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ABSTRACT

The study of close approaches and resonant returns features several applications, from
monitoring near-Earth asteroids to the fulfilment of planetary protection requirements when
injecting end-of-life spacecraffts into deep space orbits. Such studies are often performed using
the b-plane, a reference frame where resonant returns are identified by circles, each
representing a unique phasing condition.

The concept of resonant circle is here extended becoming a belt-shaped locus of points, to
consider also quasi-resonant returns as threatening ones. The current theory is extended from
the single body case to the analysis of a cloud of bodies all in a single b-plane representation,
by modifying the initial circular shape to obtain a set of elliptical belts that match the simulated
resonances.

Each simulation is built on high precision orbital propagations, including general relativity
effects in the N-body dynamics with a validated, self-defined and efficient method, which is
mentioned and applied.

The presented results highlight possible analytical developments to extend the original theory
to Monte Carlo analyses of threatening near Earth asteroids, by studying a cloud generated
from the uncertainties on nominal velocity and position, and designing end-of-life manoeuvres
requiring, under a certain confidence level, such spacecraft to not be injected into a resonant
trajectory.
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1 INTRODUCTION

The problem of orbital resonances is meaningful in planetary protection and defence contexts,
becoming particularly important when designing either end-of-life manoeuvres or asteroid
deflection missions. It is crucial to make sure under a high confidence level that the small bodies
under analysis are injected in a proper interplanetary orbit, such that they will not dangerously
approach any planet or relevant body in future epochs. To support this last statement, a
remarkable example is brought by the European Space Agency’s planetary protection
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requirements [1], which requires to design interplanetary injections so that, under a 99%
confidence level, an uncontrollable upper stage after performing the manoeuvre does not impact
with any planet, over 100 years after the injection itself.

To reach such high confidence levels high precision numerical simulations are required.
It is of common knowledge [2] that in orbital motion a small error propagates and increases in
time, with sudden steep growths every time that a fly-by occurs. In this regard, a complete N-
body propagation considering gravitational forces coming from all the Solar System’s planet
may not be accurate enough, particularly if the propagation is to be carried out many years
forward in time. Among the common orbital perturbations general relativity effects must be
considered as well, even if strong gravitational sources are not remarkably close to the
simulated body and especially if close approaches are present, to reach a propagation precision
that basically matches SPICE ephemerides data [3].

Despite such a complete physical model features incomparable accuracy and reliability,
the computational cost remains high for Monte Carlo simulations, where the motion of
thousands of bodies is propagated and moreover the propagation results need to be post-
processed to extrapolate relevant information about resonances. There exists then the need to
seek for reliable analytical tools to study them, in order to obtain reliable predictions even
without performing complete high precision simulations. The propagations may be carried out
in such a way that they run just until the close approach is experienced, switching then the
analysis into an analytical one, which provides remarkable information about future resonant
close approaches or impacts.

This work makes a first step into this direction, trying to extend the already available
resonance theory for 2-body motion to be modelling also other physical and formulation-related
issues. The case studied is the resonance analysis of a cloud of points with gaussian distribution,
generated from Apophis!” position and velocity, obtained from ephemerides data at the 1%
January 2028. The nominal orbit already experiences a deep fly-by and, whether the resonance-
check criterion presented in the development of this work is applied, the interplanetary
trajectory after the close approach is classified as resonant. A cloud generated from such a
condition would then allow to explore also other resonance regions in the b-plane without any
peculiar assumption or loss of generality. Note that such a cloud could also have been built
from an artificial initial point and would have had basically the same structure. Physical
concepts highlighted by experimental results can therefore be considered as general as well.

2 TWO-BODY RESONANCE THEORETICAL CONCEPTS

The first theoretical tools to study orbital resonances have been developed in [4] and [5], whose
concepts used in this work are reported in the current section. All the quantities involved are
non-dimensional, with reference length to be the Astronomical Unit and reference time to be
Earth’s orbital period divided by 2. The interplanetary reference frame considered in this work
is the cartesian equatorial frame centred in the Solar System Barycentre (J2000), although, once
studying resonances in the b-plane, any fixed cartesian interplanetary frame could be
considered, provided that all the quantities involved are expressed consistently.

