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1. Introduction

Monitoring technologies based o
in cooperation with infrastructure-b
be vehicles have been emerging, in recent years, both as self-working solutions and
systems (Yoon et al., 2007; Kerner et al., 2005; De Fabritiis et al., 2008; Wei et al., 
 based on a set of probe vehicles equipped with satellite positioning and wireless

HSPA and LTE – to periodically send position-speed data to a central unit at a con-
sed by the central unit to draw the traffic information needed for the specific appli-
atabase 

to enable identification of anomalies or incident detection, fleet management, and dynamic navigation based on real-time
traffic conditions (Yang, 2005; Sethi et al., 1995; Treiber et al., 2010).
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For many services in transport systems, reliable speed data are useful to estimate or predict the travel time along a route, 
which is a sequence of road segments where traffic conditions usually change over time. In fleet management operations, for 
example, useful information for both operators and end users is the travel time for on-time pickup and delivery operations, if 
the freight distribution service is managed to comply with time constraints. A reliable baseline for speed data along the road 
network should be exploited to meet the time requirements. Furthermore, any event that may cause a delay in traffic is 
important to be detected in order to give update information on the speed observed along the route. In this context, the com-
putation of typical speed patterns characterizing the traffic behavior over the various road sections and the detection of 
anomalies causing relevant delays are useful tools for the fleet management.

During the last years, the interest in FCD has been sensibly growing thanks to the diffusion of Global Positioning System 
(GPS) navigators – enhanced in Europe with the European Geostationary Navigation Overlay Service (EGNOS) - and location-
enabled smartphones, as well as to the impressive surge of location-based services. An increasing number of dedicated com-
panies/agencies is now dealing with data collection for fleet management, accident data recording, and vehicle insurance. 
The growing number of monitored vehicles, together with the extended connectivity provided by new communication sys-
tems (connecting vehicles to the central unit and also vehicles to vehicles) are making FCD a leading, sometimes even con-
solidated, solution for traffic monitoring.

One of the main problems, however, is the reliability of data collection which may be limited by the local penetration rate. 
In probe systems, sampling of traffic parameters is non-uniform and also time-varying due to the probe mobility. Resolution 
depends on a combination of factors including number of probes, traffic demand patterns, traffic conditions and road features 
(Kwon et al., 2007; Vandenberghe et al., 2012; Herrera et al., 2010; Rahmani et al., 2013; Fangfang et al., 2013). In such a 
com-plex scenario, data processing represents the key engine for integrating the sparsely sampled data into accurate and 
reliable traffic information, overcoming as much as possible the limits due to low penetration rate and/or non-uniform 
sampling.

In this paper we focus on processing of floating truck data (FTD) collected by a fleet of heavy-duty vehicles over the Italian 
A4 motorway, connecting Turin to Venice. We propose a procedure for the computation of mean speed patterns character-
izing the typical traffic conditions along the road, to be used for construction of historical database and for detection of 
anomalous traffic events. GPS position-time measurements provided locally and instantaneously by single vehicles are pro-
cessed to estimate the mean speed that results from aggregated vehicles in each road segment and each timeslot. Different 
methods based on the study of traffic daily patterns have been proposed in the literature (Rakha et al., 1995; Wild, 1997; 
Chrobok et al., 2004; Chung, 2003; Kerper et al., 2011) using data coming from either probe vehicles or loops. The analysis 
considered in this paper, based on probe vehicles, is particularly challenging as the available dataset relies mainly on truck 
measurements, it has moderate dimensions (3 months) and low penetration rate (estimated around 0.25% in capacity con-
dition), resulting in a fragmented observation of the velocity field. To overcome this limit, we propose to estimate the typical 
velocity profile in each road segment using a clustering procedure that exploits data from probes in different segments, rely-
ing on the fact that speed profiles usually share common features over large sections of the road. A preliminary analysis is 
carried out to select reliable vehicle data, match the data samples to the road segments and compute the mean speed. A clus-
tering procedure based on the Ward’s method (Weijermsrs et al., 2005) is then applied for aggregating the road segments 
into homogeneous classes of speed trends and compute the typical speed profile associated to each class of segments. We 
also propose to exploit these typical profiles as reference for detection of anomalous traffic conditions and unusual events 
causing relevant delays.

