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In this paper we prove the spectral theorem for quaternionic unbounded normal oper-
ators using the notion of S-spectrum. The proof technique consists of first establishing
a spectral theorem for quaternionic bounded normal operators and then using a trans-
formation which maps a quaternionic unbounded normal operator to a quaternionic
bounded normal operator. With this paper we complete the foundation of spectral
analysis of quaternionic operators. The S-spectrum has been introduced to define the
quaternionic functional calculus but it turns out to be the correct object also for the
spectral theorem for quaternionic normal operators. The lack of a suitable notion of
spectrum was a major obstruction to fully understand the spectral theorem for quater-
nionic normal operators. A prime motivation for studying the spectral theorem for
quaternionic unbounded normal operators is given by the subclass of unbounded anti-
self adjoint quaternionic operators which play a crucial role in the quaternionic quan-
tum mechanics. © 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4940051]

. INTRODUCTION

In Ref. 6, a spectral theorem for quaternionic unitary operators based on the S-spectrum was
proved using an extension of Herglotz’s theorem to the quaternions.” In this paper, inspired by Ref. 6,
we treat the more general case of unbounded normal quaternionic operators.

The interest in spectral theory for quaternionic operators is motivated by the celebrated paper
of Birkhoff and von Neumann, see Ref. 14, who showed that Schrodinger equation can be written
only in the complex or quaternionic setting. Several authors have given important contributions to
the development of the quaternionic version of quantum mechanics, see Refs. 2, 21, 23, and 28, but
a correct notion of spectrum for quaternionic operators was still missing until the introduction of the
S-spectrum, see, e.g., Ref. 18. As itis well known, in the classical formulation of quantum mechanics
the spectral theory of unbounded self-adjoint operators plays a crucial role. In the fundamental pa-
per,3! von Neumann used the spectral theorem for unitary operators to prove the spectral theorem for
unbounded self-adjoint operators. In quaternionic quantum mechanics, the most important quater-
nionic operators are unbounded anti self-adjoint operators; these are a particular case of quaternionic
unbounded normal operators treated in this paper.

Our strategy to prove the spectral theorem is as follows: first we deduce the spectral theorem
for quaternionic bounded normal operators. The proof is based on a continuous functional calculus
defined in Ref. 24 and a classical version of the Riesz representation theorem. After we establish
a spectral theorem for quaternionic bounded normal operators, we deduce a spectral theorem for
quaternionic unbounded normal operators from the bounded case and from a suitable transformation.

With the quaternionic spectral theorem based on the S-spectrum we complete the foundation of
the quaternionic spectral theory that started some years ago with the introduction of the S-functional

3E-mail address: dany @math.bgu.ac.il
D)E-mail address: fabrizio.colombo@ polimi.it
©)E-mail address: dpkimsey @gmail.com
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calculus. In fact, using the notion of slice hyperholomorphic functions, see Ref. 18, and the S-spectrum
it is possible to define the quaternionic version of the Riesz-Dunford functional calculus which we
now call quaternionic functional calculus or S-functional calculus.

We give a quick explanation of the reason why a consistent spectral theory for quaternionic oper-
ators is not so obvious. For simplicity consider a complex bounded operator A : X — X on a complex
Banach space X. The spectrum of A is defined as

o(A)={1 € C : Aly — Ais not invertible B(X)},

where B(X) denotes the Banach space of all bounded linear operators on X. Given a normal (bounded)
linear operator 7" on a complex Hilbert space, in the spectral theorem

T = / AdE(Q)
o(T)

the unique spectral measure E(1) associated to T is supported on o (T), see, e.g., Ref. 19. The above
notion of spectrum also appears in the Riesz-Dunford functional calculus, see Ref. 20, which is based
on the Cauchy formula of holomorphic functions in which the Cauchy kernel is replaced by the resol-
vent operator (11x — T)~!. Taking a holomorphic function / defined on an open set that contains the
spectrum, we can use the Cauchy formula to define the linear operator i(T).

From a historical viewpoint, a first attempt to generalize the classical notion of spectrum to quater-
nionic linear operators was to readapt the definition. To see the inconsistencies that occur, consider a
right linear quaternionic operator 7' : V — V acting on a quaternionic two-sided Banach space V.
The symbol B(V) denotes the Banach space of all bounded right linear quaternionic operators on
V. The left spectrum o (T) of T is related to the left-resolvent operator (sl — T)7', i.e.,

or(T)={s € H: sl — T is not invertible in B(V)},
where
(sly)(v) =sv, veV.

The right spectrum o g(T) of T is associated with the right eigenvalue problem, i.e., the search
for those quaternionis s such that there exists a nonzero vector v satisfying Tv = vs. Observe that the
operator Iqs — T associated with the right eigenvalue problem is not linear. Consequently, it is not
clear what the resolvent operator ought to be. The quaternionic left-resolvent operator (sIq — T)™!,
as far as we know, is not hyperholomorphic in any sense. Consequently, the left-resolvent operator
is not useful to define a hyperholomorphic quaternionic functional calculus. When we consider the
right spectrum we just have the notion of eigenvalues. The above discussion shows that there is a
problem in adapting the classical notion of spectrum to either the left or right quaternionic spectrum.

As we shall see, relative to obtaining a spectral theorem for quaternionic normal operators, the
appropriate notion of spectrum is a new notion of spectrum which is as follows. The S-spectrum for
a bounded linear operator T, see Ref. 18, is defined as

os(T) = {s € H:T?-2Re(s)T + |s|*I+ is not invertible in B(V)},

where s = 59 + s1€1 + $2€2 + s3€3 is a quaternion, {1, e,es,e3} is the standard basis of H, Re(s) = s¢
is the real part and the norm |s|* = s + s + 53 + s3, and the S-resolvent set is defined as

ps(T) =H\ os(T).

We are now ready to illustrate our main result, the spectral theorem for normal quaternionic operators.
In this introduction we limit the discussion to the case of bounded normal operators but the theorem
holds also for unbounded operators, see Theorem 6.2.

Consider the complex plane C; := R + jR, for j € S, where S is the unit sphere of purely imag-
inary quaternions. Let C;T denote all p € C; with Im(p) > 0. Observe that C; can be identified with
a complex plane since j> = —1 for every j € S. If T is a (bounded) right linear normal operator on a
quaternionic Hilbert space and j € S, then there is a unique spectral measure E on os(7) N C;.’ such
that

(Tx.y) = / Re(p) d(E(p)x. y) + / Im(p) d(JE(p)x. ),
o’S(T)ﬁC}r os(T)nCH

J
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where J is an anti-self adjoint and unitary operator which commutes with the spectral measure E. To
show the deep difference between the complex spectral theory and the quaternionic spectral theory, we
recall the quaternionic version of the Riesz-Dunford functional calculus, which suggests the notion
of S-spectrum, see Refs. 16 and 15. This calculus involves two resolvent operators, namely, a left and
right S-resolvent operator given by

S;'(s,T) == —=(T* = 2Re(s)T + |s|* 1) (T - 51y), s € ps(T) (1.1
and
SR'(s,T) == —(T = 5Iy)(T* = 2Re(s)T + |s|*1y)~", s € ps(T), (1.2)

where T € B(V) and ps(T) = H\ os(T) is the S-resolvent set. As one can see, the S-spectrum is
suggested by the S-resolvent operators.

Let Q c H be a suitable domain that contains the S-spectrum of 7. We define the quaternionic
functional calculus for left slice hyperholomorphic functions f : Q — H as

Fr) =L / 5;(5.T) ds; £(). (1.3)
27 Jaanc))

where ds; = —dsj; for right slice hyperholomorphic functions, we define

_ 1 el
f(T) = = /(')(anj) f(s)ds; Sg'(s,T). (1.4)

These definitions are well posed since the integrals depend neither on the open set Q nor on the com-
plex plane C;. Moreover, the resolvent equation, see Ref. 5, involves both S-resolvent operators, for
s and p € ps(T) we have

SR, TS (0. T) = {(Sg'(s.T) = ' (p. T))p = 5(S5'(s.T) = S (0. T)}(p* - 2s0p + |s) ™", (1.5)

Even though there are deep differences with respect to the classical resolvent equation for com-
plex operators, all of the results that hold for the Riesz-Dunford functional calculus also hold for the
quaternionic functional calculus. We now claim that to replace the complex spectral theory with the
quaternionic spectral theory we have to replace the classical spectrum with the S-spectrum.

