2ÞAEIS: hN ðn2ÞA gdescðST ;nÞ4n1ANISg otherwise

8>><>>:
�αT ¼ αS
�λT ¼ λS �rIT ¼ rIS

�AttIT ¼
AttIS if ð(n1 ;n2ANISÞðhN ðn1Þ ¼ n4hNðn2Þ ¼mÞ
AttIS\fa1AAttIS: αT ðhAða1ÞÞA gdescðST ;nÞg otherwise

(
�αIT ða1Þ ¼ αISða1Þ if a1AAttIT
�λIT ðn1Þ ¼ λISðn1Þ if n1ANIT [AttIT
�ρIT ða1Þ ¼ ρISða1Þ if a1AAttIT

Preconditions

(1)nAN�
S , (2) mAN○

S , (3) m=2 gdescðSS ;nÞ
Rename operator Modifications induced on the instances IS of SS
Rename:S � ðN [AÞ � L-S IERename :S � S � I � ðN [AÞ � L-I
RenameðSS ;n;ℓÞ ¼ ST IERenameðSS ; ST ; IS ;n;ℓÞ ¼ IT
�NT ¼NS �NIT ¼NIS

�ET ¼ ES �EIT ¼ EIS
�rT ¼ rS �rIT ¼ rIS
�AttT ¼ AttS �AttIT ¼ AttIS
�αT ¼ αS �αIT ¼ αIS

�λT ðn1Þ ¼
ℓ if n1 ¼ n
λSðn1Þ otherwise

(
�λIT ðn1Þ ¼

ℓ if hNðn1Þ ¼ n3hAðn1Þ ¼ n
λISðn1Þ otherwise

(
�ρIT ¼ ρIS

Preconditions
(1) nANS [AttS , (2) 8ðn1ANS [AttSÞðn1an) λSðn1ÞaℓÞ

InsertAttribute operator Modifications induced on the instances IS of SS
InsertAttribute:S �N � L-S IEInsertAttribute:S � S � I �N � L-I
InsertAttributeðSS ;n;ℓÞ ¼ ST IEInsertAttributeðSS; ST ; IS ;n;ℓÞ ¼ IT
Let a the system-generated id. of the new attribute labeled ℓ. Let b be the id. generated, if necessary, by the system for the new attribute labeled ℓ.
�NT ¼NS �NIT ¼NIS

�ET ¼ ES �EIT ¼ EIS
�rT ¼ rS �rIT ¼ rIS
�AttT ¼ AttS [fag �AttIT ¼ AttIS [fbg if ð(n1ANISÞðhNðn1Þ ¼ nÞ

AttIS otherwise

(

�αT ða1Þ ¼ n if a1 ¼ a

αSða1Þ otherwise

(
�αIT ða1Þ ¼ n1ANIS: hN ðn1Þ ¼ n if a1 ¼ b

αISða1Þ otherwise

(

�λT ðn1Þ ¼
ℓ if n1 ¼ a

λSðn1Þ otherwise

(
�λIT ðn1Þ ¼

ℓ if n1 ¼ b

λISðn1Þ otherwise

(

�ρIT ða1Þ ¼
ALL if a1 ¼ b

ρISða1Þ otherwise

(
Preconditions
(1) nAN○

S , (2) ð8n1ANS [AttSÞðλSðn1Þaℓ)

DeleteAttribute operator Modifications induced on the instances IS of SS
DeleteAttribute:S �A-S IUDeleteAttribute :S � S � I �A-I
DeleteAttributeðSS; aÞ ¼ ST IUDeleteAttributeðSS ; ST ; IS; aÞ ¼ IT
�NT ¼NS �NIT ¼NIS

�ET ¼ ES �EIT ¼ EIS
�rT ¼ rS �rIT ¼ rIS
�AttT ¼ AttS\fag �AttIT ¼ fa1AAttIS:hAða1ÞAAttT g
�αT ða1Þ ¼ αSða1Þ if a1AAttT �αIT ða1Þ ¼ αSða1Þ if a1AAttIT
�λT ðn1Þ ¼ λSðn1Þ if n1ANT [AttT �λIT ðn1Þ ¼ λT ðn1Þ if n1ANIT [AttIT

�ρIT ða1Þ ¼ ρISða1Þ if a1AAttIT
Preconditions
(1) aAAttS , (2) αSðaÞAN○

S

Table B1
Definition of the NDEF and NCOMP sets associated with the schema evolution operators.