2.1  Planetocentric velocity and close encounter geometry

The planetocentric velocity U = (U, Uy, U,),U = ||U|| is the relative velocity between planet
and small body [4], its components at the sphere of influence can be defined from the
interplanetary orbital parameters (a,e,i), semi-major axis, eccentricity and inclination

! Apophis is a near Earth asteroid upon which many studies were carried out in the last two decades, since at the
first monitoring it appeared, to be later denied, impacting with Earth at its close approach.
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respectively, the Tisserand parameter T and the two angles (6, @) characterising the incoming
asymptote of the hyperbolic close encounter.
2.2 B-plane visualisation tool

The b-plane reference frame is a cartesian reference frame centred at the current planet centre
of mass, with axes (f A, ), whose components, denoting with v,, the planet’s velocity, in the
planetocentric reference frame can be defined as [6]:

. U ¢ UXwv, .
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A generic point X 4 tesiqn 10 the planetocentric reference frame can then be expressed
in the b-plane reference frame simply by performing

f 2 T
Xp—plane = {77} = [f, 7, f] Xcartesian- (2.2)
¢

Each coordinate in the b-plane representation [ 7] expresses a remarkable property of the
current close approach: ¢ describes the minimum distance between the two interplanetary
orbits, ¢ the time shift with respect to the close approach to happen at the minimum distance, 1
the distance from the pericentre of the hyperbolic planetocentric trajectory. With b being the
impact parameter it holds then that [8]:

§2 4 (2 = p? (2.3)

2.3 Resonant circles

A given resonance is identified by a certain post encounter semi-major axis a; ([4]), so that
after a time defined either as k small body interplanetary orbits or h planet orbits the two bodies
feature again a close encounter at the same position of the first one. a; can then be defined as:

2/3

k
r==) . (2.4)
o (h)
The outgoing asymptote for this resonance condition features an angle 6 defined as
([4D):
1-1/a) — U?
Q! = 2.5
cos 6, U (2.5)

and a given resonant condition can be represented in the b-plane by a circle centred on the {
axis at { = D and with radius R [4]:

&% +¢% — 2D + D? = R? (2.6)
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where, with m to denote the mass of the planet expressed in Sun masses [4], the quantities
involved are defined as:

2c*sin @ c*siné, X

_m H—U
; C—Uz, cos =

D=

2.7)

cos 8y — cos 6’ cos 6 — cos 6

3 RESONANT BELTS — ANALYTICAL FORMULATION

As defined in Section (2.3) the quantity a, models perfectly phased resonances only, i.e. any
consequent close encounter not happening exactly after integer multiples of the orbital periods
would not be treated as resonant return. To apply this formalism to the study of actual closely
approaching bodies it may be worth to extend this definition to include also non-perfectly
phased close encounters as resonant ones.

31 Quasi-resonance definition

The definition of quasi-resonance can be arbitrary, based on what time interval one wants to
consider as identifying an actual resonance. A mathematical definition may be found by looking
first at what cases need to be classified as such [9], obtaining the relative deviation A/, from

the perfect resonance (k/h); as

A = 22— (3.1)

with t to denote the generic orbital period and classifying an object as resonant whether the
quasi-resonance condition |A K/ h| < Ais satisfied, with A directly dependent on the time interval
mentioned above.

Equation (3.1) can then be conceptually reverted, imposing |Ak /h| = A to define two
boundary ratios (k/h);—ruasi_ j» upper and lower respectively, associated with the perfect
resonant configuration (k/h);:

(%)i =(3) (12). (3.2)

3.2 Resonant belts

Looking back to Equation (2.4) one can observe that the ratio (k/h) is directly linked to the
resonant circle parameters, it is then straight forward to say that each of the two ratios from
Equation (3.2) identifies a new circle, and the two together bound the resonant belt, the locus
of the points in the b-plane satisfying the quasi-resonance condition.