We conclude with some final remarks. In the case T is aright linear operator on a finite-dimensional
Hilbert space, the S-spectrum of T coincides with the set of right eigenvalues of T'; in the general case
of a linear operator, the point S-spectrum coincides with the set of right eigenvalues. In the litera-
ture, the spectral theorem for quaternionic normal matrices based on the right spectrum is proved in
Ref. 22 and there are some papers on the quaternionic spectral theorem, see, e.g., Refs. 23 and 34-36.
However, the notion of spectrum in the papers?***3° is not made clear. In Ref. 25, a spectral theorem
based on S-spectrum is proved for compact normal operators on a quaternionic Hilbert space. We
point out that the S-resolvent operators are also used in Schur analysis in the realization of Schur
functions in the slice hyperholomorphic setting see Ref. 1 and 8—10 and Refs. 3 and 12 for the classical
case. In Refs. 11, 17, and 26 the problem of the generation of quaternionic groups and semigroups is
treated using the S-spectrum. Functions of the generators of quaternionic groups of operators have
been studied in Ref. 4.

The plan of the paper is as follows: In Section II we give some preliminaries; in Section III we
recall a continuous functional calculus for bounded normal operators; in Section IV we prove the
spectral theorem for bounded normal operators based on the S-spectrum; in Section V we introduce
spectral integrals; finally, in Section VI we prove the spectral theorem for unbounded normal operators
based on the S-spectrum.

Il. PRELIMINARIES

Let H be aright linear quaternionic Hilbert space (see, e.g., Subsection 2.2 in Ref. 24), endowed
with an H-valued inner product (-, -) which satisfies, forevery «, 8 € H,and x, y, 7 € H , the following
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relations:

() =),
(x,x) >0 and ||x|]*:=(x,x)=0 & x =0,
(xa+yB.2) =(x.2)a +(y.2)B,
(x,ya + zB) =a{x,y) + B{x,z).
We call an operator T : D(T) — H right linear if

T(xa+yp) = Tx)a+(Ty)B,

for all x, y in the domain of T, denoted by D(T'), and «, 8 € H. The set of right linear operators on
H will be denoted by L(H). Given T € L(H) the range and kernel of T will be given by

Ran(T)={y e H : Tx = yforx € D(T)}
and
Ker(T) = {x € D(T):Tx =0},
respectively. We call an operator T € L(H) bounded if
7]l := sup [|Tx|| < co.

lIxll<1

In the sequel B(H) will denote the right Banach space of all bounded right linear operators on H
endowed with the above norm.

Definition 2.1 We will call a subset N C H an orthonormal basis if

(x,y)=0 forx,y € H sothat x # y, (2.1)
(x,x)y=1 forxeH, (2.2)
{xeH :{x,y)forall y € N} ={0}. (2.3)

It can be checked in a similar manner to the classical complex Hilbert space case that every vector
x € H can be written as

x= ) ylxy). 24

yeN

Lemma 2.2 Fix a right linear quaternionic Hilbert space H. A right linear subspace K of H &
H satisfies

K ={(x,Tx): x € DT}, (2.5)

for some T € L(H) if and only if
0,y)e K = y=0. (2.6)
Proof. If K is asin (2.5), then (2.6) follows directly from 70 = 0. Conversely, if (2.6) holds, then

(x,y) and (x, z) belonging to K implies that y = z, i.e., there exists a function T : D(T) — H. The
fact that T € L(H) follows easily from the right linearity of K. Thus, (2.5) holds. O

Definition 2.3. An operator T € L(H) is called closed if the set {(x,Tx) : x € H} is a closed
subset of H x H. Let S and T both belong to L(H). We write S = T if D(S) = D(T) and Sx = Tx
for all x € D(S) = D(T). We write S C T if D(S) € D(T) and Sx = Tx for all x € D(S). Clearly,
S =Tifandonlyif S C TandT C S. Anoperator T € L(H) is called closable if there exists a closed
operator U € L(H)sothatT C U.

Theorem 2.4. Let T € L(H). T is closable if and only if

{(x,Tx) : x € D(T)} = {(x,Ux) : for some operator U € L(H)}. 2.7
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Proof. If § € L(H) is any closed operator such that T C S, then
{(x,Tx) : x € D(T)} C {(x,8%) : x € D(S)}.

Hence, as S is closed,

{(x,Tx) : x € D(T)} € {(x,5x) : x € D(S)}.

Therefore, in view of Lemma 2.2, (2.7) holds.
Conversely, if (2.7) holds, then T C U and hence U is closed since

{(x,Ux): x € DU)}

is closed. Thus, T is closable. O

Definition 2.5. Let T € L(H) be closable. We let

Tx = liTm T(x,)

denote the operator in .L(H) with domain
DT)={xeH:x= liTm xp for {x,}7_, € D(T) and {T(x,)}, ., converges in H }.

In view of Theorem 2.4, the definition of T is independent of the choice of sequence {xn},., Note
that for any closed operator U € L(H) such that T C U,

TCU.

Definition 2.6. Given T € L(9H) which is densely defined, we let T* € L(H) denote the unique
operator so that
(Tx,y)=(x,T"y), x¢€ D).
The domain of T* is given by
D(T*) ={y € H : there exists z € H with (Tx, y) = (x,z) for every x € D(T)}.

Theorem 2.7. If T € L(H) is densely defined and W € L(H), then

(i) T*e L(H)is closed.
(ii) Ran(T)* = Ker(T").
(iii) If T C W, then W* C T*.

Proof. The proofs can completed in much the same way as the case when H is a complex Hilbert
space (see, e.g., Proposition 1.6 in Ref. 33). O

Theorem 2.8. If T € L(H) is densely defined, then

(i) T is closable if and only if D(T*) is dense in H.
(ii) If T is closable, then T =T*.
(iii) T is closed if and only if T = T*",
(iv) If T is closable and Ker(T) = {0}, then T~" is closable if and only if Ker(T) = {0}. Moreover,

T '=T"

Proof. The proofs can completed in much the same way as the case when H is a complex Hilbert
space (see, e.g., Theorem 1.8 in Ref. 33). O

Definition 2.9. Let T € L(H). We call T normal if T is densely defined, T is closed, D(T) =
DT*)and TT" =T'T.

Lemma 2.10. Let T € L(H) be normal. If S € L(H) so that T C S and D(S) C D(S*), then
S=T.
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Proof. If T C S, then S* C T* and hence
D(T) € D(S) € D(S) € DT = D),
i.e., D(S) = D(T). Therefore, S = T. O
Definition 2.11. Let T € L(H). We call T self-adjoint, anti self-adjoint and unitary if T = T",
T =-T",and TT* = T*T = Iy, respectively.
Definition 2.12. Let T € L(H) be densely defined and let Ry(T) : D(T?) — H be given by
R(T)x = {T? = 2Re(s)T + |s|* Iy }x, x € D(T?).
The S-resolvent set of T is defined as follows:
ps(T) ={s € H: Ker(Ry(T)) = {0},Ran(R(T)) is dense in H and
R(T)™" € B(H)}.

The S-spectrum is defined as
os(T) = H\ ps(T).
For bounded operators this definition is equivalent to the one given in the Introduction (see Ref. 24).
Theorem 2.13. Let T € B(H). Then the S-spectrum is a compact non-empty subset of H and
os(T) S {p e H: 0 < |p| < |IT]]}. (2.8)
Proof. See Theorem 3.2.6 in Ref. 18. O
Theorem 2.14. Let T € L(H) be densely defined. If p = po +ipy € os(T) fori € S and py,p; €
R, then po + jp1 € os(T) forall j € S.