DeleteðSS ;nÞ NDEF ¼ fparentðSS ;nÞg \ N
○
T

NCOMP ¼
N̂REC if parentðSS ;nÞAN

○
TgascðST ; parentðSS ;nÞÞ \ N○

T otherwise

(
InsertðSS ;R;nÞ NDEF ¼N

NCOMP ¼ N̂REC

MergeðSS ; fm1 ;…;mpg;ℓÞ Let n be the identifier of the new node labeled ℓ

NDEF ¼ fng \ N
○
T

NCOMP ¼
N̂REC if nAN

○
T

fng otherwise

(
RSWAðSS ;n;ℓÞ NDEF ¼ fng

NCOMP ¼ N̂REC

InsertFMðSS;R;nÞ if nM ¼ n

the effects of the previous deletion are discarded; then

NDEF ¼ fn1AN : ð(n2AgascðR;n1ÞÞðð(a1Aα�1ðn2ÞÞða1 =2α�1
M ðn2ÞÞ3 ð(a1Aα�1

M ðn2ÞÞða1 =2α�1ðn2ÞÞÞg
NCOMP ¼ N̂REC

else
NDEF ¼N

NCOMP ¼ N̂REC

MoveðSS ;n;mÞ
NDEF ¼

gdescðST ;nÞ \ NT if parentðSS ;nÞ=2N○
T

ð gdescðST ;nÞ \ NT Þ [fparentðSS ;nÞg otherwise

8<:
NCOMP ¼

N̂REC [gascðST ; parentðSS ;nÞÞ if parentðSS;nÞ=2N○
T

N̂REC otherwise

(

RenameðSS ;n;ℓÞ NDEF ¼∅
NCOMP ¼∅

InsertAttributeðSS ;n;ℓÞ NDEF ¼NT \ gdescðST ;nÞ
NCOMP ¼ N̂REC

DeleteAttributeðSS; aÞ NDEF ¼NT \ gdescðST ; αSðaÞÞ
NCOMP ¼ N̂REC

Table C1
Predicates used for the definition of the applicability conditions of the optimization rules, referring to the operators between positions i and j of the input sequence.

Predicate Description

no_useðnÞ ∄k: ioko j, nAref ðΔkÞ
no_use_subðnÞ ð8nA gdescðSiþ1;nÞ [faAAttiþ1: αiþ1ðaÞA gdescðSiþ1 ;nÞgÞðno_useðnÞÞ
no_ins_labelðℓÞ ∄k: ioko j, ððΔk ¼ InsertðSk; SX ; _Þ3Δk ¼ InsertFMðSk ; SX ; _ÞÞ4 ð(n1ANX ÞðλX ðn1Þ ¼ ℓÞÞ3ðΔk ¼MergeðSk; _;ℓÞÞ3ðΔk ¼ RSWAðSk ; _;ℓÞÞ3 ðΔk ¼ RenameðSk ; _;ℓÞÞ3 ðΔk ¼ InsertAttributeðSk; _;ℓÞÞ
no_ins_label_subðnÞ ð8n1AdescðSi ;nÞÞðno_ins_labelðλiðn1ÞÞ4 ð8a1Aα�1ðn1ÞÞðno_ins_labelðλiða1ÞÞÞÞ
no_unique_childðnÞ ∄k:1oko j; siblingsðSk;nÞ ¼∅

Table C2
Optimization rules.

Rule opi opj opnew

O1 opiAfInsertðSi ; SX ;nÞ; InsertFMðSi ; SX ;nÞg opjAfDeleteðSj ;n0 Þ;RSWAðSj ;n0 ;ℓ0 Þg opj ;new¼ j
O2 MergeðSi ; fm1 ;…;mpg;ℓÞ opjAfDeleteðSj ;n0 Þ;RSWAðSj ;n0 ;ℓ0 Þg opj ;new¼ j

O3 RSWAðSi ;n;ℓÞ opjAfDeleteðSj ;n0 Þ;RSWAðSj ;n0 ;ℓ0 Þg opj ;new¼ j
O4 DeleteðSi ;nÞ opjAfDeleteðSj ;n0 Þ;RSWAðSj ;n0 ;ℓ0 Þg opj ;new¼ j
O5 InsAttrðSi ;n;ℓÞ opjAfDeleteðSj ;n0 Þ;RSWAðSj ;n0 ;ℓ0 Þg opj ;new¼ j
O6 DelAttrðSi ; aÞ opjAfDeleteðSj ;n0 Þ;RSWAðSj ;n0 ;ℓ0 Þg opj ;new¼ j
O7 RenameðSi ;n;ℓÞ opjAfDeleteðSj ;n0 Þ;RSWAðSj ;n0 ;ℓ0 Þg opj ;new¼ j

O8 RenameðSi ;n;ℓÞ MergeðSj ; fm1 ;…;mpg;ℓ0 Þ opj ;new¼ j
O9 RenameðSi ;n;ℓÞ RenameðSj ;n;ℓ0 Þ opj ;new¼ j
O10 RenameðSi ; a;ℓÞ DelAttrðSj ; aÞ opj ;new¼ j
O11 MoveðSi ;n;mÞ opjAfDeleteðSj ;n0 Þ;RSWAðSj ;n0 ;ℓ0 Þg opj ;new¼ j