Our main aim is to ascertain if typical speed patterns can be identified, even in scenarios with a fragmented observation of 
the velocity field due to low penetration rate, relying on the fact that speed profiles often share common features over sev-
eral road segments. This basic idea allows the computation of a reliable set of speed profiles using a conventional clustering 
approach as the Ward’s method. Other methods could be tested as well, but the evaluation of their performance is out of the 
scope of this paper, as the focus here is on the overall procedure not on the specific clustering component.

Even though the analysis is based on truck measurements and thus restricted to working days where heavy traffic is 
allowed (week-ends or holidays are excluded), the proposed method can be easily applied to extended datasets including 
also other vehicle-type data, if available from other sources. The analysis is validated using information broadcasted by the 
national provider of road traffic information, named CCISS (Centro di Coordinamento Informazioni sulla Sicurezza Stradale), by 
collecting all the anomalous events registered by CCISS over the considered motorway. The comparison to CCISS data shows 
that the anomalies recognized using the reference profiles correspond to real congestion events, confirming the reli-ability of 

the proposed approach.
2. Data analysis: method and procedures

The analysis herein considered is based on FTD provided by a system designed and managed by the Italian company 
W.A.Y. (Torino, Italy). Data are collected by an operation center which has got one of the most extended databases in Italy in 
this field; it receives signals from various fleets equipped with on-board devices, for a total number of more than 13,000 
probe vehicles. Each road is divided in segments and data from any vehicle are mapped to a road segment only if the vehicle 
is localized within the Italian motorway network or an important highway, such as a ring road. The scenario considered in 
this paper refers to the motorways of north Italy as shown in Fig. 1. A preliminary analysis of these data has been presented in 
Pascale et al. (2013).



Fig. 1. Map of north Italy motorways and look on A4 (Turin–Venice) highway, section Milan–Brescia. Circles denote the vehicle velocity samples matched to 
highway segments.
Objective of this work is to derive from vehicle-based information the space-based information concerning the historical 
speed trends along defined roads on the map. As shown in Fig. 2, the process starts from speed samples collected at given 
time instants and locations by the on-board devices and forwarded to the central unit. Speed samples are used together with 
map information to compute daily velocity trends over the road network.

For a complete characterization of the speed pattern, a daily speed profile has to be computed for each road segment. To 
this aim, taking into account the limited amount of measurements available per each segment and timeslot, we propose an 
aggregation and filtering process based on clustering of speed data: segments are clustered in few classes with similar speed 
behavior and the speed profile of each class is computed by averaging the data collected in all segments of the class. An 
example of velocity map obtained by this process for the road section in Fig. 1 is shown on the bottom of Fig. 2. Once the 
typical speed profiles have been computed, these profiles are used as a reference for identification of anomalous events.

The main steps of the proposed processing methodology are summarized in Fig. 3. The procedure starts with the compu-
tation of a preliminary speed profile for each road segment, referred to as the segment speed profile (steps A,B,C,D). A classi-
fication procedure (step E) is then conducted to recognize the typical daily trends (referred to as the typical speed profiles) and 
to identify anomalous traffic behaviors (step F). Details of the processing steps are given in the following subsection.
2.1. Data provided by the FCD system

Each motorway is divided into a set of segments, with length 100 m 6 lS 6 1300 m (on average 500 m), and indexed in the 
direction of traffic as s = 1,2,. . .,NS. Temporal sampling ranges from 20 s to 3 min. Probe vehicles send to the central unit an 
array of data composed by: time stamp tm [data, hh:mm:ss], vehicle ID [#], GPS position [lat, long], instantaneous velocity 
[km/h], incremental distance covered by the vehicle [km]. At the central unit, raw vehicle data are associated to the closest 
segment on the geographical map based on the computation of the distances between the GPS vehicle position and the seg-
ments. Velocities after map matching, v [km/h], are shown in Fig. 1 for the motorways of north Italy. For the subsequent anal-
ysis we focus on the section Brescia ? Milan (BS ? MI) of the motorway A4, as highlighted in the box, covering a total 
number of NS = 166 segments. This road section has a length of more than 90 km and provides a challenging testing scenario 
thanks to the variegated and highly time-varying traffic behaviors that are observed along the way, ranging from suburban 
areas to congested urban sections in the area of Milan.