Proof. The proof of the assertion follows directly from the definition of the S-spectrum. If s €
o s(T), then it follows immediately from the definition of o-g(7') that all the quaternions with the same
real part and the same modulus belong to the S-spectrum of 7. O

Theorem 2.15. Let T € L(H). The following statements hold.:

(i) If T is positive, then os(T) C [0,00). If, in particular, T € B(H) is positive, then
os(T) < [0,1IT1|].
(it) If T is self-adjoint, then o-s(T) C R. If; in particular, T € B(H) is self-adjoint, then
os(T) < [=ITI T

(iti) If T is anti self-adjoint, then os(T) C {p € H : Re p = 0}. If, in particular, T € B(H) is anti
self-adjoint, then

os(T)C{p €eH:Rep=0and|p| <|IT|}.
(iv) If T is unitary, then os(T) C S.
Proof. If T € L(H), then the containments illustrated in (i)-(iii) follow readily from the

definition of og(T). If T € B(H), then the containments illustrated in (i)-(iv) follow readily
from (2.8). O

We will also need the following two versions of the Riesz representation theorem.

Theorem 2.16. Let X be a compact Hausdorff space and 6(X,R) denote the normed space of
real-valued continuous functions on X together with the supremum norm || - ||e. Corresponding to
any bounded linear functional  : 6€(X,R) — R there exists a signed Borel measure yuon X such that

w(f) = /X FOdu) for all f € CX.R). 2.9)
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If, in addition,  is a positive linear functional, then p is a positive Borel measure on X. In both cases
M is unique.

Proof. See, e.g., Theorem D in Section 56 of Ref. 27 for the case when i is a positive bounded
linear functional on X and, e.g., Chapter 21 in Ref. 32 for the more general case. O

lll. AFUNCTIONAL CALCULUS FOR BOUNDED NORMAL OPERATORS

Let H be a right quaternionic Hilbert space and B(H ) denote the set of all bounded right linear
operators on . In Ref. 24, established the existence of some functional calculi for a quaternionic
bounded normal operator. Before introducing the functional calculus for bounded normal operators,
we first need some notation and results. In the rest of the paper, we say quaternionic Hilbert space H
for right quaternionic Hilbert space.

Theorem 3.1. Let N be an orthonormal basis of a quaternionic Hilbert space H. Then every
x € H can be decomposed uniquely via

X = Z 2x,2), (3.1)

ZeN
where

Z z{x,z) == sup{ Z 2(x,z) : Ny is a non-empty finite subset of N'}.

ZeN zeNy

Proof. See, e.g., Proposition 2.6 in Ref. 24 with the caveat that the inner product in Ref. 24 is
antilinear in the first variable and linear in the second variable. O

Definition 3.2. Let J € B(H ) be anti self-adjoint and unitary and j € S. Let (Hi{ denote the closed
complex (with respect to the complex plane C;) subspaces given by

H! = {xeH:Jx==+xj}. (3.2)
We will now formulate some useful results from Ref. 24 in the following lemma.

Lemma 3.3 (Ref. 24). If J is an anti self-adjoint and unitary operator and j € S, then
(i) Hl#{0}.
(ii) As a Cj-Hilbert space, H admits the following direct sum decomposition:

H=HoH’. (3.3)

Proof. The proofs of items (i) and (ii) can be found in Proposition 3.8(d) and Lemma 3.10 in
Ref. 24, respectively. O

Definition 3.4. Fix an orthonormal basis N of a quaternionic Hilbert space H . The left scalar
multiplication L, of H induced by N is the map
(p,x)eHXH - pxeH
given by
px = Z yp{x. y).

yeN

Lemma 3.5 (Statement (a) of Proposition 3.8 in Ref. 24). Let H be a quaternionic Hilbert space.
If J € B(H) is an anti self-adjoint and unitary operator, then corresponding to any fixed j € S, there
exists a left-scalar multiplication L, so that

J=1,.
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In the following theorem, we will make use of the operator |T| := (T*T)'/? for T € B(H). See
Section 2.4 of Ref. 24 for a definition of the square root of a positive operator which relies on the
functional calculus therein.

Theorem 3.6. Let T € B(H) be normal. Then there exist uniquely determined operators A =
(1/2)(T + T*) and B := (1/2)|T — T*| which both belong to B(H) and an operator J € B(H) which
is uniquely determined on {Ker(T — T*)}* so that the following properties hold:

(i) T=A+JB.
(ii) A is self-adjoint and B is positive.
(iii)  J is anti self-adjoint and unitary.
(iv) A, B, and J mutually commute.
(v) Forany fixed j € S, there exists an orthonormal basis N of H with the property that J = L;.

Proof. Properties (i)-(iv) appear in Theorem J on page 4 of Ref. 24. Property (v) follows from
Lemma 3.5. O

Definition 3.7. Let Q C H. We call Q axially symmetricif py + ip; € Q with pp,p; € Randi € S,
then pg + jp; € QN C;forall j € S.

Remark 3.8. Let T € L(H). In view of Theorem 2.14, o5(T) is an axially symmetric subset of
H.
Definition 3.9. Let Q C H be an axially symmetric set and let D C R? be such that
D = {(u,v) € R*: u + jv € Qfor some j € S}.

Let S(Q,H) denote the quaternionic linear space of slice continuous functions, i.e., S(Q,H) consists
of functions f : Q — H of the form

S+ jv) = folu,v) + j fi(u,v) for (u,v) € D andfor j €S,
where fj and f; are continuous H-valued functions on D so that
Jolu,v) = folu,—v) and  fi(u,v) = - fi(u,—-v).
If foand f) are real-valued, then we say that the continuous slice function f is intrinsic. The subspace

of intrinsic continuous slice functions is denoted by Sg(Q,H).

Remark 3.10. We observe that if f € Sp(Q,H) and we consider the restriction of f to Q; :=
QN C;, where j € S, then f has values in C;. This fact makes clear the notation Sg(Q;,C;).

The following functional calculus will be useful for proving a spectral theorem for a normal
operator T € B(H).

Theorem 3.11 (Theorem 7.4in Ref.24). Let T € B(H ) be normal. There exists a unique contin-
uous *-homomorphism

Wrr @ f € Sr(os(T),H) - f(T) € B(H)
of real-Banach unital C*-algebras such that
(i) Yr1r(Xogm) = In, where
1 if peos(T)
)(zrs(T)(p) = {0 it p¢oy) .

(ii) Wrr(d) =T, where id denotes the inclusion map from os(T) to H.

(iii) If J is as in Theorem 3.6, then J commutes with the normal operator f(T).
(iv) If f € Sp(os(T),H), then || f(T)I| = || flleo.

(v) If f € S(os(T),H), then

os(f(1)) = f(os(T)). (3.4)
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Remark 3.12. For the convenience of the reader, we will now outline the construction of f(7')
for f € Sp(os(T),H). Fix j € S. Since o5(T) N C; is compact, there exist sequences of real-valued

polynomials {¢, }," and {¢,},”_ ,on D C R?, where D is as in Definition 3.9, with

dn(u,0) = ¢p(u,—v) for n=0,1,...

and
Un(u,v) = =y, (u,—v) for n=0,1,...,

so that

Sfolu,v) = liTrn ¢, (u,v) uniformly on D C R? (3.5)
and

filu,v) = liTm Yn(u,v) uniformly on D C R?, (3.6)

ntToo

respectively.

Since ¢,,(u,v) and (1, v) have real coefficients and A and B are commuting self-adjoint oper-
ators, it follows easily that ¢,,(A, B) € B(H) and ¢,,(A, B) € B(H) are self-adjoint. Next, we define

fo(TM)x = liTm on(A,B)x, xeH (3.7)
and
Sf1(T)x = liTm Un(A,B)x, xeH. (3.8)

Note that the limit in (3.7) exists since ¢,,(A, B) = ¢,,(A, B)* and hence

I{6m(A, B) = $u(A, B)}xI* = ({$m(A, B) = $u(A, B)}x, %)
< [{pm(A, B) = ¢u(A, B)Y|ll1xII?
= ligm = dullZlIxI° (3.9)

— 0, as m,nT oo,

since (3.5) holds. Note that formula (7.3) in Ref. 24 was used to obtain (3.9). The verification of the
existence of the limit given in (3.8) is similar. The normal operator f(T) € B(H) is given by

() = foT) + T f(T). (3.10)

Lemma 3.13. Fix a normal operator T € B(H). If
f=fo+ fij € Sr(os(T) N C;,H),
then fo(T) and f\(T) (given in (3.7) and (3.8), respectively) are self-adjoint.