C1 opiAfInsertðSi ; SX ;nÞ; InsertFMðSi ; SX ;nÞg DeleteðSj ; rX Þ undef.
C2 InsAttrðSi ;n;ℓÞ DelAttrðSj ; aÞ undef.
C3 RenameðSi ;n;ℓÞ RenameðSj ;n;ℓ0 Þ undef.
I1 InsertðSi ; SX ;nÞ InsertðSj ; SY ;n0Þ InsertðSi ; SZ ;nÞ;new¼ i; SZ ¼ InsertðSX ; SY ;n0 Þ
I2 InsertðSi ; SX ;nÞ MergeðSj ; fm1 ;…;mpg;ℓÞ InsertðSi ; SZ ;nÞ;new¼ i; SZ ¼MergeðSX ; fm1;…;mpg;nÞ
I3 InsertðSi ; SX ;nÞ RSWAðSj ;m;ℓÞ InsertðSi ; SZ ;nÞ;new¼ i; SZ ¼ RSWAðSX ;m;ℓÞ
I4 InsertðSi ; SX ;nÞ DeleteðSj ;mÞ InsertðSi ; SZ ;nÞ;new¼ i; SZ ¼DeleteðSX ;mÞ
I5 InsertðSi ; SX ;nÞ InsAttrðSj ;m;ℓÞ InsertðSi ; SZ ;nÞ;new¼ i; SZ ¼ InsAttrðSX ;m;ℓÞ
I6 InsertðSi ; SX ;nÞ DelAttrðSj ; aÞ InsertðSi ; SZ ;nÞ;new¼ i; SZ ¼DelAttrðSX ; aÞ

I7 InsertðSi ; SX ;nÞ RenameðSj ;m;ℓÞ InsertðSi ; SZ ;nÞ;new¼ i; SZ ¼ RenameðSX ;m;ℓÞ
I8 InsAttrðSi ;n;ℓÞ RenameðSj ;n;ℓ0 Þ InsAttrðSi ;n;ℓ0Þ;new¼ i
I9 InsertðSi ; SX ;nÞ MoveðSj ; p;mÞ InsertðSi ; SZ ;nÞ;new¼ i; SZ ¼MoveðSX ; p;mÞ
Rule Conditions pol

O1 ðopj ¼Deleteð…Þ) Δjþ1a InsertFMð…ÞÞ4rXAdescðSj;n0Þ4ððopj ¼ RSWAð…Þ4opi ¼ InsertFMð…ÞÞ) rX =2childrenðSj ;n0ÞÞ4no_use_subðrX Þ4 ðrXANX1) no_unique_childðrX ÞÞ recomp

O2 Let n be the id. of the new node labeled ℓ
ðopj ¼Deleteð…Þ) Δjþ1a InsertFMð…ÞÞ4nAdescðSj ;n0Þ4 ðopj ¼ RSWAð…Þ) n=2childrenðSj ;n0ÞÞ4no_useðnÞ4 ð8miAfm1 ;…;mpgÞðno_ins_labelðλiðmiÞÞÞ

recomp

O3 Let a be the id. of the new attribute labeled ℓðopj ¼Deleteð…Þ) Δjþ1a InsertFMð…ÞÞ4nA gdescðSj;n0Þ4no_useðaÞ4no_ins_label_subðnÞ recomp

O4 ðopj ¼Deleteð…Þ) Δjþ1a InsertFMð…ÞÞ4Δiþ1a InsertFMð…Þ4parentðSi;nÞA gdescðSj ;n0Þ4no_ins_label_subðnÞ4no_ins_labelðλiðnÞÞ4 ð8a1Aα�1ðnÞÞðno_ins_labelðλiða1ÞÞÞ recomp

O5 Let a be the id. of the new attribute labeled ℓðopj ¼Deleteð…Þ) Δjþ1a InsertFMð…ÞÞ4αjðaÞA gdescðSj;n0Þ4no_useðaÞ apply_∅

O6 ðopj ¼Deleteð…Þ) Δjþ1a InsertFMð…ÞÞ4αiðaÞA gdescðSj ;n0Þ4no_ins_labelðλiðaÞÞ apply_∅

O7 ðopj ¼Deleteð…Þ) Δjþ1a InsertFMð…ÞÞ4 ðnANi4opj ¼Deleteð…Þ) nA gdescðSj ;n0ÞÞ4ðnANi4opj ¼ RSWAð…Þ) nAdescðSj ;n0ÞÞ4 ðopj ¼ RSWAð…Þ) n=2childrenðSj ;n0ÞÞ
4no_ins_labelðλiðnÞÞ4ðnAAtti) αiðnÞA gdescðSj;n0ÞÞ

apply_∅

O8 nAfm1;…;mpg4no_ins_labelðλiðnÞÞ apply_∅
O9 no_ins_labelðλiðnÞÞ4ℓ0aλiðnÞ apply_∅
O10 aAAtti4no_ins_labelðλiðaÞÞ apply_∅
O11 ðopj ¼Deleteð…Þ) Δjþ1a InsertFMð…ÞÞ4n;mA gdescðSj;n0Þ4parentðSi;nÞA gdescðSj ;n0Þ4no_use_subðnÞ recomp

