
Refractionless propagation of discretized light

Stefano Longhi

Dipartimento di Fisica, Politecnico di Milano and Istituto di Fotonica e Nanotecnologie del Consiglio Nazionale delle
Ricerche, Piazza L. da Vinci 32, I-20133 Milano, Italy (stefano.longhi@polimi.it)

Compiled March 13, 2018

Light refraction, i.e. the bending of the path of a light wave at the interface between two different dielectric

media, is ubiquitous in optics. Refraction arises from the different speed of light and is unavoidable in

continuous media according to Snell’s Law. Here we show rather counterintuitively that omnidirectional

refractionless propagation can be observed for discretized light crossing a tilted interface separating two

homogeneous waveguide lattices. c© 2018 Optical Society of America

OCIS codes: 130.3120, 120.5710, 250.5300, 080.1238

Wave refraction, i.e. the bending of the path of a wave
as it propagates in an inhomogeneous medium or at the
interface between two different media, is ubiquitous in
wave physics. Refraction arises from a change in the
speed of the wave and is commonly observed for classical
and quantum waves. In optics, refraction is caused by a
change of the refractive index and is described quantita-
tively by Snell’s Law. A sharp change of the refractive
index is also responsible for wave reflection. While sev-
eral methods are known to avoid wave reflection, such as
the use of antireflection coatings [1, 2], adiabatic index
matching [3–6] or specially-tailored index profiles [7–12],
wave refraction seems unavoidable because of refractive
index change. Material structuring can change light re-
fraction, for example in negative-index media [13, 14] or
in photonic crystals [15, 16] light can be forced to bend
in the wrong way (negative refraction). However, omni-
directional refractionless propagation of light waves at a
sharp or smooth interface separating two different con-
tinuous media is unlikely.
Wave refraction and reflection are not restricted to

light propagation in continuous media; they are observed
also when light behavior is discretized [17], i.e. when
transport arises from evanescent mode coupling in guid-
ing structures. Discrete light propagation plays a cru-
cial role in integrated classical and quantum photonics,
where the flow of light can be manipulated in unprece-
dented ways [17–20]. Like for continuous media, Snell’s
Law for reflection and refraction of light in discrete opti-
cal media can be derived [21], and effects such as anoma-
lous or negative refraction can be observed [22–24]. Re-
flection can be suppressed for both continuous and dis-
crete light propagation. However, in a recent work [25]
it has been shown that reflectionless propagation across
potential barriers or defects can be realized in discrete
optics under much less restricting conditions than those
usually required in continuous media. A natural question
than arises: can we cancel light refraction in discrete op-
tics?
In this Letter we show that, contrary to the common
wisdom that considers refraction unavoidable between
media with different refractive indices, omnidirectional

refractionless propagation can be realized for discretized
light at any arbitrarily-shaped and suitably tilted inter-
face separating two homogeneous waveguide lattices with
different effective indices. The refractionless effect is ob-
served for a sufficiently high effective index mismatch
and for an interface tilted at a suitable angle above the
light cone of the lattice band. Refractionless propagation
is possible owing to the discrete (rather than continuous)
translational invariance of the lattice and disappears in
the continuous limit.
To highlight the major role of discrete versus continu-
ous translational invariance in determining refraction-
less light propagation, let us first recall the phenomenon
of light refraction at a sharp or smooth interface sep-
arating two continuous dielectric media with different
refractive indices n1 and n2 [Fig.1(a)]. The refractive in-
dex n = n(X) varies along the X direction normal to
the interface, with n(X) → n1,2 as X → ±∞. We refer
space to a coordinate system (x, y, z) such that the X
axis lies in the (x, z) plane and is tilted with respect to
the x axis, namely X = x+ vz with v > 0; see Fig.1(a).
Note that, for v ≪ 1, v is the tilt angle of the inter-
face with respect to the z axis. Clearly the problem of
wave reflection and refraction at the interface does not
depend on the tilt v of the interface, since a non vanish-
ing value of v just corresponds to a shift of the angles of
incident, reflected and transmitted waves from the refer-
ence z axis. However, as we will show below this is not
the case of refraction and reflection for discretized light.
Assuming TE-polarized waves at frequency ω, with the
electric E-field parallel to the y axis, E = Ey(x, z)uy,
the Ey amplitude satisfies the Helmholtz equation