Proof. We claim that

}llTl’zl()(an(A’B)x’ y> = (fO(T)x’ y>a X,y € 7_{7 (311)
and
’l,llTIng’n(AsB)xs y) = <f1(T)xs y)» X,y € H. (312)

Assertion (3.11) follows directly from

Kon(A, B)x, y) = (fo(T)x, y)| < [[¢n(A, B) = fo(DlIxIlll ]
= llgn = Sollollx [l #l,
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where item (iv) of Theorem 3.11 was used to obtain the last line. Assertion (3.12) is shown in much
the same way. In view of (3.11),

(fo(T)x,y) = }Tigwn(A,B)x, y)
= 1iTm<x, #n(A,B)y)
=(x, fo(My), x,yeH.

Thus, fo(T) is self-adjoint. The fact that f1(7) is self-adjoint can be completed in much the same way
using (3.12). O

IV. THE SPECTRAL THEOREM FOR BOUNDED NORMAL OPERATORS BASED
ON THE S-SPECTRUM

In this section we shall consider normal operators T which are bounded, i.e., T € B(H). We will
generate a spectral theorem based on the S-spectrum using Theorems 2.16 and 3.11. This approach
is analogous to a well-known approach in the classical case, i.e., when H is a complex Hilbert space.
See, e.g., the book of Lax? for details.

Fix a normal operator T € B(H) and j € S. By Theorem 3.6, there exist commuting operators
A= (1/2)(T +T*) and B := (1/2)|T — T*|, where |W| = (W*W)!/2 for W € B(H), and J which all
belong to B(H) sothat T = A + JB and A and B are uniquely determined by 7.

Lemma 4.1. Let 6(Q7%,R) denote the set of real-valued continuous functions on Q;T =os(T)Nn
C}“ and Sg(Q;,R) denote the set of real-valued functions in Sp(Q;,H), where Q; = os(T) N C;. Let
‘GO(Q}',R) denote the subset of functions f € %(Q;T,R) such that flo; nw = 0. The following state-
ments hold:

(i) There exists a bijection between %(Q},R) and Sg(Q;,R).
(ii) If QY N R # 0, then there exists a bijection between %O(Q;,R) and purely imaginary functions
in Sr(Q;,H).
(iii) If Q;T N R = 0, then there exists a bijection between %(Q;,R) and purely imaginary functions
Proof. The proof is broken into steps.
Step 1: Prove (i).
Ifge %(Q}“,R), then the function
. glu,v) if u+joeQf
gu,v) = . . -
glu,—v) if u+jveQ;
where
Qj_ = 0'5(T) N CJ_
and
C;={u+jv:uecRand v <0}
belongs to Sr(Q;,R). Conversely, if f € Sr(Q;,C;) is real-valued, then
f = flay € 6(Q}R).

Step 2: Prove (ii).
If Q}’ NR # 0and ge %O(Q;,R), then the function

je(u,v) if u+joeQ?
glu,v)=19"" . . a
—jglu,—v) if u+jueQ;



023503-11 Alpay, Colombo, and Kimsey J. Math. Phys. 57, 023503 (2016)

belongs to SRgﬂj,Cj). Conversely, if f € Sr(Q;,C;) is purely imaginary, i.e., f = j fi, with f; real-
valued, then f = j f|q+ € ‘GO(Q}“,R).
J

Step 3: Prove (iii).
If QJ*. NR=0and g € (G(Q]*.,R), then the function
B je(u,v) if u+jveQ?
gu,v) =" . L
—jg(u,—v) if wu+jveQ;
belongs to Sr(€2;,C;). Conversely, if f € Sr(€;,C;) is purely imaginary, i.e., f = j f1, with f; real-
valued, then f = j f|o+ € €(QT,R). O
J
Let T € B(H) be normal, fix x € H and let
t:(g) =(g(M)x,x), g€ 6(QR).

It is readily checked that ¢ is a real-valued bounded linear functional on ‘6(9;?, R). Moreover, £ is
a positive functional. Indeed, if & is a continuous non-negative function on Q;T, then there exists a

function g given by g(u,v) = v/h(u,v) so that g € (G(Q;T,R) and g(T) = g(T)*. Thus,

Cx(h) = (W(T)x,x) =(g(T)x,8(T)x)
= llg(M)x|* = 0.

Theorem 2.16 yields the existence of a uniquely determined positive valued measure u, (for a
fixed j € S) so that

@)= [ o) g 6@, @1
a*
J
In view of (4.1), we may use the formula
KTx,y) ={T(x+y)x+y)—T(x—y)x—y)+e(T(x+ye)x+ yer)
—e{T(x—yey)),x —ye1) +e{T(x — yer),x — yer)es
—e(T(x + yer),x + yer)es +(T(x + ye3), x + yes)e;
—(T(x — ye3),x — yes)es, 4.2)

where {1, e}, e7,e3} denotes the standard basis of H, to obtain a uniquely determined H-valued mea-
sure u, , (relative to a fixed j € S) so that

@) = [ s, ). ¢ € 6@, “3)
(o)
J
where
4ﬂx,y = Hx+y — Hx—y t €1lxiye; — €1Mx—ye, 4.4)

tellx—ye €3~ €1lx+ye,C3 T Uxtyez€3 — Hx—yes€3-

Definition 4.2. The Borel sets of o-5(T) N C}’ will be denoted by B(os(T) N C}’).

Lemma 4.3. The H-valued measure ., given in (4.4) enjoys the following properties:

(i) Mxa+yB,z = Mx,z& + /1_,1/,218’ a,p €H.
(ii) Mx,ya+z8 = @ﬂx,y + ﬁﬂx,z’ a,B € H
(iit) | px,y(os(T) NCHI < [lxll] y .

(iv) Hx,y = Hy,x

forall x,y,z € H.

Proof. Properties (i)-(iii) are easily obtained from (4.3) using the uniqueness of u, , (relative to
a fixed j € S) and the properties of (:,-). Property (iv) follows from properties (i) and (ii). O
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It follows from properties (i) and (iii) in Lemma 4.3 that ®,(x) = u, ,(o), where y € H and
o€ B(os(T)Nn C;.r) are fixed, is a continuous right linear functional on H . Moreover, it follows from
property (ii) in Lemma 4.3 that

Dyo(x)=a®,(x), «cH

It follows from the Riesz representation theorem for quaternionic Hilbert spaces (see Theorem 6.1
in Ref. 13 and also Proposition 1.10 in Ref. 30 for a statement and proof in a more general Clifford
algebra setting) that corresponding to any x € H, there exists a unique vector w € H such that

D, (x) = (x,w), (4.5)

i.e., iy, (o) = (x,w). Since the left hand of (4.5) depends linearly on x and anti-linearly on y and the
right hand side depends linearly on x, it follows that ®,(x) depends linearly on x and anti-linearly
on y,

E(0)y = w,
for some
E(o) € B(H).

Thus,

Hy(0) = (X, E(@)y), o € B(os(T)NC),
and, in view of property (iv) in Lemma 4.3,

E(o)=E(0)’, o eB(os(T)NC)) (4.6)

and hence,

fay(0) = (E(0)x.y), o € B(os(T) N C)). 4.7

Since p, is countably additive, y. , is also countably additive. Consequently, the B(H )-valued
measure E is also countably additive, i.e.,

E (U on) =Y E(o,) 4.8)
n=0

n=0

for any sequence of pairwise disjoint sets
{ontio € Blos(T) N C)).

The limit in (4.8) is meant with respect to the strong operator topology.

Lemma 4.4. Fix anormal operator T € B(H ) and let J € B(H) be as in Theorem 3.6 and E(o7)
be given by (4.7) and Q;T =os(T)N (C;Tfor J € S. The following statements hold:

(i) Ifge %(Q;,R), then

) = [ eDdE@R . xy H. @9)

J
(ii) If os(T)NR =0 (respectively, as(T)NR #0), then, for any f = fo+ fij € %(Q;T,CJ-)
(respectively, %Q(Q}',Cj) ), where fyand f| are real-valued,

(FT)x.y) = / Fop)E(p)x. y) + / APAUEDx ), xyeH.  (410)
Q;Y QJT
(iii) E(o) and J commute for all o € EB(Q;T).