C1 Δjþ1a InsertFMð…Þ4no_use_subðrX Þ4 ðrXAN○
X) no_unique_childðrX ÞÞ recomp

C2 Let a be the id. of the new attribute labeled ℓ no_useðaÞ apply_opj
C3 ℓ0 ¼ λiðnÞ4no_ins_labelðλiðnÞÞ apply_opj
I1 n0ANX4 ðð8n1ANY [AttY Þðno_ins_labelðλY ðn1ÞÞÞÞ4precðInsertðSX ; SY ;n0ÞÞ recomp
I2 Let m be the new node labeled ℓ fm1 ;…;mpgDNX4 ð8miAfm1 ;…;mpgÞðno_useðmiÞÞ4no_ins_labelðℓÞ4precðMergeðSX ; fm1 ;…;mpg;ℓÞÞ recomp
I3 mANX4no_use_subðmÞ4no_ins_labelðℓÞ4precðRSWAðSX ;m;ℓÞÞ recomp
I4 Δjþ1a InsertFMð…Þ4mANX4no_use_subðmÞ4precðDeleteðSX ;mÞÞ recomp
I5 Let a be the new attribute labeled ℓ mANX4no_ins_labelðℓÞ4precðInsAttrðSX ;m;ℓÞÞ apply_opj
I6 aAAttX4no_useðaÞ4precðInsAttrðSX ;m;ℓÞÞ apply_opj
I7 mANX [AttX4no_ins_labelðℓÞ4precðRenameðSX ;m;ℓÞÞ apply_opj
I8 no_ins_labelðℓ0Þ apply_opj
I9 p;mANX4precðMoveðSX ; p;mÞÞ4no_use_subðpÞ recomp

References

[1] M. Mazuran, E. Quintarelli, L. Tanca, Data mining for XML query-
answering support, IEEE Trans. Knowl. Data Eng. 24 (8) (2012)
1393–1407.

[2] M. Chin, New data compression method reduces big-data bottle-
neck; outperforms, enhances JPEG, ACM TechNews, December 23th,
2013.

[3] D. Agrawal, P. Bernstein, E. Bertino, S. Davidson, U. Dayal, M.
Franklin, J. Gehrke, L. Haas, A. Halevy, J. Han, H.V. Jagadish, A.
Labrinidis, S. Madden, Y. Papakonstantinou, J.M. Patel, R. Ramak-
rishnan, K. Ross, C. Shahabi, D. Suciu, S. Vaithyanathan, J. Widom,
Challenges and opportunities with Big Data [White paper] 〈http://
imsc.usc.edu/research/bigdatawhitepaper.pdf〉.

[4] G. Koutrika, Y.E. Ioannidis, Personalizing queries based on networks
of composite preferences, ACM Trans. Database Syst. 35 (2) (2010)
13:1–13:50.

[5] C. Bolchini, E. Quintarelli, L. Tanca, Carve: context-aware automatic
view definition over relational databases, Inf. Syst. 38 (1) (2013)
45–67.

[6] K. Stefanidis, E. Pitoura, P. Vassiliadis, Managing contextual prefer-
ences, Inf. Syst. 36 (8) (2011) 1158–1180.

[7] M. Baldauf, S. Dustdar, F. Rosenberg, A survey on context-aware
systems, Int. J. Ad Hoc Ubiquitous Comput. 2 (4) (2007) 263–277.

[8] C. Bolchini, C. Curino, E. Quintarelli, F.A. Schreiber, L. Tanca,
A data-oriented survey of context models, SIGMOD Rec. 36 (4)
(2007) 19–26.

[9] J. Hong, E. Suh, S. Kim, Context-aware systems: a literature review
and classification, Expert Syst. Appl. 36 (4) (2009) 8509–8522.

[10] C. Bettini, O. Brdiczka, K. Henricksen, J. Indulska, D. Nicklas,
A. Ranganathan, D. Riboni, A survey of context modelling and
reasoning techniques, Pervasive Mobile Comput. 6 (2) (2010)
161–180.

[11] D. Zhang, H. Huang, C.-F. Lai, X. Liang, Q. Zou, M. Guo, Survey on
context-awareness in ubiquitous media, Multimed. Tools Appl. 67
(1) (2013) 179–211.

[12] C. Bolchini, C. Curino, G. Orsi, E. Quintarelli, R. Rossato, F.A. Schreiber,
L. Tanca, And what can context do for data? Commun. ACM 52 (11)
(2009) 136–140.

[13] C. Bolchini, E. Quintarelli, R. Rossato, Relational data tailoring
through view composition, in: Proceedings of ER 2007, 26th Inter-
national Conference on Conceptual Modeling, Springer, Heidelberg,
2007, pp. 149–164.

[14] M.M. Lehman, Software's future: managing evolution, IEEE Softw. 15
(1) (1998) 40–44.

[15] D. Bianchini, S. Montanelli, C. Aiello, R. Baldoni, C. Bolchini, S. Bonomi,
Castano, T. Catarci, V. De Antonellis, A. Ferrara, M. Melchiori,

E. Quintarelli, M. Scannapieco, F.A. Schreiber, L. Tanca, Emergent
semantics and cooperation in multi-knowledge communities: the
esteem approach, World Wide Web 13 (1–2) (2010) 3–31.

