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Abstract 

The recent reductions in the cost of access to space and the introduction of smaller, more cost-effective platforms 

have spurred novel mission concepts ranging from small CubeSat-based experiments to large constellations. 

Inevitably, this will also lead to a notable increase in collision avoidance activities. Furthermore, an increasing number 

of satellites operate with low-thrust propulsion systems, which lack the last-time Collision Avoidance Manoeuvre 

(CAM) capabilities of traditional propulsion systems. Therefore, there is a clear need for the development of models 

and tools for the analysis and design of CAMs in the low-thrust context. Moreover, the large (and increasing) amount 

of Close Approaches (CA) to be analysed per day stresses the importance for these tools not only to be accurate but 

fast. This work presents a semi-analytical approach for the analysis and design of CAMs using low thrust. The model 

is based on the proximal motion equations and takes into consideration the effects of drag and solar radiation pressure 

and the low-thrust control acceleration. Averaged dynamics on Keplerian elements are used to obtain compact and 

efficient expressions, suitable for large simulation campaigns or on-board applications. Different figures of merit for 

the CAM are considered, mainly maximising miss distance. Another key aspect is the utilisation of the b-plane of the 

nominal encounter to analyse the dynamics of the deflected trajectory, exploiting its separation of phasing and 

geometry-change effects. Several test cases are presented, highlight the accuracy and computational efficiency of the 

approach and supporting the operational interest of this type of CAMs. 

 

Keywords: Collision avoidance manoeuvre, Space Situational Awareness, low-thrust, semi-analytical methods, b-

plane 

 

Nomenclature 

𝒂 Acceleration vector [m/s2] 
𝑎 Semimajor axis [km] 
𝑎𝑡 Tangential acceleration [m/s2] 
𝑏 Semiminor axis [km] 
𝑐𝐷 Drag coefficient [−] 
𝑐𝑅 Reflectivity coefficient [−] 
𝑒 Eccentricity [−] 
𝐸 Eccentric anomaly [deg] 
E Incomplete elliptic integral of the second kind 

𝑓 True anomaly [deg] 
F Incomplete elliptic integral of the first kind 

ℎ Angular momentum [m2/s2] 
𝑖 Inclination [deg] 
𝑘 Duration in revolutions of the low-thrust CAM 

𝑀 Mean anomaly [deg] 
𝑛 Mean motion [s−1] 
𝑝 Semilatus rectum [km] 
𝒓 Position vector [km] 
𝑟 Radial distance [km] 
𝑡 Time [s] 
𝑇 Period for the nominal spacecraft orbit [s] 

𝐮𝑥 Unit vector along direction 𝑥 [−] 
𝐯 Velocity vector [m/s] 
𝑣 Velocity [m/s] 
𝜶 Vector of Keplerian elements [𝑎, 𝑒, 𝑖, Ω, 𝜔,𝑀] 
𝛼 Generic Keplerian element 

𝛿𝑏 Deflection in the b-plane [km] 
𝛿𝑥 Change in magnitude 𝑥 due to the CAM 

Δ𝑡CAM Duration of the low-thrust CAM [s] 
Δ𝑡 Lead time of the CAM [s] 
𝜂 Axis perpendicular to the b-plane [km] 
𝜁 Time axis in the b-plane [km] 
𝜃 Argument of latitude [deg] 
𝜇 Earth’s gravitational parameter [km3/s2] 
𝜉 Geometry axis in the b-plane [km] 
𝜔 Argument of perigee [deg] 
Ω Argument of the ascending node [deg] 
 

Subscripts 

CA Close approach 

𝑓 Final point of the low-thrust manoeuvre 

ℎ Out-of-plane component 

𝑖 Initial point of the low-thrust manoeuvre 
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𝑛 Normal component 

nom Nominal value 

num Numerical solution 

𝑟 Radial component 

sa Semi-analytical solution 

𝑡 Tangential component 

𝜃 Transversal component 

  

Acronyms/Abbreviations 

CA Close approach 

CAM Collision avoidance manoeuvre 

D Debris 

LEO Low Earth Orbit 

OD Orbit determination 

SC Spacecraft 

SRP Solar radiation pressure 

STM State transition matrix 

 