4 NUMERICAL PROPAGATIONS

Each sample in the Monte Carlo Simulation has been propagated by accounting for the
gravitational forces coming from all the planets in the Solar System and general relativity
effects.
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4.1 General relativity model

General Relativity effects in the N-Body problem can be described by the following equation
[10] centred at the Solar System barycentre:

L N ) AN e TN v L YA
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where each subscript (i,j, k) = 1, ..., N denotes a generic one of the N massive bodies and their
current state with respect to the centre of the reference frame, p identifies the gravitational
parameter and ¢ stands for the speed of light in vacuum. All the bold quantities in Equation
(4.1) are to be meant as 3 X 1 vectors and the other scalar terms are defined as 7;; = ||rl- — T ||
and v; = ||#,]|. One can note that the acceleration? of body i (#,) linearly depends on the
acceleration of body j (7)), hence Equation (4.1) can be adapted to obtain the acceleration of
all the N bodies at each time iteration of the numerical propagation by simply solving the
augmented linear system

(Isnxan — R)i;aug = Qqug- (4.2)

It is worth to mention that this manipulation relies entirely on the need to implement the
dynamics with its state-space formulation. No further assumption or approximation has been
made (the method can then be used for the most general N-body propagation), the quantity 74,4
is simply the sorted collection in a 3N X 1 column vector of all the accelerations 7, of the N
bodies, whereas all the other quantities involved depend on the state only: ag,, is again a
3N X 1 column vector collecting all the terms on the right hand side of Equation (4.1) which
do not get multiplied by 7, R is a 3N X 3N matrix collecting all the state dependant elements
acting as linear coefficients on 7, and I3yy3y denotes the 3N X 3N identity matrix. Note that
there is no strict rule on how to sort such elements, any collection consistent among 4,4, @gug
and R will produce the correct N-body accelerations sorted in the same way.

By finally assuming the small object to not affect the motion of the N-bodies, its
acceleration can be obtained by solving Equation (4.1) plugging in the N-body accelerations
coming from the solution of Equation (4.2).

This briefly mentioned method has already successfully passed the validation process,
where integrations 100 years forward in time feature a relatively low computational cost, with
results basically identical, uncertainties propagation aside, to NASA’s ephemerides data for all
the test cases analysed.

2 In the current notation the symbol x identifies the first time derivative of x, thus ¥ denotes the second time
derivative.
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4.2 Propagation and Monte Carlo settings

Apophis’ nominal orbital motion was propagated at the turn of the predicted fly-by of Earth
happening on 2029, thirty years forward in time. 2000 samples with symmetric gaussian
distribution have been generated from the nominal initial condition (obtained from ephemerides
data, available in Table 1) by deviating each element of the initial position and velocity vectors
of a relative quantity x, with —0.005% < x < 0.005%.

Epoch Ty Ty 7, Uy vy v,
[MJD2000] [km] [km] [km] [km/s] [km/s] [km/s]
10227 17432973 132874235 49787825 -28.38275  8.74813 2.53606

Table 1: Initial epoch, position and velocity of the nominal configuration, in a cartesian equatorial
reference frame centred in the Solar System’s barycentre.

The propagator integrates the N-body dynamics (Sun, Moon and all the planets in the
Solar System) and accounts for General Relativity as perturbing effect. The states of the N-
bodies are introduced by embedding SPICE toolkit and the related kernel data as databases.

5 RESONANT BELTS — RESULTS AND NUMERICAL VALIDATION
PROCESS

Resonant circles and belts for Apophis’ nominal configuration are plotted in the b-plane at the
entrance of Earth’s sphere of influence. Note that the circle parameters D and R depend
(Equations (2.4), (2.5) and (2.7)) on the body’s planetocentric velocity U and the mass of Earth
m, thus it is possible to obtain such quantities just from the first propagation step inside the
sphere of influence.

In this work the quasi-resonance parameter A is defined as in [9], i.e. A = 0.005. Note
that this value represents both the quasi-resonance threshold for the numerical simulations and
the parameter used to draw the resonant belts.

5.1 From resonant circles to resonant belts

The analytical resonant circles [4] and the derived belts are plotted in Figure 1.

< 10%

G [km]
¢ [km]
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Figure 1: The resonant circles in (a) are now extended to resonant belts as in (b), according to the
definitions presented in Section (3).