[16] S. Buchholz, T. Hamann, G. Hübsch, Comprehensive structured
context profiles (CSCP): design and experiences, in: Workshop
Proceedings of PerCom 2004, 2nd Conference on Pervasive Comput-
ing and Communications, IEEE Computer Society, Los Alamitos,
2004, pp. 43–47.

[17] P.-G. Raverdy, O. Riva, A. de La Chapelle, R. Chibout, V.
Issarny, Efficient context-aware service discovery in multi-
protocol perva-sive environments, in: Proceedings of MDM 2006,
7th International Conference on Mobile Data Management, IEEE
Computer Society, Los Alamitos, 2006, p. 3.

[18] H. Chen, T.W. Finin, A. Joshi, An intelligent broker for context-aware
systems, in: Adjunct Proceedings of UbiComp 2003, 5th Interna-
tional Conference on Ubiquitous Computing, 2003, pp. 183–184.

[19] J.R. Hoyos, J. García-Molina, J.A. Botía, A domain-specific language
for context modeling in context-aware systems, J. Syst. Softw. 86
(11) (2013) 2890–2905.

[20] R. De Virgilio, R. Torlone, Modeling heterogeneous context informa-
tion in adaptive web based applications, in: Proceedings of ICWE
2006, 6th International Conference on Web Engineering, IEEE
Computer Society, Los Alamitos, 2006, pp. 56–63.

[21] E. Quintarelli, E. Rabosio, L. Tanca, Context schema evolution in
context-aware data management, in: Proceedings of ER 2011, 30th
International Conference on Conceptual Modeling, Springer, Heidel-
berg, 2011, pp. 290–303.

[22] P. Buneman, S.B. Davidson, A. Kosky, Semantics of database trans-
formations, in: Semantics in Databases, Springer, Heidelberg, 1995,
pp. 55–91.

[23] M. Erwig, Toward the automatic derivation of XML transformations,
in: Proceedings of Conceptual Modeling for Novel Application
Domains, ER 2003 Workshops ECOMO, IWCMQ, AOIS, and XSDM,
Springer, Heidelberg, 2003, pp. 342–354.

[24] C. Bolchini, E. Quintarelli, Context-driven data filtering: a methodol-
ogy, in: Proceedings of OTM 2006, International Workshops on On
the Move to Meaningful Internet Systems (Part II), Springer, Heidel-
berg, 2006, pp. 1986–1995.

[25] G. Orsi, Context based querying of dynamic and heterogeneous
information sources (Ph.D. thesis), Politecnico di Milano, 2010.

[26] T. Schwentick, Xpath query containment, SIGMOD Rec. 33 (1) (2004)
101–109.

[27] P. Garza, E. Quintarelli, E. Rabosio, L. Tanca, Run-time, adaptive genera-
tion of contextual views, Research report, Politecnico di Milano, 〈http://
home.deib.polimi.it/rabosio/Papers/GQRT2013.pdf〉, 2013.

[28] J. Banerjee, W. Kim, H.-J. Kim, H.F. Korth, Semantics and implemen-
tation of schema evolution in object-oriented databases, in: Pro-
ceedings of SIGMOD 1987, International Conference on Management
of Data, ACM, New York, 1987, pp. 311–322.

[29] W. Kim, H.-T. Chou, Versions of schema for object-oriented data-
bases, in: Proceedings of VLDB 1988, 14th International Conference
on Very Large Databases, Morgan Kaufmann, San Francisco, 1988,
pp. 148–159.

[30] C. De Castro, F. Grandi, M.R. Scalas, Schema versioning for multi-
temporal relational databases, Inf. Syst. 22 (5) (1997) 249–290.

[31] C. Curino, H.J. Moon, C. Zaniolo, Graceful database schema evolution:
the PRISM workbench, in: PVLDB, vol. 1(1), 2008, pp. 761–772.

[32] A. Cleve, A.-F. Brogneaux, J.-L. Hainaut, A conceptual approach to
database applications evolution, in: Proceedings of ER 2010, 29th
International Conference on Conceptual Modeling, Springer, Heidel-
berg, 2010, pp. 132–145.

[33] L. Stojanovic, A. Maedche, B. Motik, N. Stojanovic, User-
driven ontology evolution management, in: Proceedings of EKAW
2002, 13th International Conference on Knowledge Engineering
and Knowledge Management, Springer, Heidelberg, 2002, pp. 285–
300.

[34] P. Plessers, O. De Troyer, Ontology change detection using a version
log, in: Proceedings ISWC 2005, 4th International Semantic Web
Conference, Springer, Heidelberg, 2005, pp. 578–592.

[35] V. Papavassiliou, G. Flouris, I. Fundulaki, D. Kotzinos, V. Christo-
phides, On detecting high-level changes in RDF/S KBs, in: Proceed-
ings of ISWC, 2009, 8th International Semantic Web Conference,
Springer, Heidelberg, 2009, pp. 473–488.