∂2Ey

∂z2
+
∂2Ey

∂x2
+ k2

0
n2(x+ vz)Ey = 0 (1)

where k0 = ω/c0 is the wave number in vacuum. For
left-incidence side and above the critical angle (to avoid
total internal reflection in case n2 < n1), an optical
beam propagating at an angle θi with the vertical z axis
[Fig.1(a)] is refracted to the angle θt given by the Snell’s
Law

n1 cos(θi + v) = n2 cos(θt + v). (2)
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For an adiabatic interface, wave reflection can be ne-
glected and the beam is fully transmitted, whereas re-
flection is observed at a sharp interface when the re-
fractive index n(X) changes on the spatial scale of the
optical wavelength. To compare the different behavior
of refraction in continuous versus discrete media, let us
consider the limiting case of grazing incidence, a small
tilt angle v and a small refractive index change, i.e.
n(X) = n1 +∆n(X) with |∆n(X)| ≪ n1, which implies
n2 ≃ n1. After setting Ey(x, z) = ψ(x, z) exp(ik0n1z)
with ψ(x, z) slowly-varying with z over the spatial scale
of the optical wavelength ∼ 1/k0, from Eq.(1) the parax-
ial optical wave equation is obtained

ih̄
∂ψ

∂z
= −

h̄2

2m

∂2ψ

∂x2
+ V (x+ vz)ψ (3)

where we have set h̄ ≡ 1/k0, m = n1 ≃ n2 and where
V (x+ vz) ≡ [n2

1
− n2(x+ vz)]/(2n1) ≃ n1 −n(x+ vz) is

the so-called optical potential. The paraxial wave equa-
tion (3) is formally analogous to the non-relativistic
Schrödinger equation that describes one-dimensional
scattering (reflection and transmission) of matter waves
from a potential step V , provided that the spatial co-
ordinate z is replaced with time [26]. Note that in the
quantum mechanical problem a non vanishing value of
interface tilt v corresponds to a drift of the potential
step with a drift velocity v. The incidence and refracted
angles θi and θt are related to the particle momentum
in the x + vz → −∞ and x + vz → ∞ spatial regions,
and can be obtained from the Snell’s Law (2) in the small
angle limit. Quantum mechanically, the Snell’s Law of re-
fraction corresponds to conservation of the total particle
energy after being transmitted across the potential step
in a moving reference frame where the potential appears
at rest. The fact that wave refraction does not depend on
the tilt v of the interface, i.e. on the drift velocity of the
potential step, is basically related to the Galilean invari-
ance of the non-relativistic Schrödinger equation [27]. In
the moving reference frame

X = x+ vz , Z = z, (4)

where the potential is at rest, the Schrödinger equation
(3) acquires an additional drift term ∼ v(∂ψ/∂X), which
however can be removed after a gauge transformation.
This is possible because of the parabolic shape of the
energy-momentum dispersion relation of plane waves for
non-relativistic particles.
A completely different scenario is found when consider-
ing refraction of discretized light in a waveguide lattice
with a potential step [Fig.1(b)], which is described by
a discrete version of the Schrödinger equation. As dis-
cussed in recent works [25, 28], the discrete Schrödinger
equation with a sinusoidal (rather than parabolic) en-
ergy dispersion relation is not invariant under a Galilean
transformation. Therefore the refraction properties of
discretized light are expected to be deeply modified by
the drift velocity v, i.e. by the interface tilt.