For the analysis we consider two different datasets collected over the motorway A4 BS ? MI: the first obtained by a set of 
5327 truck paths during the months of February, March and May 2011; the second one collected by a set of 3882 truck paths 
in the month of June 2011. The former set is used in this section to develop the processing method and in Section 3 to com-
pute the typical speed profiles; the latter is used in Section 4 for validation on specific applications.
2.2. Processing steps for computation of speed profiles

We focus our attention on the first dataset. The dataset was obtained starting from data of vehicle positions and velocities 
after the map-matching procedure. From the 3-months data we extracted a subset by selecting 63 working days and per-
forming a consistency check. To give an idea of sample size, Fig. 4 shows the number of monitored vehicles for all segments 
during Mondays; data are aggregated over 1 h. The overall penetration rate has been estimated to be approximately 0.25% in 
capacity condition.
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Fig. 2. Scheme describing the stream of data from probe vehicles to the central unit, which processes the data in order to extract the speed map information 
for the selected road section A4 Brescia ? Milan.
For the computation of speed profiles associated with segments, we use only data collected by vehicles that have been 
active for a time window of at least 30 min, in order to exclude unreliable data from vehicles with either sporadic or non-
constant transmission rate. First processing steps are those described in blocks A and B of Fig. 3. We compute the veloc-ity 
sample of vehicle i at time tm as the ratio between the incremental distance covered from the last measurement, Dsi,m, and 
the time interval, Dti,m = tm – tm � 1, elapsed from the last measurement: vi,m = Dsi,m/Dti,m. We do not use instantaneous veloc-
ity from GPS data as it is not averaged over Dti,m and thus it may be less reliable for our analysis. The time interval Dti,m in the
considered FCD system can vary over time and from vehicle to vehicle; typically it is 20s 6 Dti,m 6 3 min. The evaluated 
velocity is assigned to the two segments associated with the measurement (i.e., the segments matched with the GPS posi-
tions at times tm-1 and tm) and also to the intermediate ones that the vehicle passed during the time Dti,m. This step prevents 
that fast vehicles generate less samples per segment than slow vehicles.

As regards vehicle filtering (blocks C in Fig. 3), we divide vehicles into classes based on their maximum detected speed, vi
max, 

using ranges of 10 km/h, in a period of 2 months along the same highway. The large extension of the observed time
period ensures a reliable estimation of the free flow speed for every detected vehicle.

Recalling that most of the probes of the considered system are trucks, to avoid biased results due to outliers with faster or 
slower vehicles (e.g., few cars belonging to the probe fleet), we exclude from the analysis vehicles that have not a homoge-

neous behavior. We thus focus our attention on vehicles with 80 km/h 6 vi
max 
6 100 km/h, which represent the two classes 

with more vehicles in our dataset.
Next step (block D in Fig. 3) is the computation of an average speed vs. time profile for each segment. Speed samples pro-

vided by the vehicles are associated with the segments by map matching. Then, speed samples are aggregated in timeslots 
and averaged. The time interval used for aggregation is T = 15 min or T = 30 min, depending on the specific analysis (different 
analyses will be carried out throughout the paper, as explained in next section). We observe that in case of low traffic vol-
ume, the sample size obtained with T = 15 min could be inadequate for a proper data analysis, but this scenario is not rel-
evant for our applications as in free flow conditions the traffic speed is usually well known.