1. Introduction 

Current and future trends for the scientific and 

commercial utilisation of near-Earth space depict an 

increasingly congested and complex scenario. Advances 

in different fronts such as the steady reductions in the cost 

of access to space thanks to new launch providers and the 

popularisation of rideshare missions, the introduction of 

more cost-effective platforms, and the increased interest 

in space activities by developing countries and private 

companies, have spurred novel mission concepts ranging 

from small CubeSat-based experiments to large 

constellations. Inevitably, this will come with a notable 

increase in collision avoidance activities. Furthermore, a 

sustainable development model will also require the 

adherence to end-of-life disposal policies, like the Inter-

Agency Space Debris Coordination Committee guideline 

of 25 years maximum deorbit time for objects in low 

Earth orbit. This objective can be achieved in an efficient 

manner using passive deorbiting devices such as sails of 

tethers, but their large cross-sectional area further 

increases collision probability with nearby objects. 

Fortunately, effective CAMs by sails can be implemented 

for a sufficient warning time, compatible with current 

practices, assuming that the spacecraft has a certain level 

of attitude control during the deorbiting phase [1]. On the 

other hand, an increasing number of satellites are being 

equipped with ionic of Hall effect thrusters, due to their 

advantages in propellant consumption. Both sails and 

electric thrusters operate as low-thrust propulsion 

systems, delivering a small but continuous acceleration, 

as opposite to the classical impulsive propulsion systems. 

However, the reduced propellant consumption of these 

systems comes at the cost of lower control authority, 

hindering the implementation of last-minute CAMs and 

requiring a higher analysis effort from satellite operators. 

Moving forward, there is a clear need to develop 

models and tools for the analysis and design of CAMs in 

the low-thrust context. Also, the large (and increasing) 

amount of CAs to be analysed per day stresses the 

importance for these tools not only to be accurate but fast. 

Aiming to address these needs, this work presents a semi-

analytical solution for the analysis and design of CAMs 

using low thrust. This new model is part of the 

Manoeuvre Intelligence for Space Safety (MISS) 

software tool, currently being developed by the European 

Research Council-funded COMPASS project [2]. 

COMPASS pursues the goal of exploiting dynamical 

perturbations in order to tackle key problems in orbital 

mechanics. The CAM model is based on proximal 

motion equations and considers different forces, such as 

the effect of drag and solar radiation pressure and the 

low-thrust control acceleration. Averaged dynamics are 

used to obtain compact and efficient expressions, suitable 

for large simulation campaigns or on-board applications. 

Different figures of merits for CAMs are considered, 

mainly maximising miss distance or minimising collision 

probability. Another key aspect is the utilisation of the b-

plane of the nominal encounter to analyse the dynamics 

of the deflected trajectory, exploiting its separation of 

phasing and geometry-change effects. 

The paper is organised as follows. First, the CA 

scenario and CAM design problem under consideration 

are introduced in Section 2. Then, in Section 3 the 

dynamical model is presented, paying especial attention 

to the averaging process followed to obtain the semi-

analytical expressions for modelling the changes in 

orbital elements due to the low-thrust CAM. A short 

paragraph is also devoted to the control strategies 

considered. Section 4 presents several numerical test 

cases, highlighting the accuracy and computational 

efficiency of the proposed approach and supporting the 

operational interest of this type of CAMs. Particularly, 

the effect of drag and SRP on the uncertainty evolution 

for bodies with large area-to-mass ratio is evaluated, a 

parametric analysis of a low-thrust CAM is provided, and 

some comments regarding CAMs by sails are presented. 

Finally, Section 5 draws conclusions and details the 

future works. 

 

2. Problem statement 

Let us consider two Earth-orbiting objects having a 

close approach at a time 𝑡CA. One of them is a spacecraft 

equipped with a continuous, low-thrust propulsion 

system, while the other is a non-cooperative debris. The 

objective is to design a low-thrust CAM leading to either 

the maximisation of the miss distance or the minimisation 

of risk at 𝑡CA. Note that the debris designation given here 

is generic and can refer to any Earth orbiting object, if it 

does not cooperate in the CAM (this can include another 

operative satellite). 

To characterise the CA, the b-plane for the nominal 

encounter is used  [3]. The b-plane has been successfully 

employed in previous works dealing with the design of 

CAMs and asteroid deflection missions [1][4], mostly 
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thanks to its property of separating the displacements 

related to phasing changes and orbit geometry changes 

into the so-called time axis 𝜁  and geometry axis 𝜉 , 

respectively. For a given nominal CA, the reference 

frame associated to the b-plane is centred at the position 

of the debris and has unity vectors {𝐮𝜂 , 𝐮𝜉 , 𝐮𝜁}: 

𝐮𝜂 =
𝐯SC − 𝐯D

‖𝐯SC − 𝐯D‖
, 𝐮𝜉 =

𝐯D × 𝐮𝜂

‖𝐯D × 𝐮𝜂‖
, 

 

𝐮𝜁 = 𝐮𝜉 × 𝐮𝜂 

where 𝐯SC and 𝐯D are the velocity vectors of spacecraft 

and debris, respectively. 