We consider a linear array of waveguides equally spaced
by the distance a along the x-axis. The propagation con-
stant β (i.e. effective mode index) of waveguides is as-
sumed to vary across the array to describe a tilted poten-
tial step, taking the two asymptotic values β1 and β2 as
X → ±∞ [Fig.1(b)]. Let us indicate by cn(z) the modal
amplitude of light trapped in the n − th waveguide of
the array (n = 0,±1,±2, ...) at the propagation distance
z, and let ψ(x, z) be a complex amplitude of continuous
variables x and z such that cn(z) = ψ(x = na, z). In the
nearest-neighbor and tight-binding approximations, the
evolution equation of the amplitude ψ(x, z) is described
by the discrete Schrödinger equation [17–19,25, 26]

i
∂ψ

∂z
= −κ[ψ(x+a, z)+ψ(x−a, z)]+β(x+vz)ψ(x, z) (5)

where κ is the coupling constant between adjacent
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Fig. 1. (Color online) Schematic of optical refraction and re-
flection at a tilted refractive index step (a) in continuous di-
electric media, and (b) in waveguide arrays (discretized light).
Multiple refraction and reflection can occur in the latter case.
In (a) refraction is unavoidable unless n2 = n1, whereas in
(b) omnidirectional refractionless propagation is possible for
β2 6= β1. The inset in (b) shows that light waves in adjacent
waveguides n and (n+1) acquire a longitudinal phase differ-
ence ∆φ = (β2−β1)δ while crossing the interface, from plane
γ1 to plane γ2, where δ = a/v. Refractionless propagation is
found when ∆φ is an integer multiple than 2π.

waveguides and β = β(x + vz) is the propagation con-
stant, which describes a tilted potential step (either
sharp or smooth); see Fig.1(b). For a straight interface
(v = 0), discrete refraction and the discrete version of
the Snell’s Law, previously studied in Ref. [21], can be
readily determined by considering the lattice dispersion
bands for Bloch waves ψ(x, z) ∼ exp[iqx − iE(q)z] in
the two asymptotic and spatially-homogenous regions
x → ±∞ of the array, which are given by E(q) =
E1(q) = −2κ cos(qa) + β1 for x → −∞ and E(q) =
E2(q) = −2κ cos(qa)+β2 for x→ ∞. The two dispersion
curves are the same but displaced by the amount β2−β1.
To observe discrete refraction in the v = 0 case, the two
bands should be partially overlapped, i.e. the constraint
|β2−β1| < 4κ should be satisfied, otherwise the discrete
analogue of total internal reflection (Bragg scattering) is
observed for any incident wave packet. For left incidence
side, we consider an incident wave packet with carrier
Bloch wave number q1 (0 < q1 < π/a), which propagates
transversely along the array with the group velocity
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vg1 = (∂E1/∂q)q=q1 = 2κa sin(q1a) > 0. The refracted
(transmitted) wave packet has a shifted carrier Bloch
wave number q2 which is determined from propagation
constant (energy) conservation rule E2(q2) = E1(q1), i.e.
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Fig. 2. (Color online) Lattice dispersion curves E1(q) and
E2(q) = E1(q) + (β2 − β1) (solid lines) of the two waveguide
arrays far from the interface in the tilted reference frame
(X,Z) for (a) v = 0, (b) v < vc, and (c) v > vc, where vc =
2κa is the largest velocity of propagative waves allowed by the
light cone of the lattice band. The open circle corresponds to
the Bloch wave number q1 of the incident wave [q1 = π/(2a)
in the figure]. The Bloch wave numbers q2 of transmitted
waves, obtained from the conservation law E1(q1) = E2(q2),
are indicated by filled circles. In (a) and (c) there is only
one allowed value of q2, whereas in (b) two values of q2, with
different group velocities, are possible (double refraction). In
(a) multiple roots q2 are disregarded since they differ each
other by integer multiplies than 2π/a, and thus correspond
to the same Bloch wave.