We indicate the average velocity profile on segment s at day d by the NT � 1 vector vs
d, which collects the NT aggregated 

velocity samples for the day (e.g., for a 24 h period, NT = 96 for T = 15 min and NT = 48 for T = 30 min). The overall velocity map 
for day d, representing the velocity versus time and segment, is obtained by collecting the NS profiles for all the



Fig. 3. Main steps of the processing method for the evaluation of typical speed profiles and the identification of anomalies.
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Fig. 4. Average number of monitored vehicles on Mondays.
segments into a NT � NS matrix Vd. Examples of speed maps are shown - averaged over the days – on the bottom of Fig. 2 and 
in Fig. 5 for the two classes of vehicles 80–90 km/h and 90–100 km/h. In case of poor data, 2D linear interpolation is used to 
obtain a complete map.

The last step for the speed pattern computation is the clustering of profiles (step E in Fig. 3). This operation aims at aggre-
gating the NS velocity profiles associated to the NS road segments into NC 6 NS classes or clusters, each collecting segments 
with similar traffic behavior. The typical speed profile associated to class c, for c = 1,. . ., NC, is obtained as the average of all the 
segment profiles vs

d belonging to that class.
For clustering, we adopt the Ward’s method (Weijermsrs et al., 2005) which aggregates the speed profiles in homoge-

neous classes by constructing a tree based on a ‘‘bottom up’’ approach. Different clustering methods can be found in the lit-
erature (Gelbard et al., 2007). Here we select the Ward’s one as it is a hierarchical approach that does not require the 
knowledge of the number of clusters in advance as it follows directly from the clustering process. At the beginning, a set of NS 

clusters is defined, one for each profile vs
d. Then, clusters are paired on the basis of the minimum inner square distance metric. 

Pairing of clusters is repeated, until all profiles are enclosed in one single class. The number of clusters is decided putting a 
threshold on the desired inner squared distance. Details of the procedure can be found in Pascale et al. (2013).

Daily speed profiles obtained by the above procedure are presented and discussed in next section. The study is carried out 
considering speed data averaged over the days and also day-specific data, to analyse both the mean daily traffic behavior and 
the possible variations over the days. We make a first analysis using 24-h data, then we focus the attention on an interesting 
and smaller time period in the morning hours (5–12 am) where the speed variability is relevant.
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Fig. 5. Velocity maps [km/h] obtained by averaging over days and aggregating with T = 15 min the data from vehicles in the classes 80–90 km/h and 90–
100 km/h. Black holes indicate lack of data.
3. Analysis of speed profiles

Segment speed patterns are analyzed in the following using two levels of data aggregation. In the first one, see Section 3.1, 
the speed data are averaged over the 3-month observation period (ND = 63 days excluding week-ends and holidays), yielding 

a two-dimensional (2D) map V2D of velocity vs. day time and segment. This 2D dataset is the average of the maps Vd over 
the ND days: V2D ¼ 

P
d

N
¼D

1Vd=ND. For this first analysis, a relatively high temporal resolution is used for the aggregation, T 
= 15 min (leading to NT = 96 samples), since an adequate sample size can be assured by the observation over several days. 
The result-ing map V2D, with dimensions 96 � 166, is shown in Fig. 6. On the top of the figure a scheme shows the main 
geographical points of the related motorway section.

The velocity map V2D is used as input of the clustering procedure in order to recognize the typical ‘‘macro’’ traffic behav-
iors that characterize the selected motorway and compute the related speed profiles. Some of these patterns can be easily 
recognized also by visual inspection of the speed map in Fig. 6, which shows that groups of road segments share similar 

behaviors. In particular, the segments in the first section of the road (segments 1–90 and 130–142) are all in free flow con-
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Fig. 6. 2D velocity map [km/h] obtained by aggregating with T = 15 min and averaging over 63 days, using data from vehicles with 80 km/
h 6 vmax 6 100 km/h.
ditions apart from an area (segments 91–129) where a decrease in speed can be observed during morning peak hours due to 
congestion. On the other hand, the segments after the toll station (segments 148–166) correspond to the north ring of the 
city of Milan and are highly congested, especially during morning and afternoon rush hours. Finally, a systematic decrease of 
the speed can be observed – at any hour – in a third area (segments 143–147), close to the toll station, where vehicles slow 
down before approaching the tollgate. These main traffic behaviors will be automatically recognized by the clustering pro-
cedure which aggregates segments with similar characteristics and evaluates the typical speed profiles as the average of the 
aggregated data. The procedure will also be applied to the normalized 2D map obtained by normalizing the speeds to the 