As expected, a belt-shaped locus of points bounded by the two newly defined circles is
obtained, with the original perfect resonant circle included within the same.

5.2 Comparison with simulated resonant belts

The validation process is initiated by comparing the analytical resonant belts with the simulated
resonances. All the samples of the Monte Carlo simulation have passed through the quasi-
resonance condition check, to then be plotted together with the resonant belts in the b-plane
representation reported in Figure 1.

< 10%

£ [km] x 10°
Figure 2: The analytical resonant belts are bounded by the black lines and are identified by the light
grey area, whereas the sample properties are classified according to three different colours (the yellow
points satisfy the quasi-resonant condition, the dark grey ones are simple close approaches and the red
point identifies the reference body for the current b-plane).

A sort of regular deviation is observed, with the simulated belts to follow the sequence
of the analytical ones but being shifted in the positive { axis direction.

6 EXPERIMENTAL IMPROVEMENTS AND FUTURE ANALYTICAL
DEVELOPMENTS

Despite the simulated and the analytical belts do not coincide, the regular shift experienced
(Figure 2) suggests that there still must be a way to model such a phenomenon. Two
experimental solution have been found, to be presented in the upcoming sections (6.1) and (6.2).
Finally, a possible development direction is explored in Subsection (6.3).

6.1 Quadratic shift experimental law: elliptical resonant belts

Given a certain resonant circle, the shift from the simulated belt can be modelled as a quadratic
experimental variation law of the radius of the circle itself:

€2 + 7% —2DT+ D? = R?> + ¢, + 0+ 3. (6.1)
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The three coefficients (cq,c,, c3) may be found by imposing three experimentally
variated circles to pass through three correspondent’ simulated belts. Once those coefficients
are determined, with some algebraic manipulation Equation (6.1) can be manipulated to obtain
the canonical equation of an ellipse centred on the { axis, of the form:

2 @G-0?
s+ (62)
with the two semi-axes (4, B) and the { coordinate of the centre C to directly depend on the
original circle parameters (D,R) and the coefficients (cy,c,, c3) through simple algebraic
relations. New elliptical resonant belts are obtained starting from the previous circular resonant
belts, with all of them featuring a dependence on the same coefficients (c;, ¢, ¢3), which have
been obtained by imposing the analytical-numerical correspondence of top, bottom and central
belts. The new resonant belts are plotted in Figure 3, according to the same colour convention
and b-plane representation of Figure 2.

b4 l[‘l'1

6

LA

-2 -1 0 l 2 3
£ [km] «10*
Figure 3: All the simulated and analytical resonant belts now perfectly coincide. Despite being just
experimental, this regular law suggests that, at least for the Apophis’ case, there may be a physically
based analytical formulation of the elliptical resonant belts.

6.2 Experimental cancellation of rigid shift

Within this second experimental approach the rigid part of the shift visible on the plot in Figure
2 has been cancelled by considering, instead of the first numerical step immediately inside
Earth’s sphere of influence, the step of the planetocentric ingoing trajectory which led to the
perfect correspondence of the resonant belt associated with the reference point. The same b-
plane analysis is performed in Figure 4, together with a new model of elliptical resonant belts
with the same shape of what studied in Subsection (6.1), but with the coefficients (cq, ¢y, c3)
computed for the new cloud of b-plane points.

3 The correspondence may be easily found by looking at the regular behaviour of the belts, e.g. the top analytical
belt must correspond to the top simulated one.
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6.3 Suggested future analytical developments

The experimental results presented in Subsections (6.1) and (6.2) allow to make some
considerations about what possible physical phenomena could be introducing such a shift
between simulated and analytical belts.

6.3.1 N-body and 2-body propagation related

Since the expression of the resonant circles [4] has been obtained with a patched conics 2-body
planetocentric model, the rigid part of the shift may be due to the N-body nature of the
numerical propagation carried out even inside Earth’s sphere of influence. The first integration
step inside the sphere of influence of this close approach analysis may be still experiencing
small perturbing effects due to mainly the Sun, but slightly deviating the trajectory from the
one predicted by a 2-body model.