Previous results obtained following a similar 

approach to the one proposed in this work but for 

impulsive CAMs, see [1], show that the orientation of 

optimal CAMs, either for maximum miss distance or 

minimum collision probability, tend to align with the 

tangential direction as the lead time between the 

manoeuvre and the CA increases (particularly, for lead 

times greater than a period of the spacecraft). The b-plane 

analysis of the CAM reveals that this behaviour is 

associated with a displacement dominant along the time 

axis, leveraging the change in phasing. However, while 

this behaviour is very clear for the maximum deviation 

CAM, a more irregular evolution is observed for the 

minimum collision probability one, the reason being that 

uncertainties also tend to grow along the time axis. 

Considering these results, and that tangential thrusting 

provides optimal instantaneous energy change under 

continuous low thrust, in the following a tangential thrust 

control strategy is assumed.  

 

3. Dynamical model 

Assuming that the change in the spacecraft orbit due 

to the CAM is small, one can express the deviation with 

respect to the nominal orbit using the linearized relative 

motion equations [5]: 

𝛿𝑟𝑟 ≈
𝑟

𝑎
𝛿𝑎 +

𝑎 𝑒 sin 𝑓

√1 − 𝑒2
𝛿𝑀 − acos 𝑓 δe 

(1) 

𝛿𝑟𝜃 ≈
𝑟

(1 − 𝑒2)3 2⁄
(1 + 𝑒 cos 𝑓)2𝛿𝑀 + 𝑟𝛿𝜔

+
𝑟 sin 𝑓

1 − 𝑒2
(2 + 𝑒 cos 𝑓)𝛿𝑒

+ 𝑟 cos 𝑖  𝛿Ω 

(2) 

𝛿𝑟ℎ ≈ 𝑟(sin 𝜃 𝛿𝑖 − cos 𝜃 sin 𝑖 𝛿Ω) (3) 

or in matrix form: 

𝛿𝐫 ≈ 𝐀𝑟𝛿𝜶 
 

where 𝜶 = [𝑎, 𝑒, 𝑖, Ω, 𝜔,𝑀]  is the vector of Keplerian 

elements and 𝛿𝜶 its changes at 𝑡CA due to the CAM. The 

evolution of 𝜶 can be obtained through Gauss’ planetary 

equations, which have to be integrated numerically for a 

general perturbing acceleration 𝒂(𝑡). 

In the following, a set of semi-analytical formulas for 

the variation of the orbital elements due to a constant 

tangential thrust are presented. Let us first consider the 

Gauss’ planetary equations for a constant tangential 

perturbing acceleration [6]: 

d𝑎

d𝑡
=

2𝑎2𝑣

𝜇
𝑎𝑡 

d𝑒

d𝑡
=

2(𝑒 + cos 𝑓)

𝑣
𝑎𝑡 

d𝑖

d𝑡
= 0 

dΩ

d𝑡
= 0 

d𝜔

d𝑡
=

2 sin 𝑓

𝑒𝑣
𝑎𝑡 

d𝑀

d𝑡
= 𝑛 −

2𝑏

𝑒𝑎𝑣
(1 +

𝑒2𝑟

𝑝
) sin 𝑓 𝑎𝑡 

(4) 

where 𝑎𝑡 is the magnitude of the low-thrust acceleration. 

The sign of 𝑎𝑡  can be either positive of negative 

depending on whether the acceleration is oriented along 

the velocity vector or opposite to it, respectively. 