segment free-flow speed, in order to catch similar time-dependent behaviors for segments with a speed offset in time series. 
The second analysis, presented in Section 3.2, extends the study by recognizing typical traffic behaviors also over different 

days. In fact, traffic profiles may change not only from segment to segment, but also from day to day. As an example, for the 
selected A4 motorway BS ? MI, the traffic observed during Monday morning is different from other week days due to people 
that commute toward Milano for the week; furthermore, anomalous events (e.g., accidents) may cause different behaviors in 
specific days. A detailed analysis is thus carried out to study these patterns, by applying the clustering procedure directly on 
the three-dimensional (3D) velocity dataset that collects the daily speed profiles associated with the 166 segments and

all the 63 days: V3D ¼ Vd
n oND

d¼1
. In other words, the dimension ‘‘days’’ is added to the 2D map in Fig. 6, yielding the

NT � 166 � 63 speed map V3D shown in Fig. 7. Since for the number of available observations per day is moderate, a larger 
timeslot is used in this case for aggregation, T = 30 min (leading to NT = 48 time samples per day). The analysis is focused on a 
time window that covers the morning rush hours.
3.1. Segment clustering on 2D speed dataset

   The clustering procedure applied to the velocity map averaged over the days, V2D, brings to the identification of 7 clusters, 
as depicted in Fig. 8. The speed profile associated to each cluster – cluster profile or typical profile – is obtained by averaging



Fig. 7. 3D velocity map [km/h] obtained by aggregating on periods of T = 30 min.
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This segment classification gives a pretty clear and simple characterization of the traffic conditions over the motorway, 

th a small number of distinctive patterns, as depicted in Fig. 9. We can refer to the scheme on the top of Fig. 6 to under-
nd the geographical meaning of the classification output. A number of regions can be recognized. Clusters 3 and 4 char-

terize the two free flow areas in the map, in particular cluster 4 indicates area where a lower speed is observed during rush 
urs in the morning. Clusters 1, 6 and 7 describe the area close to the toll station where vehicles slow down. Finally the 
rth ring of Milan is associated with clusters 2 and 5 where congestions are observed during rush hours.
Now we apply the clustering procedure to the 2D velocity map obtained by normalizing over the free flow speed and 

eraging over the 3-month period. The procedure is applied to a smaller time period (5–12 am) including the rush hours and 
ur clusters are selected. Fig. 10 shows the identified clusters and Fig. 11 the corresponding cluster speed profiles. A better 
scription of the different traffic behaviors can be observed in this case, as the four main regions previously described can be 
ore easily recognized. Speed profiles are clearly identified, since their overlapping is negligible, and the standard deviation 
smaller than the one of the disaggregated case.
. Segment clustering on 3D speed dataset

The clustering procedure is here applied to the 3D dataset V3D in Fig. 7, limiting the analysis to the morning hours from 5 
 12 am. The resulting classes and the associated typical profiles are in Fig. 12 and Fig. 13, respectively.
Fig. 12 shows the classification of data (segments and days) in 5 clusters. The cluster speed profiles and the related stan-

rd deviation ranges are in Fig. 13. The standard deviation observed in each cluster is larger in this case as the profiles are 
t averaged over days and a wider variety of traffic behaviors is observed. In spite of this, it is interesting to observe that 
sters are roughly preserved over different days, i.e. the classification is almost the same along the axis of days, apart from 

me local fluctuations and anomalous events. The space description of the motorway reveals a wider background zone 
ere cluster 1 can be applied, and a reduced zone classified as cluster 2, which has a profile with only a short speed decrease 

