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In this paper we prove the spectral theorem for quaternionic unbounded normal oper-
ators using the notion of S-spectrum. The proof technique consists of first establishing
a spectral theorem for quaternionic bounded normal operators and then using a trans-
formation which maps a quaternionic unbounded normal operator to a quaternionic
bounded normal operator. With this paper we complete the foundation of spectral
analysis of quaternionic operators. The S-spectrum has been introduced to define the
quaternionic functional calculus but it turns out to be the correct object also for the
spectral theorem for quaternionic normal operators. The lack of a suitable notion of
spectrum was a major obstruction to fully understand the spectral theorem for quater-
nionic normal operators. A prime motivation for studying the spectral theorem for
quaternionic unbounded normal operators is given by the subclass of unbounded anti-
self adjoint quaternionic operators which play a crucial role in the quaternionic quan-
tum mechanics. C 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4940051]

I. INTRODUCTION

In Ref. 6, a spectral theorem for quaternionic unitary operators based on the S-spectrum was
proved using an extension of Herglotz’s theorem to the quaternions.7 In this paper, inspired by Ref. 6,
we treat the more general case of unbounded normal quaternionic operators.

The interest in spectral theory for quaternionic operators is motivated by the celebrated paper
of Birkhoff and von Neumann, see Ref. 14, who showed that Schrödinger equation can be written
only in the complex or quaternionic setting. Several authors have given important contributions to
the development of the quaternionic version of quantum mechanics, see Refs. 2, 21, 23, and 28, but
a correct notion of spectrum for quaternionic operators was still missing until the introduction of the
S-spectrum, see, e.g., Ref. 18. As it is well known, in the classical formulation of quantum mechanics
the spectral theory of unbounded self-adjoint operators plays a crucial role. In the fundamental pa-
per,31 von Neumann used the spectral theorem for unitary operators to prove the spectral theorem for
unbounded self-adjoint operators. In quaternionic quantum mechanics, the most important quater-
nionic operators are unbounded anti self-adjoint operators; these are a particular case of quaternionic
unbounded normal operators treated in this paper.

Our strategy to prove the spectral theorem is as follows: first we deduce the spectral theorem
for quaternionic bounded normal operators. The proof is based on a continuous functional calculus
defined in Ref. 24 and a classical version of the Riesz representation theorem. After we establish
a spectral theorem for quaternionic bounded normal operators, we deduce a spectral theorem for
quaternionic unbounded normal operators from the bounded case and from a suitable transformation.

With the quaternionic spectral theorem based on the S-spectrum we complete the foundation of
the quaternionic spectral theory that started some years ago with the introduction of the S-functional
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calculus. In fact, using the notion of slice hyperholomorphic functions, see Ref. 18, and the S-spectrum
it is possible to define the quaternionic version of the Riesz-Dunford functional calculus which we
now call quaternionic functional calculus or S-functional calculus.

We give a quick explanation of the reason why a consistent spectral theory for quaternionic oper-
ators is not so obvious. For simplicity consider a complex bounded operator A : X → X on a complex
Banach space X. The spectrum of A is defined as

σ(A) = {λ ∈ C : λIX − A is not invertible B(X)},
where B(X) denotes the Banach space of all bounded linear operators onX. Given a normal (bounded)
linear operator T on a complex Hilbert space, in the spectral theorem

T =

σ(T )

λ dE(λ)
the unique spectral measure E(λ) associated to T is supported on σ(T), see, e.g., Ref. 19. The above
notion of spectrum also appears in the Riesz-Dunford functional calculus, see Ref. 20, which is based
on the Cauchy formula of holomorphic functions in which the Cauchy kernel is replaced by the resol-
vent operator (λIX − T)−1. Taking a holomorphic function h defined on an open set that contains the
spectrum, we can use the Cauchy formula to define the linear operator h(T).

From a historical viewpoint, a first attempt to generalize the classical notion of spectrum to quater-
nionic linear operators was to readapt the definition. To see the inconsistencies that occur, consider a
right linear quaternionic operator T : V → V acting on a quaternionic two-sided Banach spaceV .
The symbol B(V) denotes the Banach space of all bounded right linear quaternionic operators on
V . The left spectrum σL(T) of T is related to the left-resolvent operator (sIV − T)−1, i.e.,

σL(T) = {s ∈ H : sIV − T is not invertible in B(V)},
where

(sIV)(v) = sv, v ∈ V .
The right spectrum σR(T) of T is associated with the right eigenvalue problem, i.e., the search

for those quaternionis s such that there exists a nonzero vector v satisfying Tv = vs. Observe that the
operator IVs − T associated with the right eigenvalue problem is not linear. Consequently, it is not
clear what the resolvent operator ought to be. The quaternionic left-resolvent operator (sIV − T)−1,
as far as we know, is not hyperholomorphic in any sense. Consequently, the left-resolvent operator
is not useful to define a hyperholomorphic quaternionic functional calculus. When we consider the
right spectrum we just have the notion of eigenvalues. The above discussion shows that there is a
problem in adapting the classical notion of spectrum to either the left or right quaternionic spectrum.