cos(q2a) = cos(q1a) + (β2 − β1)/(2κ). (6)

with the constraint sin(q2a) > 0 [Fig.2(a)]. The trans-
mitted wave packet propagates with the transverse group
velocity vg2 = (∂E2/∂q)q=q2 = 2aκ sin(q2a), which is
generally different than vg1, yielding a bending of the
transmitted beam (discrete refraction [21]). Besides re-
fraction, a reflected wave packet is observed for a sharp
potential step. An example of discrete refraction for
v = 0 at a sharp potential step [β(X) = β1 forX < 0 and
β(X) = β2 for X > 0] is shown in Fig.3(a). The figure
depicts the numerically-computed evolution, along the
spatial propagation distance z, of a broad and Gaussian-
shaped discretized beam with carrier Bloch wave number
q1 = π/(2a). Clearly, the refracted beam is bent after
crossing the potential step according to the discrete ver-
sion of the Snell’s Law. The refraction/reflection problem
of the continuous Schrödinger equation discussed above
is obtained from the discrete Schrödinger equation (5)
by assuming that ψ(x, z) and β(x, z) vary slowly with x
over the spatial scale of the lattice period a and pro-
vided that |β2 − β1| ≪ 2κ. In this limiting case the
difference ψ(x + a) + ψ(x − a) can be approximated
by the second-order derivative ψ(x + a) + ψ(x − a) ≃
2ψ(x, z)+a2(∂2ψ/∂x2), and Eq.(5) takes the form of the
continuous Schrödinger equation (3). Note that in such a
limiting case the discrete translational invariance of the
lattice and associated Bragg reflection at the Brillouin
zone edges are lost since the sinusoidal dispersion rela-
tion of the lattice band is approximated by the parabolic

dispersion curve near the bottom of the band. There-
fore, to observe refractionless propagation in the lattice
we should operate in a regime where the discrete trans-
lational invariance of the lattice is kept and refraction is
sensitive to the transverse tilt v of the interface poten-
tial. We are now going to prove the following property:
provided that the condition

|β2 − β1| ≥ 4πκ (7)

is met, i.e. for a sufficiently high potential step, omni-
directional refractionless propagation of discretized light
across an arbitrarily shaped interface is observed for a
tilt v satisfying the condition

v = |β2 − β1|a/(2π). (8)

Such a general result can be demonstrated by consider-
ing the refraction problem for the discrete Schrödinger
equation in the tilted reference frame (X,Z) defined by
Eq.(4), where the potential step becomes Z-invariant
and Eq.(5) takes the form

i
∂ψ

∂Z
= −iv

∂ψ

∂X
−κ[ψ(X+a, Z)+ψ(X−a, Z)]+β(X)ψ(X,Z).

(9)
Contrary to the continuous Schrödinger equation, the
drift term ∼ v(∂ψ/∂X) on the right hand side of Eq.(9)
can not be removed by a gauge transformation [25, 28],
and like for reflection [25] we expect the refraction prob-
lem to be sensitive to the tilt v. In the (X,Z) refer-
ence frame, a discretized optical wave with carrier wave
number q1 on the left side of the interface has an ef-
fective propagation constant E = E1(q = q1), where
E1(q) = −2κ cos(qa) + vq + β1 is the lattice disper-
sion curve for the homogeneous array at the left side
of the interface [25]. The group velocity of the beam is
given by vg1 = (∂E1/∂q)q=q1 = 2κa sin(q1a) + v with
vg1 > 0. Owing to conservation of the effective prop-
agation constant, the transmitted (refracted) propaga-
tive wave on the right hand side of the interface has a
shifted Bloch wave number q2 satisfying the condition
E2(q2) = E1(q1), where E2(q) = −2κ cos(qa) + vq + β2
is the lattice dispersion curve for the homogeneous array
at the right side of the interface. Hence q2 is found as
the real-valued root of the equation

−2κ cos(q2a)+q2v+β2 = −2κ cos(q1a)+q1v+β1. (10)