Proof. Assertion (4.9) follows directly from (4.3) and (4.7). We will now prove assertion (4.10).
In view of (4.9) and (3.10),
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FT)x, ) = (AoT) + FiT)T}x, )
= (o), ) + T x, )
- [ soaEe )+ [ AOHED . 3y H.
o 0

Thus, the proof of (4.10) will be complete upon showing that
d(E(p)Jx,y) = d{JE(p)x,y), x,y €H.
To see this, let g € %(Q},R) and use (4.9) and the fact that g(7') and J commute to obtain

| Bz ) = (01539 = e = [ epdIEG ).

J J

If we write v = (E(p)Jx,y) and v = (JE(p)x, y) and then

V = Vo€o + Vi€ + V€y + V3€3

and
Y = Voep + vie] + vaes + V3es,
where v, and v,, a = 0,...,3 are real signed measures and {e, }3=0 is the standard basis for H, then
it follows from Theorem 2.16 that
Va=V4 a=0,...,3
Therefore, items (iii) and (ii) hold. ]

Theorem 4.5. The B(H)-valued countably additive measure E, given by (4.7), for all o, T €

B(os(T)N (C;T), enjoys the following properties:

(i) E(o)=E(0)"

(it) NE(@)|l <1
(iii) E(®)=0and E(os(T) N CY) = Iy.
(iv) E(ocnt)=E(0)E(T).

(v) E(c) =E(0).
(vi) If os(T)NR =0 (respectively, cs(T) NR # 0), then E(c) commutes with f(T) for all f €
GC(os(T)N C]*.,Cj) (respectively, fe €o(os(T)N C;T,Cj)).

(vii) E(0) and E(T) commute.

Proof. The proof is broken into steps.

Step 1: Show (i) and (ii).
Property (i) has already been noted in (4.6). Property (ii) follows directly from property (iii) in
Lemma 4.3. Indeed, if x = y in property (iii) in Lemma 4.3, then

fx(0) < prx(os(os(T) N C}) < ||x]?
and hence
(E(o)x,x) < ||x|* for xeH,
i.e., Iyy — E(0) is a positive operator for all oo € B(os(T) N C}’). Therefore, property (ii) holds.
Step 2: Show (iii).
Since uy ,(0) = 0, we may use (4.3) to deduce E(0) = 0. Similarly, putting g(p) = 1 in (4.3)
yields g(T) = I4 for all x,y € H and thus
(ry) = / dity., = {E(ors(T) N Chx. y),
os(T)n C;.

ie., E(os(T)N C}“) = Iy.
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Step 4: Show (iv).
It is clear that for all real-valued polynomials ¢ and ¢ on os(T) N C;, for j € S which satisfy

¢(M,U) = ¢(M,—U)
and
lﬂ(u, U) = lﬁ(u’ _U)s
we have that (¢y )(T) = ¢(T)W(T), ¢(T) = ¢(T)*, and Y(T) = y(T)* (see Remark 3.12). Thus,

/ 0(9) dtty 1y (p) = (HTW(T)x, %)
os(T)n C;

= ()T, )
- / W (P)dite(p). (@.11)
osT)NC

Since E(0) = E(0)*, (4.7) implies that
x,x(0) € Rforall o € B(os(T) N CY).
Similarly, since (¢(T)x, x) is real, (4.7) implies that
Hy(T)x.x(07) € Rfor all o € B(os(T) N CY).

In view of the identification given in item (i) of Lemma 4.1, the density of real-valued polynomials
in the space €(os(T) N C}',R) and the Riesz representation theorem given in Theorem 2.16, (4.11)
implies that

d/lzp(T)x,x(p) = ¢(P)dﬂx,x(p)
But then we may use identity (4.4) and the fact that (p) is real-valued to obtain

dity(r)x, y(P) = Y (P)dpy, (p).
Thus, in view of (4.7),

(E(U)lﬂ(T)x,y)=/lﬁ(19)d,ux,y(17) for o € B(os(T)NC)).

Since E(0r) = E(cr)" for o € B(ors(T) N CY),

/ U it poyy = W)X E(0)y) = (E@W(T)x., y) = / U Yo dits.y.
(Ts(T)ﬂ(C}' Gs(T)ﬁC}'
where
| if peo
Xa(p)—{o it peo

Since ¥ is real-valued, we also have

/ W du;m;(o_)y = / ¥ xodull) for m=0,...3, 4.12)
(rs(T) gl C;r ’ (rs(T) 8l C;r

(m)

where u(xmy) and p"p

are real-valued signed measures given by
3
Mx,y = Z ,uErn,qy)em
m=0
and
3
(m) _ (m)
o = 2y KBy o
m=0

Recall that {em}fn _o 1s the standard basis for H.
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In view of the identification given in item (i) of Lemma 4. 1, the density of real-valued polynomials
in the space 6(os(T) N C]*.,R) and the Riesz representation theorem given in Theorem 2.16, (4.12)
implies that

dy()?é(a)y = Yo du( ™ for m=0,...,3
and hence
d/Jx E()y = Xo dﬂx y-

Therefore,
/Jx,E(O')y(T) = / Xcrd:ux y = Mx, 1/(0— N T) for o,7¢€ %(O—S(T) N C;—)
os(T)NCint ’

and hence as
wo) =(E(o)x,y) for o € B(os(T)NC)),
we obtain E(0)E(t) = E(o N 1) for 0,7 € B(os(T) N C;.').

Step 5: Show (v).
Property (v) can be obtained from Property (iv) when o = 1.

Step 6: Show (vi).

Let A, B, and J be as in Theorem 3.6. We have already observed in item (iii) of Lemma 4.4 that
E(o) and J commute. One can show in a similar fashion that A and E(o") commute and B and E(o")
commute. Thus, in view of the construction of f(7T') given in Remark 3.12, f(T') and E(0") commute.

Step 7: Show (vii).

Property (vii) follows from Property (iv) interchanging 7 and o. O

Definition 4.6. A B(H )-valued measure E on o5(T) N C}“ will be called a spectral measure if E
has Properties (i)-(vi) in Theorem 4.5. Note that E(o") is a positive operator forall o € B(os(T) N C}’).

We are now ready to state and prove the main result of the section.

Theorem 4.7. Suppose T € B(H) is normal, let J € B(H) be as in the decomposition of Theo-
rem3.6 andfix j € S. Let Q+ =os(T)N C;’ and HJ denote the orthogonal projection onto 'Hi givenin
(3.3), respectively. If O'S(T) NR = O (respectively, os(T) N R # (), then there exists a unique spectral
measure E; on Q;T so that

GO = [ S dEG D [ AOAQIETD. nyeH, @13)
J J
or, equivalently,
GO = [ SOdEEsp+ [ FRAVEP). e H, @1
J J
for f = fo+ fij € ‘6(9;,@ ;) (respectively, ‘60(9}',@]-) ), where foand fi are real-valued. Moreover,
upon identifying the complex plane Cy with C; in the natural way by the mapping @i, we have

Ej(¢rj(0)) = Ex(0),0 € BQ) forall j.k € S.

Remark 4.8. In point of fact, (4.13) holds for a much larger class of functions than “€ (o s(T) N
C;“,Cj) or Gy(os(T) N C}',Cj) regardless of whether or not o5(T) N R # 0 (see Section V).