As we shall see, relative to obtaining a spectral theorem for quaternionic normal operators, the
appropriate notion of spectrum is a new notion of spectrum which is as follows. The S-spectrum for
a bounded linear operator T , see Ref. 18, is defined as

σS(T) = {s ∈ H : T2 − 2Re(s)T + |s|2IV is not invertible in B(V)},
where s = s0 + s1e1 + s2e2 + s3e3 is a quaternion, {1,e1,e2,e3} is the standard basis of H, Re(s) = s0
is the real part and the norm |s|2 = s2

0 + s2
1 + s2

2 + s2
3, and the S-resolvent set is defined as

ρS(T) = H \ σS(T).
We are now ready to illustrate our main result, the spectral theorem for normal quaternionic operators.
In this introduction we limit the discussion to the case of bounded normal operators but the theorem
holds also for unbounded operators, see Theorem 6.2.

Consider the complex plane C j B R + jR, for j ∈ S, where S is the unit sphere of purely imag-
inary quaternions. Let C+j denote all p ∈ C j with Im(p) ≥ 0. Observe that C j can be identified with
a complex plane since j2 = −1 for every j ∈ S. If T is a (bounded) right linear normal operator on a
quaternionic Hilbert space and j ∈ S, then there is a unique spectral measure E on σS(T) ∩ C+j such
that

⟨T x, y⟩ =

σS(T )∩C+

j

Re(p) d⟨E(p)x, y⟩ +

σS(T )∩C+

j

Im(p) d⟨JE(p)x, y⟩,
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where J is an anti-self adjoint and unitary operator which commutes with the spectral measure E. To
show the deep difference between the complex spectral theory and the quaternionic spectral theory, we
recall the quaternionic version of the Riesz-Dunford functional calculus, which suggests the notion
of S-spectrum, see Refs. 16 and 15. This calculus involves two resolvent operators, namely, a left and
right S-resolvent operator given by

S−1
L (s,T) B −(T2 − 2Re(s)T + |s|2IV)−1(T − sIV), s ∈ ρS(T) (1.1)

and

S−1
R (s,T) B −(T − sIV)(T2 − 2Re(s)T + |s|2IV)−1, s ∈ ρS(T), (1.2)

where T ∈ B(V) and ρS(T) = H \ σS(T) is the S-resolvent set. As one can see, the S-spectrum is
suggested by the S-resolvent operators.

Let Ω ⊂ H be a suitable domain that contains the S-spectrum of T . We define the quaternionic
functional calculus for left slice hyperholomorphic functions f : Ω → H as

f (T) = 1
2π


∂(Ω∩C j)

S−1
L (s,T) ds j f (s), (1.3)

where ds j = −ds j; for right slice hyperholomorphic functions, we define

f (T) = 1
2π


∂(Ω∩C j)

f (s) ds j S−1
R (s,T). (1.4)

These definitions are well posed since the integrals depend neither on the open setΩ nor on the com-
plex plane C j. Moreover, the resolvent equation, see Ref. 5, involves both S-resolvent operators, for
s and p ∈ ρS(T) we have

S−1
R (s,T)S−1

L (p,T) = {(S−1
R (s,T) − S−1

L (p,T))p − s(S−1
R (s,T) − S−1

L (p,T))}(p2 − 2s0p + |s|2)−1. (1.5)

Even though there are deep differences with respect to the classical resolvent equation for com-
plex operators, all of the results that hold for the Riesz-Dunford functional calculus also hold for the
quaternionic functional calculus. We now claim that to replace the complex spectral theory with the
quaternionic spectral theory we have to replace the classical spectrum with the S-spectrum.