[36] H. Su, D. Kramer, L. Chen, K.T. Claypool, E.A. Rundensteiner,
XEM: managing the evolution of XML documents, in: Proceedings of
RIDE-DM 2001, 11th International Workshop on Research Issues
in Data Engineering: Document Management for Data Intensive
Business and Scientific Applications, IEEE Computer Society, Los
Alamitos, 2001, pp. 103–110.

[37] G. Guerrini, M. Mesiti, D. Rossi, Impact of XML schema evolution on
valid documents, in: Proceedings of WIDM 2005, 7th International
Workshop on Web Information and Data Management, ACM, New
York, 2005, pp. 39–44.

[38] G. Guerrini, M. Mesiti, M.A. Sorrenti, XML schema evolution:
incremental validation and efficient document adaptation, in: Pro-
ceedings of XSym 2007, 5th International XML Database Sympo-
sium, Springer, Heidelberg, 2007, pp. 92–106.

[39] A. Wienberg, M. Ernst, A. Gawecki, O. Kummer, F. Wienberg, J.W.
Schmidt, Content schema evolution in the CoreMedias; content
application platform CAP, in: Proceedings of EDBT 2002, 8th Inter-
national Conference on Extending Database Technology, Springer,
Heidelberg 2002, pp. 712–721.

[40] S. Bossung, H.-W. Sehring, P. Hupe, J.W. Schmidt, Open and dynamic
schema evolution in content-intensive web applications, in: Pro-
ceedings of WEBIST 2006, 2nd International Conference on Web
Information Systems and Technologies, INSTICC Press, Lisbon, 2006,
pp. 109–116.

[41] J.F. Roddick, A survey of schema versioning issues for database
systems, Inf. Softw. Technol. 37 (7) (1995) 383–393.

[42] Y. Velegrakis, R.J. Miller, L. Popa, Preserving mapping consistency
under schema changes, VLDB J. 13 (3) (2004) 274–293.

[43] S. Melnik, E. Rahm, P.A. Bernstein, Rondo: a programming platform
for generic model management, in: Proceedings of SIGMOD 2003,
International Conference on Management of Data, ACM, New York,
2003, pp. 193–204.

[44] P. Atzeni, P. Cappellari, R. Torlone, P.A. Bernstein, G. Gianforme, Model-
independent schema translation, VLDB J. 17 (6) (2008) 1347–1370.

[45] R. De Virgilio, R. Torlone, A framework for the management of
context data in adaptive web information systems, in: Proceedings
of ICWE 2008, 8th International Conference on Web Engineering,
IEEE Computer Society, Los Alamitos, 2008, pp. 261–272.

http://refhub.elsevier.com/S0306-4379(14)00184-7/sbref1
http://refhub.elsevier.com/S0306-4379(14)00184-7/sbref1
http://refhub.elsevier.com/S0306-4379(14)00184-7/sbref1
http://imsc.usc.edu/research/bigdatawhitepaper.pdf
http://imsc.usc.edu/research/bigdatawhitepaper.pdf
http://refhub.elsevier.com/S0306-4379(14)00184-7/sbref4
http://refhub.elsevier.com/S0306-4379(14)00184-7/sbref4
http://refhub.elsevier.com/S0306-4379(14)00184-7/sbref4
http://refhub.elsevier.com/S0306-4379(14)00184-7/sbref5
http://refhub.elsevier.com/S0306-4379(14)00184-7/sbref5
http://refhub.elsevier.com/S0306-4379(14)00184-7/sbref5
http://refhub.elsevier.com/S0306-4379(14)00184-7/sbref6
http://refhub.elsevier.com/S0306-4379(14)00184-7/sbref6
http://refhub.elsevier.com/S0306-4379(14)00184-7/sbref7
http://refhub.elsevier.com/S0306-4379(14)00184-7/sbref7
http://refhub.elsevier.com/S0306-4379(14)00184-7/sbref8
http://refhub.elsevier.com/S0306-4379(14)00184-7/sbref8
http://refhub.elsevier.com/S0306-4379(14)00184-7/sbref8
http://refhub.elsevier.com/S0306-4379(14)00184-7/sbref9
http://refhub.elsevier.com/S0306-4379(14)00184-7/sbref9
http://refhub.elsevier.com/S0306-4379(14)00184-7/sbref10
http://refhub.elsevier.com/S0306-4379(14)00184-7/sbref10
http://refhub.elsevier.com/S0306-4379(14)00184-7/sbref10
http://refhub.elsevier.com/S0306-4379(14)00184-7/sbref10
http://refhub.elsevier.com/S0306-4379(14)00184-7/sbref11
http://refhub.elsevier.com/S0306-4379(14)00184-7/sbref11
http://refhub.elsevier.com/S0306-4379(14)00184-7/sbref11
http://refhub.elsevier.com/S0306-4379(14)00184-7/sbref12
http://refhub.elsevier.com/S0306-4379(14)00184-7/sbref12
http://refhub.elsevier.com/S0306-4379(14)00184-7/sbref12
http://refhub.elsevier.com/S0306-4379(14)00184-7/sbref14
http://refhub.elsevier.com/S0306-4379(14)00184-7/sbref14
http://refhub.elsevier.com/S0306-4379(14)00184-7/sbref15
http://refhub.elsevier.com/S0306-4379(14)00184-7/sbref15
http://refhub.elsevier.com/S0306-4379(14)00184-7/sbref15
http://refhub.elsevier.com/S0306-4379(14)00184-7/sbref15
http://refhub.elsevier.com/S0306-4379(14)00184-7/sbref15
http://refhub.elsevier.com/S0306-4379(14)00184-7/sbref19
http://refhub.elsevier.com/S0306-4379(14)00184-7/sbref19
http://refhub.elsevier.com/S0306-4379(14)00184-7/sbref19
http://refhub.elsevier.com/S0306-4379(14)00184-7/sbref26
http://refhub.elsevier.com/S0306-4379(14)00184-7/sbref26
http://home.deib.polimi.it/rabosio/Papers/GQRT2013.pdf
http://home.deib.polimi.it/rabosio/Papers/GQRT2013.pdf
http://refhub.elsevier.com/S0306-4379(14)00184-7/sbref30
http://refhub.elsevier.com/S0306-4379(14)00184-7/sbref30
http://refhub.elsevier.com/S0306-4379(14)00184-7/sbref41
http://refhub.elsevier.com/S0306-4379(14)00184-7/sbref41
http://refhub.elsevier.com/S0306-4379(14)00184-7/sbref42
http://refhub.elsevier.com/S0306-4379(14)00184-7/sbref42
http://refhub.elsevier.com/S0306-4379(14)00184-7/sbref44
http://refhub.elsevier.com/S0306-4379(14)00184-7/sbref44