 25% at 7 am. The other three clusters describe heavy congestion phenomena which are mainly located at the final part of 
e motorway (around segment 143) where the toll station operations and suburban trips to Milan are relevant. How-ever, in 
. 13 it is possible to note that cluster 5, which has a speed reduction greater than 30% between 7 and 9 am, is assigned also 

 other segments in sporadic days. These cases are likely to be related to anomalous events, as they fall in areas normally 
signed to clusters 1–2.
We use the CCISS2 data, published on the web for describing traffic events on the A4 motorway MI ? BS, to verify the anom-
us events discussed above. Four real traffic events detected by CCISS can be actually associated to these anomalies, as 

ported in Fig. 13:
2 Traffic Event Data published on the web (http://www.cciss.it/) have been kindly provided for the period analyzed by the Direzione generale per la sicurezza 
adale (Div. 5), Ministero delle Infrastrutture e dei Trasporti (I).

http://www.cciss.it/
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Fig. 8. Motorway segment classification by clustering of 2D velocity data.
1. Wide jam between Palazzolo (km 195.2) and Rovato (km 203.4) due to an accident, at 6:43, on February 3rd 2011.
2. Wide jam – 8 km long – between Seriate (km 181.1) and Capriate (km 162.7) due to an accident, at 6:20, on February 25th

2011.
3. Accident between Seriate (km 181.1) and Bergamo (km 174.5), at 6:36, on March 10th 2011.
4. Accident between Rovato (km 203.4) and Palazzolo (km 195.2), at 8:43, on March 10th 2011.

We can conclude that by analysing single-day speed time series, the typical speed patterns of the motorway can be better
identified and it is also possible to recognize anomalous events.
4. Segment classification and its use for road traffic applications

One of the most relevant traffic engineering applications, based on the synthetic information displayed in the previous 
section, is the easy identification of critical zones along the motorway where the traffic behavior needs to be better observed, 
e.g. by an infrastructure-based monitoring system with fixed detectors. Indeed, in the analyzed scenario only a part of the 
motorway reveals a variable speed over time (clusters 2 to 4 in Fig. 11) while for many segments (more than 80) the speed 
behavior of traffic is almost constant and does not need to be further observed or modeled (clusters 1, associated to free 
flow). Since fixed installations for traffic monitoring usually require not negligible resources (Pascale et al., 2012), a useful 
support for sensor location can be derived by this type of analysis based on floating vehicle data.
    Another possible application of segment speed profile classification in transport modeling is large scale network building, 
where reference values are usually needed to calibrate cost functions and vehicle speed, in order to estimate road
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Fig. 10. Motorway segment classification by clustering of normalized 2D velocity data on morning hours 5–12 am.
performance on average or in most frequent cases for the different elements of the road network. Also in medium/short term 
traffic control applications, information about speed along the road may be useful for many reasons, such as travel-time esti-
mation for driver information or vehicle routing operations in freight delivery, where the delivery time can be estimated on 
the base of segment speed identification and updated in case of anomaly detection.

Two of the above mentioned applications, anomaly detection and travel-time estimation, are discussed more in detail in 
the following subsections.
4.1. Anomaly detection using cluster profiles

We consider here the anomaly detection step enclosed in block F of Fig. 3. The cluster speed profiles provided by the clus-
tering method represent the typical behavior of speed on the road in terms of mean value and variance. Thereby, the com-
parison between an incoming speed profile and the typical one for the same segment enables the automatic recognition of 
anomalous situations. As required in detection theory, we need to define a threshold for this process.

We focus our attention on the sequence of segments from s = 1 to s = 120 where we can recognize essentially two clusters, 
indexed as 1 and 2 in Fig. 12. We begin our analysis by comparing - in terms of Euclidean distance – the typical normalized 
speed profile associated to cluster 1 shown in Fig. 13, with the normalized segment speed profiles of all days. Fig. 14 shows 
the Euclidean distance of the profiles on days of March, April and May. If we compare Fig. 14 with Fig. 12 we can observe that 
the four anomalies highlighted as red circles in Fig. 12 can be recognized when the distance is above 1 for at least 10 con-
secutive segments. If we analyse cluster 2 we observe a similar behavior. Automatic anomaly detection, thereby, could be 
performed by joint threshold detection over a set of consecutive segments.