Expressing Eqs. (4) in terms of the eccentric anomaly 𝐸 

they take the form [7][8]: 

d𝑎

d𝐸
= 𝑎𝑡

2𝑎3

𝜇
√1 − 𝑒2 cos2 𝐸 

d𝑖

d𝐸
= 0 

dΩ

d𝐸
= 0 

dω

d𝐸
= 𝑎𝑡

2𝑎2√1 − 𝑒2

𝜇𝑒
√

1 − 𝑒 cos𝐸

1 + 𝑒 cos𝐸
sin 𝐸 

d𝑀

d𝐸
= (1 − 𝑒 cos 𝐸) (1 − 𝑎𝑡

2𝑎2(1−𝑒3 cos 𝐸) sin 𝐸

𝑒𝜇√1−𝑒2 cos2 𝐸
 )  

(5) 

where the relation between 𝐸  and 𝑡  has been 

approximated as: 
d𝐸

d𝑡
≈ √

𝜇

𝑎3

1

1 − 𝑒 cos𝐸
 

(6) 

obtained by taking the derivative with respect to 𝐸  in 

Kepler’s equation. Assuming that all elements except 𝐸 

are constant over one revolution and integrating in 𝐸 the 

right-hand side of Eqs. (5), the following primitives are 

reached: 

𝐻𝑎(𝐸) = 𝑎𝑡

2𝑎3√1 − 𝑒2

𝜇
 E [𝐸,−

𝑒2

1 − 𝑒2
] 

𝐻𝑒(𝐸) = 𝑎𝑡

2𝑎2(1 − 𝑒2)

𝜇𝑒
[
1

2
ln (

√1 − 𝑒2 cos2 𝐸 + 𝑒 sin𝐸

√1 − 𝑒2 cos2 𝐸 − 𝑒 sin𝐸
)

−
1

√1 − 𝑒2
F [𝐸,−

𝑒2

1 − 𝑒2
]

+ √1 − 𝑒2E [𝐸,−
𝑒2

1 − 𝑒2
]] 

𝐻𝑖(𝐸) = 𝐻Ω(𝐸) = 0 

𝐻𝜔(𝐸) = 𝑎𝑡

2𝑎2√1 − 𝑒2

𝜇𝑒
[2 asin√

1 − 𝑒 cos 𝐸

2

− √1 − 𝑒2 cos2 𝐸] 

(7) 
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where F[⋅,⋅]  and E[⋅,⋅]  are the incomplete elliptic 

integrals of the first and second kind, respectively [6]. 

The mean variation of each Keplerian element over one 

revolution then takes the form: 

Δ𝛼 = 𝐻 𝛼(2𝜋) − 𝐻𝛼(0) 
(8) 

Note that evaluating Eq. (8) for 𝜔 leads to Δ𝜔 = 0, so 

only semimajor axis and eccentricity experience secular 

changes under a continuous tangential thrust. These 

expressions assume that 𝑎𝑡  remains constant over one 

revolution, which is a good first approximation for low-

thrust propulsion systems. The value of 𝑎𝑡  at each 

revolution could be updated by accounting for the mass 

loss using the expressions provided by Huang et al. in [9], 

but given the short time span typical of CAMs the effect 

of mass variations is neglected in the current work. On 

the other hand, eclipses can also affect 𝑎𝑡  due to 

restrictions on the power available for the propulsion 

system. Equation (8) can be adapted to the case where the 

low-thrust propulsion system is off during eclipses by 

evaluating it between the eccentric anomalies 

corresponding to the exit from and entry into the eclipse 

region (that is, over the arc where the thruster is active), 

instead of between 0 and 2𝜋. In that case, Δ𝜔  will no 

longer be zero in general. 

Equations (7) and (8) approximate the variations of 

all orbital elements in 𝜶 , except for 𝑀 , over one 

revolution, that is, 𝛿𝑎 = Δ𝑎 , 𝛿𝑒 = Δ𝑒 ,  𝛿𝑖 = Δ𝑖 =
0,  𝛿Ω = ΔΩ = 0, and  𝛿𝜔 = Δ𝜔 = 0. For a low-thrust 

CAM lasting 𝑘 revolutions, the total change in 𝜶 can be 

computed by evaluating Δ𝜶  sequentially for each 

revolution, updating the values of the orbital elements at 

the beginning of the next revolution. Alternatively, 

assuming that the changes in the elements during the 

complete manoeuvre are small compared to their nominal 

values, one can make the approximation 𝛿𝜶 = 𝑘Δ𝜶 , 

where Δ𝜶 is evaluated for the nominal orbit. Although 

less precise, this expression has the advantage of being 

linear in 𝑎𝑡 . On the other hand, for angular intervals 

covering an incomplete number of revolutions the 

periodic terms for 𝜶  would need to be considered. A 

practical example of this can be seen in the study on low-

thrust near-Earth object deflection by Colombo et al. [10]. 