[46] M. Hartung, J. Terwilliger, E. Rahm, Recent advances in schema and
ontology evolution, in: Schema Matching and Mapping, Data-
Centric Systems and Applications, Springer, Heidelberg,
2011, pp. 149–190.

[47] Schema evolution publication categorizer, URL: 〈http://se-pubs.dbs.
uni-leipzig.de/〉, accessed 2014-08-03.

[48] B. Staudt Lerner, A model for compound type changes encountered
in schema evolution, ACM Trans. Database Syst. 25 (1) (2000)
83–127.

[49] P.A. Bernstein, T.J. Green, S. Melnik, A. Nash, Implementing mapping
composition, VLDB J. 17 (2) (2008) 333–353.

[50] S. Amano, L. Libkin, F. Murlak, XML schema mappings, in: Proceed-
ings of PODS 2009, 28th Symposium on Principles of Database
Systems, ACM, New York, 2009, pp. 33–42.

[51] I. Tatarinov, Z.G. Ives, A.Y. Halevy, D.S. Weld, Updating XML,
in: Proceedings of SIGMOD 2001, International Conference on
Manage-ment of Data, ACM, New York, 2001, pp. 413–424.

[52] A. Balmin, Y. Papakonstantinou, V. Vianu, Incremental validation of
XML documents, ACM Trans. Database Syst. 29 (4) (2004) 710–751.

[53] D. Barbosa, A.O. Mendelzon, L. Libkin, L. Mignet, M. Arenas, Efficient
incremental validation of XML documents, in: Proceedings of ICDE
2004, 20th International Conference on Data Engineering, IEEE
Computer Society, Los Alamitos, 2004, pp. 671–682.

[54] B. Bouchou, M. Halfeld Ferrari Alves, Updates and incremental
validation of XML documents, in: Proceedings of DBPL 2003, 9th
International Workshop on Database Programming Languages,
Springer, Heidelberg, 2003, pp. 216–232.

[55] K. Hashimoto, Y. Ishihara, T. Fujiwara, Schema update operations
preserving the expressive power in XML databases, in: Proceedings
of ICDE Workshops, IEEE Computer Society, Los Alamitos, 2005, p.
1229.

[56] J. Chabin, M. Halfeld Ferrari Alves, M.A. Musicante, P. Réty, Minimal
tree language extensions: a keystone of XML type compatibility and
evolution, in: Proceedings of ICTAC 2010, 7th International Colloquium
on Theoretical Aspects of Computing, Springer, Heidelberg, 2010,
pp. 60–75.

[57] M. Shoaran, A. Thomo, Evolving schemas for streaming XML, Theor.
Comput. Sci. 412 (35) (2011) 4545–4557.

[58] M.B.L. Tan, A. Goh, Keeping pace with evolving XML-based specifi-
cations, in: Proceedings of Current Trends in Database Technology –
EDBT 2004 Workshops, Springer, Heidelberg, 2004, pp. 280–288.

[59] M. Klettke, Conceptual XML schema evolution – the CoDEX
approach for design and redesign, in: Proceedings of BTW 2007,
Datenbanksysteme in Business, Technologie und Web Workshop,
Verlagshaus Mainz, 2007, Aachen, pp. 53–63.

[60] E. Domínguez, J. Lloret, B. Pérez, Á. Rodríguez, A.L. Rubio, M.
A. Zapata, Evolution of XML schemas and documents from stereo-
typed UML class models: a traceable approach, Inf. Softw. Technol.
53 (1) (2011) 34–50.