Fig. 13. Cluster speed profiles associated with the 5 clusters in Fig. 12. Shaded areas represent the standard deviation range.
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Fig. 12. Segment-day classification by clustering of 3D velocity data on morning hours 5–12 am. Red circles indicate anomalies manually verified using
CCISS data. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
For validating the proposed detection approach, we use the second dataset collected in June (as described in Section 2.1). 
In Fig. 15 the distance between each speed profile coming from the validation dataset and the cluster-1 typical profile is 
shown. Gray areas represent weekends and holidays that are not taken into account in the analysis, while the red square
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marks the area in which the detection process gives positive results. The three white circles indicate the sequence of seg-
ments that in a specific day obey our conditions. By cross-checking these results with the CCISS data, we find that the three
detected areas can be related to the following events registered by CCISS:

Event 1. Jam of 3 km length due to a vehicle broken down between Grumello (km 189.7) and Seriate (km 181.1), at 8:08 on
June 10th 2011.

Event 2. Two causes can be related to this event:
a. Accident between Brescia Ovest (km 217.3) and Ospitaletto (km 208.4), at 11:12 on June 22th 2011.
b. Roadwork between Brescia Ovest (km 217.3) and Ospitaletto (km 208.4), at 10:46 on June 22th 2011.

Event 3. Two causes can be related to this event:



Fig. 16. Estimated speed [km/h] (clustering on 2D and 3D data) on segments [Id.] vs. observed speed for 20 days in June. Results are reported for 7 am (top)
and 8 am (bottom).
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Fig. 17. Estimated vs. observed travel time for 20 days in June.
a. Jam due to a vehicle broken down between Brescia Ovest (km 217.3) and Ospitaletto (km 208.4), at 6:20 on
June 30th 2011.

b. Vehicle burning between Ospitaletto (km 208,4) and Rovato (km 203.4) at 5:51 on June 30th 2011.

From the above results we can conclude that the anomalies recognised by the detection procedure correspond to real con-
gestion events. This confirms that the proposed methodology can actually be useful for providing reference profiles for anom-
alous event detection.
4.2. Speed and travel time estimation for freight delivery operations

In many applications in transport systems, speed information is used to predict the travel time along a route, which is 
composed by a number of links where traffic conditions frequently change over time. In fleet management operations, for 
example, a reliable estimate of a vehicle travel time for delivery and pickup operations can be useful if the service is estab-
lished to comply time constraints. To this aim, in the following sections two tests are reported on the estimation of speed and 
travel time data, for selected days in June 2011, in the A4 motorway BS ? MI. Estimates are obtained using the typical speed 
profiles provided by the clustering results based on 63 working days in February, March and May 2011.

The comparison between the actual speed and the corresponding estimate obtained using the typical profiles is shown in 
Fig. 16, over 20 days of June, in each of the A4 segments, at 7 am (top figure) and 8 am (bottom figure). Estimates are drawn 
from the typical profiles resulting from the 2D and 3D velocity datasets as described in Sections 3.1 and 3.2. In the 2D case, 
the speed estimate is read directly from the cluster profile associated to the segment. In the 3D case, for any segment the 
speed pattern of the most frequent cluster observed over the 20 days has been chosen for the two selected time instants. It is 
possible to note the difference in the two time slices, where the congestion phenomena observed in segments around the 
100th at 7 am move mainly in the downstream part of the motorway (after the 140th segment) at 8 am. If we look at the 
diagram at 7 am, the congestion is confirmed by the low speed values around the 100th segment (approx. 65 km/h for 3D and 
80 km/h for 2D clustered data). On the other hand, we can notice in the 8 am plot that the speed at the 100th segment is 
increased to the free flow value, while in the downstream segments (after the 140th), the speed is lower than the one 
observed at 7 am (e.g. the 3D clustered data show that the speed of 65 km/h observed at 7 am is never reached at 8 am). The 
3D map clustering, although also the 2D map clustering captures the global trend, better predicts the location of these 
phenomena.