The determination of 𝛿𝑀 is both more complicated 

and more critical for the accuracy of the results compared 

to the other elements, as detailed in [10]. First of all, 𝛿𝑀 

determines the change of phasing at the CA due to the 

CAM, which is the main responsible for the modification 

of the miss distance. Secondly, the phasing of the 

modified CA after the CAM includes both the change in 

𝑀 coming from Gauss’ equations and the modification in 

mean motion [10]: 

𝛿𝑀 = (𝑛𝑓 − 𝑛𝑖)𝑡CA + 𝑛𝑖𝑡𝑖 − 𝑛𝑓𝑡𝑓 + Δ𝑀 
 

where 𝑛𝑖 is equal to the nominal mean motion, and 𝑛𝑓 =

√𝜇 (𝑎 + Δ𝑎)3⁄ . Finally, the previous averaged equations 

do not provide an analytical way to properly estimate Δ𝑀. 

Certainly, expressing d𝑀/d𝑡  in terms of the eccentric 

anomaly and averaging over one revolution in 𝐸  will 

always lead to Δ𝑀 = 0, as both angular parameters share 

the same period. However, Δ𝑀  will show significant 

variations for incomplete revolutions due to the 

contribution of the periodic terms. Therefore, the non-

averaged evolution of the mean anomaly during the 

incomplete revolution at the end of the thrusting phase 

has to be studied to properly characterise the phasing at 

CA. Colombo et al. [10] propose to accurately determine 

the number of complete revolutions and the angle 

covered in the last, incomplete revolution during the 

thrusting phase through the numerical integration of the 

differential equation relating the angular variable used 

for averaging (in their case, the true longitude) and time. 

For the formulation proposed in the current work, this 

amounts to integrating Eq. (6) between the initial and 

final time of the low-thrust CAM. The Δ𝑀 at the final 

time can then be obtained from the numerical integration 

of the last of Eq. (5) during the last, incomplete 

revolution, which requires expressions for the periodic 

evolutions of 𝑎  and 𝑒 . However, this work does not 

currently include the derivation of the periodic 

components for 𝑎 and 𝑒, so the differential equations for 

𝑎  and 𝑒  are integrated together with the one for 𝑀 

instead. The need to numerically integrate the time law, 

Eq. (6), and the Gauss’ planetary equation for 𝑀 during 

the last revolution is what prevents the model from being 

entirely analytical; however, it still provides the 

advantage of having to integrate just one differential 

equation, the eccentric anomaly time law, during the 

whole manoeuvre and another one, the periodic change 

in 𝑀, just during a fraction of a revolution. 

The previous semi-analytical model corresponds to a 

constant acceleration applied along the tangential 

direction. A similar behaviour can be obtained with a 

drag sail, the main difference being that the acceleration 

would depend on the area-to-mass ratio, the atmospheric 

density, and the instantaneous velocity. For circular or 

quasi-circular orbits, both atmospheric density and 

velocity can be assumed to be constant in magnitude 

along one revolution, and the previous expressions can 

be applied directly. For more general cases, the dynamics 

is evaluated using PlanODyn [11], a semi-analytical 

propagator based on the single-averaged form of 

Lagrange and Gauss’ planetary equations. PlanODyn 

also allows to compute the corresponding STM through 

the integration of the variational equations. This 

approach can also be applied to solar sails, for which the 

direction of the acceleration is no longer tangential but 

depends on the satellite-Sun position vector. 

 

3.1 Control strategy 

Because the direction of 𝒂(𝑡) is fixed in all the cases 

considered, the control capacity is limited. The control 
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parameters for the low-thrust propulsion system would 

be the magnitude and starting and ending time of the low-

thrust CAM, or alternatively, the duration of the thrusting 

Δ𝑡CAM  and the lead time Δ𝑡𝑓 between the end of the 

thrusting arc and 𝑡CA. For drag or solar sails control is 

achieved by acting on the area-to-mass ratio, assuming 

that the spacecraft has sufficient attitude control. 

 

4. Test cases and numerical simulations 

In this section, several results for different low-thrust 

CAM strategies are presented. In all cases, a nominal 

close approach with the values reported in Table 1 is 

considered. These values are taken from a previous work 

by the authors on analytical methods for the design of 

impulsive CAMs [1], and are based on the orbital 

elements of PROBA-2 for the spacecraft and statistical 

data from ESA’s MASTER-2009 [12] for the fictitious 

debris. 