[61] B.V.N. Prashant, P.S. Kumar, Managing XML data with evolving
schema, in: Proceedings of COMAD 2006, 13th International Con-
ference on Management of Data, Tata McGraw-Hill Publishing
Company Limited, Noida, 2006, pp. 174–177.

[62] F. Cavalieri, G. Guerrini, M. Mesiti, B. Oliboni, On the reduction of
sequences of XML document and schema update operations, in:
Workshops Proceedings of the 27th International Conference
on Data Engineering, ICDE 2011, IEEE Computer Society, Los Alami-
tos, 2011, pp. 77–86.

[63] A. Poulovassilis, P. McBrien, A general formal framework for schema
transformation, Data Knowl. Eng. 28 (1) (1998) 47–71.

[64] F. Grandi, F. Mandreoli, A formal model for temporal schema
versioning in object-oriented databases, Data Knowl. Eng. 46 (2)
(2003) 123–167.

[65] K.T. Claypool, C. Natarajan, E.A. Rundensteiner, Optimizing perfor-
mance of schema evolution sequences, in: Proceedings of the
International Symposium on Objects and Databases, Springer, Hei-
delberg, 2000, pp. 114–127.

[66] T. Zäschke, S. Leone, M.C. Norrie, Optimising schema evolution
operation sequences in object databases for data evolution, in:
Proceedings of ER 2012, 31st International Conference on Concep-
tual Modeling, Springer, Heidelberg, 2012, pp. 369–382.

[67] N. Tong, Database schema transformation optimisation techniques
for the AutoMed system, in: Proceedings of BNCOD 2003, 20th
British National Conference on Databases, Springer,
Heidelberg, 2003, pp. 157–171.

[68] F. Cavalieri, G. Guerrini, M. Mesiti, Dynamic reasoning on XML
updates, in: Proceedings of EDBT 2011, 4th International Conference
on Extending Database Technology, ACM, New York,
2011, pp. 165–176.

[69] J. Robie, D. Chamberlin, M. Dyck, D. Florescu, J. Melton, J. Siméon,
XQuery Update Facility 1.0. W3C recommendation 〈http://www.w3.
org/TR/xquery-update-10/〉.

[70] Saxonica, Saxon: the XSLT and XQuery processor 〈http://saxon.
sourceforge.net/〉.

http://se-pubs.dbs.uni-leipzig.de/
http://se-pubs.dbs.uni-leipzig.de/
http://refhub.elsevier.com/S0306-4379(14)00184-7/sbref48
http://refhub.elsevier.com/S0306-4379(14)00184-7/sbref48
http://refhub.elsevier.com/S0306-4379(14)00184-7/sbref48
http://refhub.elsevier.com/S0306-4379(14)00184-7/sbref49
http://refhub.elsevier.com/S0306-4379(14)00184-7/sbref49
http://refhub.elsevier.com/S0306-4379(14)00184-7/sbref52
http://refhub.elsevier.com/S0306-4379(14)00184-7/sbref52
http://refhub.elsevier.com/S0306-4379(14)00184-7/sbref57
http://refhub.elsevier.com/S0306-4379(14)00184-7/sbref57
http://refhub.elsevier.com/S0306-4379(14)00184-7/sbref60
http://refhub.elsevier.com/S0306-4379(14)00184-7/sbref60
http://refhub.elsevier.com/S0306-4379(14)00184-7/sbref60
http://refhub.elsevier.com/S0306-4379(14)00184-7/sbref60
http://refhub.elsevier.com/S0306-4379(14)00184-7/sbref63
http://refhub.elsevier.com/S0306-4379(14)00184-7/sbref63
http://refhub.elsevier.com/S0306-4379(14)00184-7/sbref64
http://refhub.elsevier.com/S0306-4379(14)00184-7/sbref64
http://refhub.elsevier.com/S0306-4379(14)00184-7/sbref64
http://www.w3.org/TR/xquery-update-10/
http://www.w3.org/TR/xquery-update-10/
http://saxon.sourceforge.net/
http://saxon.sourceforge.net/

	A principled approach to context schema evolution in a data management perspective
	Introduction
	Background: the context dimension model
	Informal overview of the CDM
	A formal definition of the CDM
	Using context for data tailoring

	A brief account of the research on schema evolution
	Schema evolution in relational databases, object-oriented databases and ontologies
	XML schema evolution
	Schema evolution at a conceptual level

	A framework for context schema evolution
	Evolution operators
	Basic atomic evolution operators and their completeness
	Methodological considerations and further atomic operators
	Further fundamental properties of the atomic operators
	High-level evolution operators
	Evolution algorithms

	Context-aware view evolution
	Optimization of sequences of operators
	Optimization rules
	Overriding rules
	Cancelation rules
	Insertion rules

	Properties and application of the optimization rules

	An example: context-aware data tailoring over XML data
	Comparisons
	System implementation and experiments
	Experiments

	Conclusions and future work
	Acknowledgments
	Preconditions and semantics of the operators
	Context-aware view evolution
	Optimization rules
	References