The group velocity of the refracted wave is given by
vg2 = (∂E2/∂q)q=q2 = 2κa sin(q2a) + v, and hence the
acceptable solutions to Eq.(10) are those with vg2 > 0.
The real-valued roots of the transcendental equation (10)
can be readily determined by the geometric construction
shown in Fig.2. Clearly, for small values of v, there exist
more than one solutions q2 to Eq.(10) with different and
positive group velocities vg2 [Fig.2(b)]: this means that
the refracted wave breaks into two (or more) wave pack-
ets, i.e. double (or multiple) refraction is found. Such
a result is confirmed by direct numerical simulations of
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coupled-mode equations in the waveguide lattice with a
sharp and slightly-tilted potential step [Fig.3(b)]. Note
that multiple refraction arises here from interfacing two
different waveguide lattices in the single-band approx-
imation, and therefore it is rather distinct than beam
breakup and multiple refraction observed in a homoge-
neous lattice (i.e. without any interface) when several
lattice bands are excited [29]. As the tilt v is increased
above the critical value vc = 2κa, i.e. above the light cone
defined by the lattice band dispersion relation [25], a sin-
gle solution to Eq.(10) with positive group velocity does
exist, i.e. double (or multiple) refraction is prevented. In
this regime also reflection is prevented [25]. Omnidirec-
tional refractionless propagation is found provided that
vg2 = vg1 for an arbitrary value of the Bloch wave num-
ber q1 of the incoming wave. This requirement is readily
satisfied whenever q2 differs from q1 by integer multiplies
than 2π/a. Using Eq.(10) with q2 = q1±2πN/a one then
obtains the simple condition v = |β2 − β1|a/(2πN) for
the tilt, where N is a positive integer. The largest tilt v
is obtained by taking N = 1, which thus yields Eq.(8).
To avoid the appearance of other refracted wave pack-
ets, we should require v ≥ vc, which provides a lower
limit for the height of the potential step given by Eq.(7).
We remark that the refractionless property, stated by
Eqs.(7) and (8), is valid for an arbitrary shape (sharp
or smooth) of the potential step β(X). A simple phys-
ical explanation of the condition (8) can be gained in
the limiting case of a sharp potential step by consid-
ering the phase delay between light waves in adjacent
waveguides when they cross the interface, as illustrated
in the inset of Fig.1(b). Owing to the difference in the
propagation constants β1 and β2, the light waves in the
two waveguides crossing the interface acquire, from plane
γ1 to plane γ2, different optical phases, with a resulting
phase delay ∆φ = (β2 − β1)δ, where δ = a/v is the
distance between planes γ1 and γ2. Such a phase delay
is basically equivalent to a change of the Bloch wave
number q (from q1 to q2), which is responsible for re-
fraction. However, provided that ∆φ is a multiple of 2π,
i.e. ∆φ = 2πN , refraction is cancelled. For N = 1, one
obtains Eq.(8). The constraint imposed by Eq.(7) can
be qualitatively understood by observing that the above
explanation holds provided that coupling between adja-
cent waveguides remains negligible over the propagation
distance δ, i.e. δ = a/v should be much smaller than the
coupling length ∼ π/κ. Since v = |β2 − β1|a/(2π), negli-
gible coupling requires |β2 − β1| ≫ 2κ.
We checked the occurrence of refractionless propagation
in a waveguide lattice with a tilted refractive index step
by numerical simulations of coupled-mode equations.
Figure 4, left panels, shows an example of refraction-
less propagation of a discretized Gaussian beam across
a tilted interface for a few increasing values of the inci-
dence angle, i.e. Bloch wave number q1. A sharp step-
index profile, satisfying the constraint (7), is assumed
(β1 − β2 = 4πκ), and the tilt angle v of the interface is
set according to Eq.(8) (v = 2aκ). Clearly, regardless of