< 10* « 10*
I__.-" I__‘_.,.-‘
-"""'-"--_-__--“""'--.
5 5 -
4.5
4
E
£ 3.5
br

0 10000 20000 -1 0 | 2
¢ [km] ¢ [km] < 10°
(a) (b)

Figure 4: The circular resonant belts in (a) are now much closer to the simulated resonances than in
Figure (2), nevertheless, with respect to the reference point, the furthest elements of the simulated
cloud are observed to experience a increasing shift. The elliptical belts are plotted in (b), even in this
case the elliptical shape seems to be perfectly matching the simulated resonances.

A possible step towards a complete handling of this physical phenomenon may be either
modelling the missing dynamics in the analytical formulation of the resonant belts or
identifying another time step of analysis, where the 2-body almost perfectly approximates the
complete dynamics and which, however, must provide results as reliable as the full simulation.

An improved analytical model may be to find the actual deflection by considering the
most relevant missing effects in the Sun-Planet-Small Body system first. The patched conics
method approximates the planet’s motion, when the small body is inside the sphere of influence
of the same, as a straight line, whereas the planet’s velocity vector rotates of a few degrees
during the close approach occurrence (for example, approximating Earth’s motion with a
circular orbit and with a fly-by total duration of 48h, Earth’s velocity vector would rotate 1.97°
counter-clockwise in the orbital plane). Such an effect is legitimately enhanced for relatively
slow fly-bys and close approaches of the inner planets, where smaller times provide larger
planet’s velocity rotations than the outer ones.
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6.3.2 Radius’ small linear velocity perturbations

The results presented in Figure 4 (b) show that, even after the experimental cancellation of the
rigid part, the shift increases the further the points get from the reference. Such a phenomenon
may be the nature of the analysis itself, given that it involves the actual simulations with their
true resonances and the analytical resonant belts of the reference sample only. Note that, from
Equations (2.1) and (2.2) [6], each sample features its own close encounter time and
planetocentric velocity, factors that make both the b-plane axes and its correspondent resonant
belts unique and different than the reference’s ones.

A possible approach to model the difference in planetocentric velocity is the study of
the effect of small linear perturbations on the radius* of each bound. Figure 5 represents the
square of the radius of the reference perfect resonant circle as function of the planetocentric
velocity, which seems to be smooth enough to expect accurate results whether an approximation
of this kind is performed.

x 107
0.208 | R Y B 1908
| .. |\ .II .l. . h '. |II -I I._ |II 'II |I II. || \ III III | |II |
AN 'I"'.I!"|'|l||'|'|'| I|I |I
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Figure 5: Square of the radius of the perfect resonant circle associated with the reference point. The
axes of magnitude and y component of the planetocentric velocity range from the minimum to the
maximum one among all the elements of the cloud.

Note however that the elliptical shape of the resonant belts arose from a quadratic
variation law over {, thus a proper mathematical link between the linear velocity perturbation
and a law as such would be needed as well.

7 CONCLUSION AND OUTLOOK

A first step to adapt the already available orbital resonance theory to the study of a cloud of
bodies all in the same b-plane representation has been made, particularly by extending the
concept of resonant circle to the one of resonant belt, associated with a more applicable
definition of resonance in the context of planetary protection and defence.

Despite the physical phenomena hidden beneath the simulated resonances, an elliptical
re-formulation of the circular belts was experimentally proven to be an accurate mathematical
model, at least under the analysed ranges of velocities and b-plane coordinates. Such a
formulation extends and includes the 2-body and single point case upon which the whole

4 Note that, as in all the definitions in Equation (2.7) and once fixed the resonance, the only variables
characterising each resonant circle are the planetocentric velocity magnitude and the y component.
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resonance theory was built. In this last case the results of an experimental variation as the one
presented would naturally provide the initial resonant circles.

The regularity and the accuracy of the experimental law modelled suggests that an
analytical derivation of the elliptical resonant belts may be possible, including in the analysis
the N-body dynamics related effects and the different properties of the points composing the
cloud. The formulation of a robust resonance model as such may be eventually used for the
detection of possible resonances, reducing the computational effort that would be needed
whether the full dynamics is simulated, but still obtaining accurate analytical predictions.
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