We conclude with some final remarks. In the caseT is a right linear operator on a finite-dimensional
Hilbert space, the S-spectrum of T coincides with the set of right eigenvalues of T ; in the general case
of a linear operator, the point S-spectrum coincides with the set of right eigenvalues. In the litera-
ture, the spectral theorem for quaternionic normal matrices based on the right spectrum is proved in
Ref. 22 and there are some papers on the quaternionic spectral theorem, see, e.g., Refs. 23 and 34–36.
However, the notion of spectrum in the papers23,34,36 is not made clear. In Ref. 25, a spectral theorem
based on S-spectrum is proved for compact normal operators on a quaternionic Hilbert space. We
point out that the S-resolvent operators are also used in Schur analysis in the realization of Schur
functions in the slice hyperholomorphic setting see Ref. 1 and 8–10 and Refs. 3 and 12 for the classical
case. In Refs. 11, 17, and 26 the problem of the generation of quaternionic groups and semigroups is
treated using the S-spectrum. Functions of the generators of quaternionic groups of operators have
been studied in Ref. 4.

The plan of the paper is as follows: In Section II we give some preliminaries; in Section III we
recall a continuous functional calculus for bounded normal operators; in Section IV we prove the
spectral theorem for bounded normal operators based on the S-spectrum; in Section V we introduce
spectral integrals; finally, in Section VI we prove the spectral theorem for unbounded normal operators
based on the S-spectrum.

II. PRELIMINARIES

LetH be a right linear quaternionic Hilbert space (see, e.g., Subsection 2.2 in Ref. 24), endowed
with anH-valued inner product ⟨·, ·⟩which satisfies, for everyα, β ∈ H, and x, y , z ∈ H , the following
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relations:

⟨x, y⟩ = ⟨y, x⟩,
⟨x, x⟩ ≥ 0 and ∥x∥2 B ⟨x, x⟩ = 0⇐⇒ x = 0,

⟨xα + y β, z⟩ = ⟨x, z⟩α + ⟨y, z⟩β,
⟨x, yα + z β⟩ = ᾱ⟨x, y⟩ + β̄⟨x, z⟩.

We call an operator T : D(T) → H right linear if

T(xα + y β) = (T x)α + (T y)β,
for all x, y in the domain of T , denoted by D(T), and α, β ∈ H. The set of right linear operators on
H will be denoted by L(H ). Given T ∈ L(H ) the range and kernel of T will be given by

Ran(T) = {y ∈ H : T x = y for x ∈ D(T)}
and

Ker(T) = {x ∈ D(T) : T x = 0},
respectively. We call an operator T ∈ L(H ) bounded if

∥T ∥ B sup
∥x∥≤1

∥T x∥ < ∞.

In the sequel B(H ) will denote the right Banach space of all bounded right linear operators on H
endowed with the above norm.

Definition 2.1 We will call a subset N ⊆ H an orthonormal basis if

⟨x, y⟩ = 0 for x, y ∈ H so that x , y, (2.1)
⟨x, x⟩ = 1 for x ∈ H , (2.2)

{x ∈ H : ⟨x, y⟩ for all y ∈ N } = {0}. (2.3)

It can be checked in a similar manner to the classical complex Hilbert space case that every vector
x ∈ H can be written as

x =

y∈N

y⟨x, y⟩. (2.4)

Lemma 2.2 Fix a right linear quaternionic Hilbert spaceH . A right linear subspaceK of H ⊕
H satisfies

K = {(x,T x) : x ∈ D(T)}, (2.5)

for some T ∈ L(H ) if and only if

(0, y) ∈ K =⇒ y = 0. (2.6)

Proof. IfK is as in (2.5), then (2.6) follows directly from T0 = 0. Conversely, if (2.6) holds, then
(x, y) and (x, z) belonging to K implies that y = z, i.e., there exists a function T : D(T) → H . The
fact that T ∈ L(H ) follows easily from the right linearity of K . Thus, (2.5) holds. �

Definition 2.3. An operator T ∈ L(H ) is called closed if the set {(x,T x) : x ∈ H } is a closed
subset ofH ×H . Let S and T both belong to L(H ). We write S = T if D(S) = D(T) and Sx = T x
for all x ∈ D(S) = D(T). We write S ⊆ T if D(S) ⊆ D(T) and Sx = T x for all x ∈ D(S). Clearly,
S = T if and only if S ⊆ T and T ⊆ S. An operator T ∈ L(H ) is called closable if there exists a closed
operator U ∈ L(H ) so that T ⊆ U.

Theorem 2.4. Let T ∈ L(H ). T is closable if and only if

{(x,T x) : x ∈ D(T)} = {(x,U x) : for some operator U ∈ L(H )}. (2.7)
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Proof. If S ∈ L(H ) is any closed operator such that T ⊆ S, then

{(x,T x) : x ∈ D(T)} ⊆ {(x,Sx) : x ∈ D(S)}.
Hence, as S is closed,

{(x,T x) : x ∈ D(T)} ⊆ {(x,Sx) : x ∈ D(S)}.
Therefore, in view of Lemma 2.2, (2.7) holds.