Proof of Theorem 4.7. Formula (4.13) was established in item (ii) of Lemma 4.4. Formula (4.14)
follows from (4.13). Indeed, if we write y = y, + y_ € H with respect to the decomposition
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H = HJ & H’ (see (3.3)) and use (3.2), then
(F(T)x,y) = / FopICE (), y) + / FUPE ).~y + )
/ So(p)d(E;(p)x,y) — / Si(p)dCE;(p)x, y+))
/ AP ()%, y-))
/ FOAE (p)x, ) + / T (p)x,y )
/ FATLE (p)x, ) + / TR E (p)x. ).
The fact that there is only one spectral measure E; on o-s(T) N C+ such that (4.13) holds follows

directly from the uniqueness of the measure i, ,(cr) = (E(0")x, y) on QF (see (4.4)). The claimed
invariance E;(¢;(c")) = Ex(c") relative to j,k € S drops out easily from the aforementioned unique-

ness of E; and Theorem 2. 14. O

Corollary 4.9. In the setting of Theorem 4.7, the following statements hold:

(i) IfTeB(H)isa posztlve operator, then there exists a unique positive operator T'/? := W €
B(H) so that W? =
(ii) TeB(H)is self-adjoint if and only if

(Tx,y) = / td{Ej(t)x,y), x,yeH. (4.15)
vaNivall
(iii) T € B(H) is anti self-adjoint if and only if
(Tx,y) = / td(JE;(t)x,y), x,y € H. (4.16)
[O.N7°11]
(iv) T € B(H) is unitary if and only if
(Tx,y) = / cos(t)d(E;(t)x,y) + / sin(t)d{JE;(t)x,y). 4.17)
[0,7] [0,7]

Proof. As we have observed in item (i) of Theorem 2.15,if T € B(H ) is a positive operator, then
os(T) C [0,||T]|]. Thus, using Theorem 4.7 we have the existence of a uniquely determined spectral
measure E so that

(Tx,y)= / td(E;(t)x,y). (4.18)
[0,17°11]
Let g(t) = t'/2 for t € R. Since g € 6 (o 5(T),R), it follows from Theorem 4.7 that
W)= ) = [ o)

(o171

satisfies W2 = T. Thus, we have established the existence of a positive operator W € B(H) so that
W? = T. The proof that W is unique follows from the uniqueness of the spectral measure E, just as
in the case that  is a complex Hilbert space.

The proofs of (ii)-(iv) follow readily from Theorem 4.7 and (2.8). O

V. SPECTRAL INTEGRALS

The goal of this section is to extend the integral representation in Theorem 4.7 to a more general
class of functions. This will be useful when proving a spectral theorem for unbounded operators in
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Section VI. To this end we will adapt part of Chapter 4 of the book™ to the quaternionic setting.
Most of the proofs of the properties of spectral integrals are easily adapted from the classical case
presented in Ref. 33, i.e., when H is a complex Hilbert space. However, some facts require additional
arguments which we will highlight.

Throughout this section, we will fix j € S, a spectral measure E (see Definition 4.6) on a set
Q C C; and an anti self-adjoint and unitary operator J € 8(H) which commutes with E.

Definition 5.1. Let % (E,Q,C;) denote the set of all bounded Q-measurable C;-valued functions
f on Q with the norm

1/ lleo = sup [f(p)].
peQ

Let B (E,Q,C;) denote the subset of simple functions in %8 (E,Q,C;), i.e., all C;-valued functions of

the form f(p) = X, _ cmX (D), Where oy, . ., 07, are pairwise disjoint sets in B(Q), cy,. .. ,¢, € C;
and
1 if peo
X”(p)_{o if peo’

If f € By(E,Q,C;), then we may define

1) = [ F)AE) = ) Relen)ln+ Im(cn) ) Eler), 5.1
m=1
and

1) = [ T EG) = Y Relan)ts = lm(en) I} B
m=1

Lemma 5.2. If f € By(E,Q,C)), then
NCON < 11f leo- (5.2)

Proof. If f = 3" _, CmXom> Wherecy,...,c, € Cjand oy, . . ., 0, are disjoint sets in B(Q), then,
using properties (ii)—(iv) in Theorem 4.5 and the fact that ||J|| = 1,

ICHIP =11 ) {Re(em) + Imlcn)d E()x]?
m=1
= > I{Re(en) + Im(c,n) T} E(or)x]?
m=1

< lemlPlIE@m)x]?
m=1

< AP,
Thus, (5.2) holds. o

Fix f € B(E,Q,C;). Since B,4(E,Q,C;) is adense subset of B (E,Q,C;), there exists a sequence
of functions {f,} " belonging to % (E,Q,C;) so that

tim [1f, = 1l = 0.
In view of (5.2), {I(f.)x};., is a Cauchy sequence in H. Let I(f) be given by
I(f)x = 1iTm I(f)x, xeH.

00

Note that f does not depend on the choice of the sequence { f,, }

ICf)-

o and, consequently, neither does
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Lemma 5.3. If f = fo+ fij and g = go + g1j belong to B(E,Q,C;), where fy, fi, go. and g are
real-valued, o, 8 € Cj and x,y € H, then

() ) =If), Uaf+pg)=al(f)+pBl(g).

(i) (W(f)x.y) = [ fo(p)d(E(D)x,y) + [, fr(p)d(JE(p)x,y).
(iti)  1(fg) = 1()(g).
(iv) (x> = [o1f(p)I*d(E(p)x, x).

) MO < N1 f o

Proof. In view of the density of % (E,Q,C;) in % (E,Q,C;) and (5.2), it suffices to check (i)-(v)
when f,g € B(E,Q,C;). The assumption that E(c) and J commute for all o € B(Q) will be a
useful tool for checking (i)-(v) and will be used without further mention. If f = 3" _, ¢, x o, and
g =2 1 dmXr, belong to B(E,Q,C;), then

Zn:<yv {Re(cm)I(H + Im(cm)J}E(o-m)x>

m=1

D {Re(cm)ly = Im(en)TYE(@ )y, x)
m=1

1) y.x)

=(I(fy,x), xyeH.

Thus, the first assertion in (i) holds. The second assertion in (i) is easily checked.
We will now check that (ii) holds. Since

ACH)x,y) = Z {Re(cmXE(Tm)x, y) + Im(cu(JE(Tm)x, y)}
m=1

- / Fop)d(E(p)x, ) + / FDTEP)x. y),
Q Q

where fy and f) are real-valued functions which satisfy f = fy + f1j, (ii) holds.
We will now check that (iii) holds. Since

1(fe) = ), {Re(coRe(dy) — Im(c)Im(dy) YE(oe N T)

{,m=1

+ i {Re(cp)Im(d,,) + Im(cg)Re(d,,) } JE(oe N T4py)

,m=1
n

D {Re(co)ly + 1m(ce) T} {Re(dy) g + In(d) Y E(@ ) E(r,)

{,m=1
- {i{Re(w)I«H v Im(Ce)J}E(O'e)} {Z {Re(d,,)ly + Im<dm>J}E<rm)}
¢=1 m=1
=I(/)L(g),

(iii) holds.
Assertion (iv) is a direct consequence of (i)—(iii). Indeed,

P = )
=117y )
- [ 1roraE. e

Finally, assertion (v) is a direct consequence of assertion (iv). ]

Remark 5.4. If T € B(H) is normal and E; is the spectral measure on os(T) N C;.’ for j €S
appearing in Theorem 4.7, then item (ii) of Lemma 5.3 ensures that ‘

f(T)=1(f), fe€6(os(T)NC},C)). (33)
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We will now extend the functional calculus for functions in 98 (E, Qj*., C;) to a more general class
of functions which will be useful when proving the spectral theorem for unbounded normal operators.

Definition 5.5. Let B(E,Q,C;) denote the space of all B(€2)-measurable functions f : Q —
C; U {co} which satisfy
E({peQ: f(p)=c0}) =0,

where E is a spectral measure.

Definition 5.6. A sequence of sets {07, }~_, where o, € B(Q) forn = 0,1,. .. is called a bound-
ing sequence for a subset of functions § € B.(E,Q,C;) if

(i) f € §isboundedon o, forn=0,1,...,
(i) o, Couyforn=0,1,...,
(i)  E(Uy_jon) = Ig,

where E is a spectral measure.
Remark 5.7. 1f {o,}7" is a bounding sequence, then the following assertions follow from the
definition of a spectral measure (see Definition 4.6):

()  E(on) < E(0n+1)
(i) E(op)x > xasnToo,x€H.
(iii) The set |J;,_, E(c,,)H is dense in H.

We will now give meaning to I(f) for f € B (E,Q,C;).