Since the use of speed data is mainly for travel time estimation in practical applications, in the following we assess the 
accuracy of the estimate of the travel time for a journey along the A4 motorway using the typical speed profiles for estima-
tion. The peak hours are selected to perform the test. For the time slice 7 am, from Brescia to Milan (BS ? MI), the journey 
duration is estimated in 71 min, if the 2D clustered data is used, and 68 min if the speed pattern of the most frequent cluster 
is selected from the 3D clustered data, while 62 min is the time estimation assuming the speed value in free flow conditions. 
For the same time slice, the journey duration from Bergamo to Milan (BG ? MI) is estimated as equal to 38 min, based on the 
2D clustered data, and 36 min using the most frequent cluster of the 3D clustered data, while only 31 min is the estimation in 
free flow conditions.

The comparison of the travel time estimates with the actual parameters observed in the 20 days of June is reported in Fig. 
17. The estimate is shown to be accurate for all days, apart from the day 19th where a relevant error is observed on both BS ? 
MI and MI ? BS journeys. This error is due to a number of anomalous events, as recorded by CCISS on this day. Looking at Fig. 
15, we can observe that all these phenomena are related to segments located after the toll station as highlighted by a square 
on the bottom-right section of the figure. Also, for the days 2, 7, 12 and 17, a systematic difference occurs, but this can be 
explained observing that on Monday traffic flow in the morning hours is usually higher than on other days.



5. Conclusions

In this paper a method for the identification of typical traffic patterns has been proposed and validated with a motorway
test case, by using data from truck probes as well as data collected on occurred accidents. A main result is that in the selected
A4 motorway (Turin–Venice), within the Brescia to Milan section of approximately 90 km length, a small set (4–5) of typical
speed patterns is enough to describe the average traveling speed over the morning hours. The proposed method is able to
efficiently characterize a variety of traffic behaviors observed over the entire road section.

The analysis on speed data has been used as starting point to outline a procedure for anomaly detection. The typical pro-
files computed using data collected over three months have been used as reference to recognize anomalies occurred over the
selected motorway route. Results have been verified using information on the anomalous events registered by the national
provider of road traffic information (CCISS) over the considered road section.

Speed information can be nowadays used for different aims, such as:

- transport planning, when reference traffic values are needed to estimate the road performance on average or in most fre-
quent cases, referred in the case to heavy-duty vehicles;

- medium and short-term traffic applications, where speed data along the road are needed for travel-time estimation or
truck routing operations;

- traffic management, as historical speed time series can be used as baseline for travel time estimation, navigation, fleet
management (time windows), when other data are not available;

- traffic flow modeling, where historical speed time series can be used for validation of the models and critical segments
need to be selected along the road for a detailed traffic data collection.

In the next future, after the compulsory introduction in Europe of black boxes on new vehicles planned since October
2015, namely for eCall, the analysis we provided might be gradually enriched even for reconstructing overall accidents,
for providing instantaneous risk analyses in flows both for primary and secondary accidents, for updating traffic data in 
real-time, for allowing optimal shift from traction to propulsion for electric-ICE hybrid vehicles, for collecting images asso-
ciated with any event from the front of the vehicle, for transmitting these information through vehicle-to-infrastructure 
communications.

Some critical points need to be addressed as future work. Although the assessments on real traffic event data showed 
already usable and promising results for anomaly detection, the size of the dataset adopted for this first study was at last
moderate and might be extended for a more accurate analysis, including further data over time and road segments. More-
over, to enhance the reliability of the estimates, further sources of traffic information, such as flow or density, could be useful
to integrate the speed information, by merging or comparing data with those collected through devices on or close to the 
infrastructure. A further development is also the investigation of different clustering methods to explore if relevant effects
on classification occur for the specific application examined in this paper.

The proposed procedure is planned to be used for the creation of a database that will integrate historical speed informa-
tion – possibly with data from other types of probes or fixed detection systems as those used by CCISS – for supporting appli-
cations such as travel-time estimation, fleet management, navigation and automatic incident detection.
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