 

Table 1. Keplerian orbital elements at CA for spacecraft 

and debris 

 Spacecraft Debris 

𝒂 [𝐤𝐦] 7093.637 7782.193 

𝒆 [−] 0.0014624 0.0871621 

𝒊 [𝐝𝐞𝐠] 98.2443 88.6896 

𝛀 [𝐝𝐞𝐠] 303.5949 142.7269 

𝝎 [𝐝𝐞𝐠] 109.4990 248.1679 

𝒇𝟎 [𝐝𝐞𝐠] 179.4986 1.2233 

 

The achievable deflection in the b-plane 𝛿𝑏  as a 

function of Δ𝑡CAM and Δ𝑡𝑓 is represented in Fig. 1 to Fig. 

3 for different values of 𝑎𝑡 . Thrust acceleration levels 

vary from 10−4 m/s2  to 10−6 m/s2 ; as a reference, a 

thrust acceleration of 10−4 m/s2 corresponds to a force 

of 100 mN for a 1 ton spacecraft. These results show the 

practical feasibility of low-thrust CAMs, provided that 

the manoeuvre begins with a sufficient advance with 

respect to the predicted 𝑡CA. As expected, performing the 

manoeuvre with a higher lead time reduces the required 

thrusting time for a given displacement, leading to lower 

propellant consumption. It is also interesting to note how 

the effect of Δ𝑡𝑓 increases with Δ𝑡CAM. Another feature 

of these solutions is that 𝛿𝑏  appears to vary nearly 

linearly with 𝑎𝑡. This was expected from the qualitative 

analysis of the semi-analytical model, because the change 

in the orbital elements is linear with 𝑎𝑡 , and the 

displacement with respect to the nominal position is 

linear in 𝛿𝜶. This behaviour is better appreciated in Fig. 

4 and Fig. 5, where the ratio between the displacement 

and the perturbing acceleration is shown for a Δ𝑡𝑓 of 1 

and 5 nominal periods of the spacecraft, respectively. All 

the curves fall together except for values of the 

acceleration of 10−2 m/s2, which is substantially higher 

than the current technological limits. The non-linearity of 

the deflection is also affected by the duration of the 

 
Fig. 1. Deflection in the b-plane for 𝑎𝑡 = 10−4 𝑚/𝑠2 

and different values of CAM duration and lead time 

 

 
Fig. 2. Deflection in the b-plane for 𝑎𝑡 = 10−5 𝑚/𝑠2 

and different values of CAM duration and lead time 

 

 
Fig. 3. Deflection in the b-plane for 𝑎𝑡 = 10−6 𝑚/𝑠2  

and different values of CAM duration and lead time 
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manoeuvre, as shown in Fig. 5 for a Δ𝑡𝑓 of five periods 

and a low-thrust acceleration of 10−3 m/s2 . These 

results sustain the hypothesis of linear dependence of the 

displacement with the applied acceleration for typical 

thrust levels and manoeuvre durations. 

 

 
Fig. 4. Evolution of the ratio of displacement and thrust 

acceleration, for 𝛥𝑡𝑓 = 1 period and different durations 

of the manoeuvre 

 

 
Fig. 5. Evolution of the ratio of displacement and thrust 

acceleration, for 𝛥𝑡𝑓 = 5 periods and different durations 

of the manoeuvre 

The choice of a tangential acceleration control law 

should ensure that most of the displacement is due to 

changes in phasing, at least for small modifications of the 

nominal orbital elements. This can be clearly appreciated 

in Fig. 6, where the evolution of the position of the 

displaced spacecraft at 𝑡CA  is represented for CAMs 

lasting between 0 and 5 periods, for several values of Δ𝑡𝑓 

and a fixed perturbing acceleration of 10−4 m/s2. Note 

that all curves start at the origin and begin separating 

from it as the corresponding Δ𝑡CAM  increases. The net 

changes along the geometry axis 𝜉 are very small, with 

the displacement advancing dominantly along 𝜁. 