Definition 5.8. Fix f € B(E,Q,C;) and let {o,} " be a bounding sequence for f. We let

I(f)x = li;n I(xo,f)x (5.4)
with domain
DA(f) ={xeH: /Qlf(p)lzd@(p)x,x} < oo} (5.5

Given a quaternionic measure p on Q C C;, we will let L,(€, i) consist of all measurable func-
tions such that

1/2
1 s = ( /Q If(p)lzdlul(p)) <o,

where |u| denotes the rotal variation of u defined by

lul(o) = sup  |u(om)l, o € B(Q).

o’:l_lzzlo’m
Here U denotes a disjoint union.
Lemma 5.9. If E is a spectral measure on Q C C; and p (o) = (E(0)x,y), X,y € H, then
(i) |x,y(0)] < pu(0) Py (o) for o € B(Q).
(ii) If f € Lo(Q, uy) and g € Ly(Q, ), then

< 2 flly@ pollglliy@ g -

'/ Re{(fg)(p)}dﬂx,y(p)+/Im{(fg)(P)}dﬂx,-Jy(p)
Q Q

Proof. The proof of Lemma 4.8(i) in Ref. 33 can easily be adapted to obtain item (i) in our present
setting. Since

‘ /Q Re{(f2)(1)}diix.o(p)

< /Q Re{(£2)(P)}Hdlts. o | ()
< /Q FD D)l ().
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one may proceed as in the proof of Lemma 4.8(ii) in Ref. 33 to obtain

/Q ()N, y|(P) < 1 lLs@ e N8N Lr(11y. )

and hence

S N llea@ e ollgllLo@py, -

‘ /Q Re{(/2)(p)}diiv., ()

Similarly, one can show that

‘/le{(fg)(l?)}dﬂx,y(P) < W ey pux o8l @ sy s -
But since
Hety—1y(0) =(E(@)(=Ty), =T y) =E(@)Y,y) = py,4(0),
we have the advertised upper bound. O

Lemma 5.10. If f € Bo(E,Q,C)) and {0}, is a bounding sequence for f, then

(i) A vector x belongs to D(I(f)) if and only if the sequence {I( x -, f)x},_, converges in H, or,
equivalently,

sup IS X)Xl < 0.

(ii) I(f) does not depend on the choice of bounding sequence for f.
(iii)  The set U> (E(cn)H is a dense subset of D(I(f)) with respect to the norm ||x|lxr) = || x|| +
1ICA)xl], x € D(f)). Moreover,

E(on)I(f) CUNE(@0n) =1(fX0n)» n=01,.... (5.6)

Proof. We have already observed in Definition 4.6 that E(o) is a positive operator on Q for every
o € B(Q). Thus, u, is a positive measure on Q, where (o) = (E(0)x, x). Consequently, the proof
of items (i)-(iii) can be completed in much the same way as in items (i)-(iii) of Theorem 4.13 in
Ref. 33. O

In the following theorem, W shall denote the closure of an operator W € £(H), while f denotes
the usual conjugation of the function f.

Theorem 5.11. If f,g € B(E,Q,C;) and a, 8 € Cj, then

(i) I(f)=1f)-
(ii) Waf + Bg) = al(f)+ Bl(g).
(iii) 1(fg) = I(/)(g).

(iv) 1(f) is a closed normal operator on H and
1)) =1fF) =1Ff)

(v) DIANIg)) = D) N DI(fg)).
i) If x € DA(f)) and y € D((g)), then

()% 1)) = /Q Re(/(DgP)ED)x. y) + /Q Im(F(0)g PN E(p)x. y)-
(vii) If x € D(S)), then

IUI(f)xII2=/Qlf(p)lzd<E(p)x,X>-

Proof. The proof of items (i)-(iv) when H is a complex Hilbert space (see items (i)-(v) of The-
orem 4.16 in Ref. 33) can easily be adapted to the case when H is a quaternionic Hilbert space. Item
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(vii) follows directly from item (vi) when g = f and x = y. What remains is to show (vi). To this
end, we will adapt the argument for the proof of Proposition 4.15 in Ref. 33.
In view of items (i) and (ii) of Lemma 5.10,

/Q Re{(/xm)(p)}d(E(p)x. y) + /Q Im{(/2 xm)(P)}dTE(P)x, y) 5.7)

=(fE X)X, Y)
= (I(f Xor) % (g X o)) Y )-

Since x € D((f)) and y € D(g)), f € Lo, tixx) and g € Lo(Q, ), where py ,(0)=
(E(0)x,y), o € B(Q). Therefore, we may use Lemma 5.9 to get that the integrals given in

K = / Re{(fgxm)(p)}d(E(p)x,y) + / Im{(fg xm)(p)}d{JE(p)x,y)
Q Q
exist and hence
‘ [ Rt 2x ) EI ) + [ I8 NPIATEPI, ) = ] =0
as m T oco. But then the formula advertised in (vi) follows from letting m T oo in (5.7). O

Theorem 5.12. If f € B (E,Q,C;), thenI(f) is invertible ifand only if f does not vanish E-a.e.
on Q. In this case,

1) =1(1/f). (5.8)

where we use the convention that 1/0 = co and 1/c0 = Q.

Proof. The proof when H is a complex Hilbert space (see Proposition 4.19 in Ref. 33) can easily
be adapted to the case when H is a quaternionic Hilbert space. O

Lemma 5.13. If g : Q — Qc Cjhe %w(i,ﬁ,cj), and E is the spectral measure on Q given
by

E@)=E@g (@) T <BQ),
then E(o) and J commute for all & € B(Q), hog € Boo(E,Q,C;), and
I5(h) = Ig(hog),

ie.,

/~ Re{h(p)}d{E(p)x. y) + / Im{h(P)}dIE(p)x. )
Q Q
- /Q Re{A(s(p)}d{E(p)x. y) + /Q Im{h(g(P)}dTE(p)x. y). (5.9)

forall x € D(Iz(h)) = D(Ig(h o g)), where Iz and I denote the spectral integrals with respect to E
and E, respectively.

Proof. One can reason as in the proof of Proposition 4.24 in Ref. 33 (with the caveat that polar-
ization formula (4.2) must be used) to get

D(Ag(h) = D(Ie(h o g)),

ﬁ Re(h(7)d(E(p)x. y) = / Re(h(g(p)d(E(p)x. ).
Q Q
and

/~ Im(h(p)d{E(p)x,~T y) = / Im(h(g (p))d{E(p)x.~T ).
Q Q

Since E(c) and J commute and E() and J commute, by assumption, we have (5.9). O
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VI. THE SPECTRAL THEOREM FOR UNBOUNDED NORMAL OPERATORS BASED
ON THE S-SPECTRUM

In this section we will consider normal operators 7' which are unbounded. The strategy will be
to transform 7 into a normal operator Zy € B(H) and use Theorem 4.7 and a change of variable
argument to obtain a spectral theorem for 7 based on the S-spectrum. Obtaining a spectral theorem
for unbounded operators in the aforementioned way has been done in the classical case, i.e., when
H is a complex Hilbert space, see, e.g., the book of Schmiidgen.*

Given T € L(H), we let

Zr =TC,, (6.1)

where Cr = (I¢ + T*T)™" € B(H) (the proof that Cr is bounded can be carried out in a similar manner
to the classical complex Hilbert case, see, e.g., Proposition 3.18(i) and Lemma 1.10 in Ref. 33).

Theorem 6.1. Let T € L(H) be a densely defined closed operator on H. The operator Zg has
the following properties:

(i) Zr € B(H), 1 Zr]| < 1 and
Cr=Uu+TT)" " =1y~ 272;7r. (6.2)
(it) (Zr)" = Zg~

(iii) If T is normal, then Zr is normal.

Proof. The proof is based on the proof of Lemma 5.7 in Ref. 33 and is broken into steps.

Step 1: Prove (i).
First note that

{Crx:x € HY = Dy +T'T) = D(T'T). (6.3)
Consequently, if x € H, then
ITC;/C%x|? =(T"T Crx, Crx)
<{(Iy +T*T)Crx,Crx)
=(C;'Crx,Crx)
=(x,Crx)

=c; x|
Thus, if y € {C}/*x : x € H}, then

1Zryll = ITC;yll < Iyl (6.4)

As Ker(Cr) = {0}, we have that Ker(C;/z) = {0} and thus {C}/zx : x € H} is a dense subset of .
As T is a closed operator by assumption and C}/ % € B(H), we get that Zr is closed as well. Thus,
we have {C,/*x : x € H} € D(T), D(Zr) = H and, in view of (6.4), || Zr|| < 1.
Next, it follows from (6.4) and C'/*T* C Z: that
(I — Cr)C}* = C*(Iy + T*T)Cr - C)*Cr
=C*r'rCy*c)?