the incidence angle, the transmitted beam is not bent,
i.e. omnidirectional refractionless propagation across the
index step is observed. For comparison, the right panels
in Fig.4 show the numerically-computed beam propaga-
tion for the ’wrong’ tilt v = 2.4κa: while the tilt v is
larger than the critical value vc = 2κa and thus multi-
ple refraction is avoided, the refracted beam propagates
at a different inclination angle, i.e. refraction is not sup-
pressed. Finally, it should be noted that, if condition (8)
for the tilt is satisfied but Eq.(7) is not, one generally
observes multiple refraction, with only one transmitted
beam being not deviated; see Fig.3(b).
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Fig. 3. (Color online) Refraction of a discretized Gaus-
sian beam from a sharp refractive index step β on a waveg-
uide lattice for (a) straight and (b) tilted interfaces. Pa-
rameter values are β1 − β2 = 1.8κ, v = 0 in (a), and
β1 − β2 = 2.6κ, v = |β2 − β1|a/(2π) ≃ 0.4138κa in (b).
The panels show on a pseudo color map the evolution of
the waveguide field amplitudes |cn(z)| versus longitudinal
propagation distance z as obtained by numerical simula-
tions of coupled-mode equations with the initial condition
cn(0) ∼ exp{−[(n + 40)/15]2 + inq1a} and q1a = π/2. The
bold dashed lines depict the interface of the sharp index step
( β = β1 and β = β2 on the left and right sides of the lines,
respectively). In case of a straight interface [panel (a)] there
is only one refracted and one reflected beam. In (b) (tilted
interface) the condition (8) is satisfied, however since the tilt
v is smaller than the critical value vc = 2κa double refrac-
tion is found: while refracted beam 1 is not bent, the other
refracted beam 2 is bent.

In conclusion, refraction is a universal phenomenon
observed when light crosses the boundary of dielectric
media with different optical density. It is at the heart
of important effects, such as light focusing, lensing,
guiding and bending. In effectively continuous media,
refraction can be engineered by material structuring,
and can be even reversed like in negative-index meta-
materials. However, a common belief is that refraction
is unavoidable unless equal effective indices are realized.
Here we have shown that, contrary to such a common
wisdom, omnidirectional refractionless propagation can
be achieved when light behavior is discretized [17].
Our results shed new light into an old phenomenon of
optics for a form of light transport that is becoming
of great relevance in integrated classical and quantum
photonics [17–20].

The author acknowledges hospitality at the IFISC
(CSIC-UIB).

4



n
o

rm
a

liz
e

d
 p

ro
p

a
g

a
ti
o

n
 d

is
ta

c
n

e
 κ
z

0

60

30

lattice site n=x/a

0

1

0

60

30

0-100 100

(a)

β=β

β=β

2

2

(b)

(c)

0

60

30

lattice site n=x/a
0-100 100

0

1

0

1

β=β1

β=β1

β=β1 β=β1

β=β1

β=β1

β=β2
β=β2

β=β2

β=β2

Fig. 4. (Color online) Left panels: Refractionless propaga-
tion of a discretized Gaussian beam across a sharp refrac-
tive index step β on a waveguide lattice for parameter values
β1−β2 = 4πκ, v = 2κa and for a few increasing values of the
Bloch wave number q1 of the incident wave: (a) q1 = π/(6a),
(b) q1 = π/(4a), and (c) q1 = π/(2a). The panels depict on a
pseudo color map the evolution of the field amplitudes |cn(z)|
versus longitudinal distance z for an initial Gaussian-shaped
beam distribution cn(0) ∼ exp{−[(n + 40)/15]2 + inq1a}.
Right panels: same as left panels, but for a different tilt of
the interface (v = 2.4κa). Note that, since in both left and
right panels the tilt v is equal or larger than the critical drift
vc = 2κa, there is not any reflection [25].
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20. T. Meany, M. Gräfe, R. Heilmann, A. Perez-Leija, S.

Gross, M.J. Steel, M.J. Withford, and A. Szameit, Laser
& Photon. Rev. 9, 363 (2015).

21. A. Szameit, H. Trompeter, M. Heinrich, F. Dreisow,
U. Peschel, T. Pertsch, S. Nolte, F. Lederer, and A.
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Tünnermann, Fresnel laws in discrete optical media,
New J. Phys. 10, 103020 (2008).
22. T. Pertsch, T. Zentgraf, U. Peschel, A. Bräuer, and
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