 

 
Fig. 6. B-plane representation of the evolution of the 

displacement with 𝛥𝑡𝐶𝐴𝑀 ∈ [0, 5𝑇], for 

 𝑎𝑡 = 10−4 𝑚/𝑠2 and several 𝛥𝑡𝑓 

 The accuracy of the semi-analytical approximation 

for semimajor axis and eccentricity is now asserted 

through a relative error defined as: 

err(𝑎) =
𝑎num − 𝑎sa

𝑎nom

 

err(𝑒) =
𝑒num − 𝑒sa

𝑒nom

 
 

 

This error metric has been evaluated for several 

acceleration levels and durations of the thrust arc (note 

that both elements remain constant during the coasting 

arc), and represented in Fig. 7 and Fig. 8 for 𝑎 and 𝑒, 

respectively. The results confirm that the semi-analytical 

approach provides a very accurate approximation of the 

evolution of both elements, for the CAM accelerations 

and durations under consideration. 

 

 
Fig. 7. Relative error of the semi-analytical solution 

for 𝑎 
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Note that the error for 𝑀 has not been included in the 

previous figures. As indicated in Section 3, the averaged 

Gauss equations do not provide accurate enough 

information for 𝑀 , even when including the periodic 

terms. For this reason, the change in 𝑀 due to the CAM 

is computed numerically through the integration of the 

corresponding Gauss’ planetary equation. Searching for 

a more refined analytical solution for 𝑀 is left for future 

works. 

As noted in Section 3, although the results presented 

so far assume a low-thrust propulsion system, they could 

also be extended to drag sails in quasi-circular orbits,  

provided that the changes in velocity and atmospheric 

density along the orbit are small enough. However, the 

doubt remains about how much do drag and SRP affect 

the uncertainties of a spacecraft with a significant area-

to-mass ratio (e.g. a spacecraft equipped with a sail). 

Using PlanODyn, the evolution with time of the 

covariance matrix can be efficiently evaluated, 

leveraging its single-averaged, semi-analytical 

underlying formulation. In the following, the evolution 

of the combined covariance in the b-plane for the same 

nominal encounter in Table 1 is simulated under the 

following conditions. It is assumed that orbit 

determination for both objects is performed at a given 

time Δ𝑡OD  before 𝑡CA , and that both covariances are 

statistically independent so that they can be combined 

through addition. A synthetic covariance matrix at 𝑡OD is 

constructed for each object following the procedure 

proposed in [1], where the covariance matrix for an 

arbitrary true anomaly is estimated from the covariance 

at another point of the orbit. The main idea is to update 

the orientation of the covariance ellipsoid by numerically 

propagating the initial covariance and retrieving the new 

principal directions, while keeping the volume of the 

ellipsoid by assigning to these eigenvectors the 

eigenvalues at the original point (where the orbit 

determination was performed). The reference covariance 

matrix has been estimated by performing the least-square 

fitting of SPG4-generated state vectors with the results 

from a high-accuracy propagator [13]. The particular 

values used for the numerical tests in this paper, 

calculated from the TLEs of the catalogue object with 

NORAD ID 33874, are (units in km and s): 
 

C|ref = 

[
 
 
 
 
 
+1.155460 10−02 −2.314433 10−03  −1.173196 10−03  +4.525295 10−07  −5.679590 10−07  −1.094546 10−05

−2.314433 10−03 +1.914694 10−02 +1.416720 10−02 −1.228650 10−05 −2.553553 10−06 −3.304939 10−06

−1.173196 10−03 +1.416720 10−02 +3.087028 10−01 −2.875013 10−04 −8.618777 10−05 −1.249317 10−06

+4.525295 10−07 −1.228650 10−05 −2.875013 10−04 +2.885067 10−07 +7.994043 10−08 +1.151141 10−09

−5.679590 10−07 −2.553553 10−06 −8.618777 10−05 +7.994043 10−08 +4.599658 10−08 +1.457009 10−09

−1.094546 10−05 −3.304939 10−06 −1.249317 10−06 +1.151141 10−09 +1.457009 10−09 +1.202200 10−08 ]
 
 
 
 
 

 , 

 

and the state vector at orbit determination: 

 

rOD = [+6.9687855258 10+03 +2.0930747167 10+03 −8.0909303360 10+00] km 

vOD = [−1.5353503665 10−01 +4.4753975193 10−01 +7.3566221447 10+00] km/s. 