C Z;ZrCy

Thus, Z}ZTC,;/2 =(Iy - CT)C;/2 and, as {C}/zx : x € H} is a dense subset of H, we get (6.2).
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Step 2: Prove (ii).
Using (6.2) we get that Cp« = (Iyy + TT*)"\. If x € D(T*), then let y = Cy+x. Therefore,

x=y+TTy
and
T'x=T"(Ux+TT")y = (I +T'TT"y.
Thus, Cr+x € D(T*) and hence
CrT*x =Ty = T"Crx. (6.5)
It follows easily from (6.5) and (6.2) that p(Cr+)x € D(T*) and
p(C)T"x =T"p(Cr)x

for any real polynomial p of a real variable. By the Weierstrass approximation theorem, there exists a
sequence of real polynomials {¢, } > which converge uniformly in supremum norm to the function
t = 2 on [0,1]. Using Property (iv) of Theorem 3.11 we have that

im [1ga(Cr) = Gl = lim ll9(Cr-) = Gl = 0.
Since T is a closed operator, 7™ is also a closed operator. Thus, we have
C’T'x = }lig du(CHT*x = }lig T*¢n(Cro)x
=T"(Cr)'*x for x e D(T").

As C}/zT* - (TC;/2)* = Zr+, we get that
Zrex = C)*T"x = T*(Cr+)'x = (Zr)'x
for x € D(T*). Finally, since D(T™) is dense in H, we have that Zr+«x = (Zr)*x, i.e., Zy+ = (Z7)".

Step 3: Prove (iii).
Using (6.2) on T and 7™ and the fact that 77" = T*T we have

Iy = Z7Zr = (I + TT) " = (Ig + TT) " = Iyy — ZpZy-.
Making use of Property (ii) we have that
Iy — Z7Zr = Iy — Z1Z3,
i.e., Zr is normal. O

We are now ready to state and prove a spectral theorem for unbounded normal operators on a
quaternionic Hilbert space.

Theorem 6.2. Let T be an unbounded right linear normal operator on H and j € S. There exists
a uniquely determined spectral measure E; on Q}' =os(T)N C}f so that

(Tr) = [ ReAEx)+ [ P, xeDD. 60

or, equivalently,

) = [ pdE@x+ [ FAVEERY. xeDD. 6D

where the operator J € B(H) is operator appearing in the decomposition in Theorem 3.6 for Zr €
B(H) and 11, are as in Theorem 4.7. Moreover, upon identifying the complex plane Cy with C; in
the natural way by the mapping ¢y j, we have Ej(¢pij(0)) = Ex(o),0 € B(Y) for all j,k € S.

Proof. The proof is broken into steps.

Step 1: Show that a spectral measure E exists so that (6.6) holds.
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LetB={peH:|p|<1},dB={peH:|p|=1},and B =B U IB. If T is normal, then using
Properties (i) and (iii) in Theorem 6.1 we get that || Z7|| < 1 and Zr is normal, respectively. Thus, we
may use Theorem 4.7 to obtain a uniquely determined spectral measure F on o-s(Z7) N C}' so that

fEn=10= [ f)dEe) fr fethiosZnngie) 68

whenog(T)NR # Qand forall f € €(os(Z7) N C;T,Cj) when og(T) N R = Q. In addition, it follows
from Theorem 3.2.6 in Ref. 18 that

os(Zr) S {p e H:|p| < || Zr|I}
and hence
O-S(ZT) N C; - @ N C;—

If x e H and o € B(os(T)N C}’), then, in view of item (v) in Lemma 5.3 and (6.8), we have

(Up = ZpZr)F(0)x, Fo)x) = /(r(l — |pI)d(F (p)x, x). (6.9)
Recall that Iy — Z;. Zy = (I3 + T°T)™! ie., Ker(Iyr — Z3.Z7) = {0}. Thus, using (6.9) with
oc=0BnN C;
we get that supp F C B N C}“ and F(dB N (C;T) = 0. Therefore,
FBNCH=F[BNC)\BNC)H] = Iy.

If o(p) = p(1 = |p|»)~"/2, then ¢ € B (F,05(Zr) N C7,C)). In view of item (iii) and (v) of The-
orem 5.11 we have

I(p) = I(H(g),

where
1

fp)=p and g(p)= —.
VI-1pP
and D(I(¢)) = D(I(g)). Using Theorem 5.12, we have
I(g) =1(1/g)™".
Consequently, we may use item (i) in Corollary 4.9 to obtain
I(g) = {(I(h))' 7,

where

h(p) = 1 - |p|> € B(F,os(Zr) N C},C)).
Putting these observations together, we obtain

I(p) = Zr(CY/H). (6.10)

Since Zr = T'C;/* we obtain ¢(Zr) C T. Using Cr = (I — Z;:Zr)'/?, we get thatI(¢) C T. Thus,
using Lemma 2.10 we get that

I(p)=T.
Let E;(0) = F(¢™!(0)), where
o N o)={peH : p(p)ec} for oeB(os(T)N C)).

It is readily checked that E; = F(¢") defines a spectral measure on C}r and thus using Lemma 5.13
we get (6.6). The equivalent assertion (6.7) is established in much the same way as the analogous
assertion in Theorem 4.7.
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Step 2: Show that E; from Step 1 is unique.
If E; and EJ are spectral measures on os(7) N (C;T which satisfy (6.6), then F = E;(p) and F =

Ej(tp) are both spectral measures so that

BN

@rvpy= [ RepdFGn)+ [ mp) UG

= ﬁ Re(p) d{F(p)x, y) + ﬁ Im(p) d(JF(p)x,y), x,y € H. (6.11)
BOC;Y Bncjt

Let ?(os(Zr) N C}’,R) denote the space of real-valued polynomials on os(Z7y) N C}’. In view of
Lemma 5.3 and Remark 5.4, (6.11) yields

W(Zr)x,x) = Y(p)d(F(p)x,x)

os(Zr)nC
= / W(p)d(F(p)x,x), ¥ € P(os(Zr)NC:,C)), xeH.
os(Zr)n C;Y
As P (os(Zr) N C;,Cj) is a dense subset of € (o s(Z7) N (C;T,Cj) we have that
/ spF ) = [ B)AF(p)x, x)
os(Zr)nC} os(Zr)nC

for all ¢ € €(os(Z7) N C}',R) and hence, in view of construction of the spectral measure given in

Section IV, F = F. Therefore, E; = EJ The final assertion concerning E; and E is proved in a similar
manner to an analogous assertion in Theorem 4.7. O

Corollary 6.3. In the setting of Theorem 6.2, the following statements hold:

(i) If T € L(H)is apositive operator, then there exists a unique positive operator W € L(H) so
that W* =T.
(ii) T € L(H) is self-adjoint if and only if

(Tx,y) = /td(E(t)x, y), xe€DT),yeH. (6.12)
R
(iti) T € L(H) is anti self-adjoint if and only if
(Tx,y) = / td(JE()x,y), xe€DT),ycH. (6.13)
[0,00)
Proof. Using Theorem 6.2, the proof is completed as in Corollary 4.9. O

Remark 6.4. We remind the reader that the functional calculus mentioned in Section V is appli-
cable to unbounded normal operators T € L(H'). We conclude this section by stating, in the following
corollary, such a functional calculus.

Corollary 6.5. LetT, Ej, and J be as in Theorem 6.2.If f,8 € Boo(E,os(T) N C;T,Cj) anda, B €
Cj, then
(i) I(f) =1(f)"
(i) Waf + Bg) = al(f) + BIY).
(iii)  1(fg) = L(f)g).
(iv) 1(f) is a closed normal operator on H and

IYI) =1f ) =F .
(v)  DUNIE)) = D(g)) N DA(f)).
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i) If x € DA(f)) and y € D((g)), then
T I(g)y) = /Q Re(£(p)g(P)dLE(p)x. y) + /Q Im(F (P)gATEP)x. ).
(vii) If x € D(S)), then

IIH(f)XI|2=/Qlf(p)|2d<E(p)x,X>-
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