 

Fig. 9 shows the evolution of size and orientation of 

the covariance ellipse in the b-plane for a range of Δ𝑡OD, 

different levels of uncertainty in the reflectivity 

coefficient 𝑐𝑅 and drag coefficient 𝑐𝐷, and several area-

to-mass ratios. In all cases, the debris has 𝑐𝐷 = 2.1 and 

𝑐𝑅 = 1.8, while the spacecraft is not affected by drag or 

SRP. The main conclusion regarding uncertainty growth 

is that the effect of drag and SRP is small except for cases 

with a combination of very large area-to-mass ratio and 

uncertainties related to 𝑐𝑅  and 𝑐𝐷 . Consequently, as a 

first approximation it would be possible to neglect these 

two effects when dealing with the propagation of the 

covariance matrix, and resort instead to the analytical 

STM in [1]. It is also observed that the covariance tends 

to align with the time axis of the b-plane as the lead time 

for the orbit determination grows. This was the expected 

behaviour, due to the accumulation of phasing-related 

uncertainties. Because the time axis is also the 

preferential direction for maximum miss distance CAMs, 

this will limit the collision risk reductions that can be 

achieve just by increasing miss distance. 

To conclude this section on numerical test cases, 

some brief comments are made on the possibility of 

performing CAMs with sails. Although no numerical 

values will be included here, the authors already studied 

this problem in detail in [1]. By assuming a simple on/off 

control law, that is, sail perpendicular or parallel to the 

 
Fig. 8. Relative error of the semi-analytical solution 

for 𝑒 
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velocity, it was shown that a sail in LEO can perform a 

CAM just by changing its effective area-to-mass ratio in 

order to modify the phasing of the CA. There are, 

however, three key challenges to this approach. The first 

one is that the spacecraft must be able to modify the 

effective area-to-mass ratio of the sail, for instance, by 

changing its attitude. The second one is that there may 

actually be a worsening of the collision risk during the 

beginning of the manoeuvre, depending of the geometry 

of the nominal encounter in the b-plane. And the last one 

is that the decision to make the manoeuvre should be 

made several hours or even days before the predicted 

close approach, reducing the capability of operators to 

wait for more updated conjunction data messages before 

making a decision regarding the need to perform the 

CAM. 

 

 

 

 
Fig. 9. Orientation with respect to the time axis (top) and area (bottom) of the combined covariance ellipse in the 

b-plane, for different area-to-mass ratios. Three uncertainty levels are considered for 𝜎𝐴/𝑚, 𝜎𝑐𝐷
, and 𝜎𝑐𝑅

: A) all zero 

(no uncertainties); B) 1% of their nominal values; C) 10% of their nominal values

 

5. Conclusions  

A new approach for the design of low-thrust CAMs 

has been presented, based on analytical and semi-

analytical methods and the linearized relative motion 

equations. Considering previous results for impulsive 

CAMs, a tangential thrust strategy has been followed. 

The Gauss’ planetary equations have been averaged for a 

constant tangential thrust over one period of the eccentric 

anomaly, providing accurate expressions for the mean 
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evolutions of semimajor axis and eccentricity, and 

showing that the mean evolutions of inclination, 

argument of the ascending node and argument of perigee 

are zero. As already shown in previous works, the 

averaged equation for 𝑀  failed to provide enough 

accuracy to properly describe the phasing change at the 

CA, requiring two numerical integrations: one during the 

whole time span to determine the final anomaly, and 

another during the last (incomplete) period of the CAM 

to find the final 𝑀. The use of this semi-analytical model 

has allowed to reduce the computational cost while 

retaining a sufficient accuracy, as it avoids the need to 

integrate numerically the evolution of all Keplerian 

elements during the whole duration of the CAM. This 

feature is particularly important when performing 

sensitivity analyses or dealing with a congested space 

with many potential conjunctions. 

For those cases where a closed-form approximation 

was not available, like when using drag or solar sails, the 

single-averaged, semi-analytical propagator PlanODyn 

was used to propagate the evolution of the objects and to 

numerically determine the STMs if needed. 

Analysing the evolution of the CAM in the b-plane 

has confirmed the key role played by phasing, with 

displacements along the time axis dominating over 

displacements in the geometry axis. This highlights the 

importance of planning low-thrust CAMs with sufficient 

lead time, contrary to impulsive CAMs that can be 

typically performed in an efficient way up to half an 

orbital period before the predicted encounter. The 

numerical simulations have also shown the negligible 

influence of atmospheric drag and SRP on uncertainty 

evolution for typical sails sizes, and that the covariance 

ellipse in the b-plane tends to align with the time axis as 

lead time grows. 

Future developments will include a deeper 

exploration of the description of 𝛿𝑀, trying to find an 

approximate, time-explicit solution in order to avoid the 

numerical part of the semi-analytical method. Also, 

PlanODyn capabilities for the native computation of 

STMs will be extended. 
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