Conversely, if (2.7) holds, then T ⊆ U and hence U is closed since

{(x,U x) : x ∈ D(U)}
is closed. Thus, T is closable. �

Definition 2.5. Let T ∈ L(H ) be closable. We let

T x B lim
n↑∞

T(xn)
denote the operator in L(H ) with domain

D(T) = {x ∈ H : x = lim
n↑∞

xn for {xn}∞n=0 ⊆ D(T) and {T(xn)}∞n=0 converges inH }.

In view of Theorem 2.4, the definition of T is independent of the choice of sequence {xn}∞n=0. Note
that for any closed operator U ∈ L(H ) such that T ⊆ U,

T ⊆ U.

Definition 2.6. Given T ∈ L(H ) which is densely defined, we let T∗ ∈ L(H ) denote the unique
operator so that

⟨T x, y⟩ = ⟨x,T∗y⟩, x ∈ D(T).
The domain of T∗ is given by

D(T∗) = {y ∈ H : there exists z ∈ H with ⟨T x, y⟩ = ⟨x, z⟩ for every x ∈ D(T)}.

Theorem 2.7. If T ∈ L(H ) is densely defined and W ∈ L(H ), then

(i) T∗ ∈ L(H ) is closed.
(ii) Ran(T)⊥ = Ker(T∗).

(iii) If T ⊆ W, then W ∗ ⊆ T∗.

Proof. The proofs can completed in much the same way as the case whenH is a complex Hilbert
space (see, e.g., Proposition 1.6 in Ref. 33). �

Theorem 2.8. If T ∈ L(H ) is densely defined, then

(i) T is closable if and only if D(T∗) is dense inH .
(ii) If T is closable, then T = T∗∗.

(iii) T is closed if and only if T = T∗∗.
(iv) If T is closable and Ker(T) = {0}, then T−1 is closable if and only if Ker(T) = {0}. Moreover,

(T)−1 = T−1.

Proof. The proofs can completed in much the same way as the case whenH is a complex Hilbert
space (see, e.g., Theorem 1.8 in Ref. 33). �

Definition 2.9. Let T ∈ L(H ). We call T normal if T is densely defined, T is closed, D(T) =
D(T∗) and TT∗ = T∗T .

Lemma 2.10. Let T ∈ L(H ) be normal. If S ∈ L(H ) so that T ⊆ S and D(S) ⊆ D(S∗), then
S = T.
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Proof. If T ⊆ S, then S∗ ⊆ T∗ and hence

D(T) ⊆ D(S) ⊆ D(S∗) ⊆ D(T∗) = D(T),
i.e., D(S) = D(T). Therefore, S = T . �

Definition 2.11. Let T ∈ L(H ). We call T self-adjoint, anti self-adjoint and unitary if T = T∗,
T = −T∗, and TT∗ = T∗T = IH , respectively.

Definition 2.12. Let T ∈ L(H ) be densely defined and let Rs(T) : D(T2) → H be given by

Rs(T)x = {T2 − 2Re(s)T + |s|2IH}x, x ∈ D(T2).
The S-resolvent set of T is defined as follows:

ρS(T) = {s ∈ H : Ker(Rs(T)) = {0},Ran(Rs(T)) is dense inH and

Rs(T)−1 ∈ B(H )}.
The S-spectrum is defined as

σS(T) = H \ ρS(T).
For bounded operators this definition is equivalent to the one given in the Introduction (see Ref. 24).

Theorem 2.13. Let T ∈ B(H ). Then the S-spectrum is a compact non-empty subset of H and

σS(T) ⊆ {p ∈ H : 0 ≤ |p| ≤ ∥T ∥}. (2.8)

Proof. See Theorem 3.2.6 in Ref. 18. �

Theorem 2.14. Let T ∈ L(H ) be densely defined. If p = p0 + ip1 ∈ σS(T) for i ∈ S and p0,p1 ∈
R, then p0 + jp1 ∈ σS(T) for all j ∈ S.

Proof. The proof of the assertion follows directly from the definition of the S-spectrum. If s ∈
σS(T), then it follows immediately from the definition of σS(T) that all the quaternions with the same
real part and the same modulus belong to the S-spectrum of T . �

Theorem 2.15. Let T ∈ L(H ). The following statements hold:

(i) If T is positive, then σS(T) ⊆ [0,∞). If, in particular, T ∈ B(H ) is positive, then

σS(T) ⊆ [0, ∥T ∥].
(ii) If T is self-adjoint, then σS(T) ⊆ R. If, in particular, T ∈ B(H ) is self-adjoint, then

σS(T) ⊆ [−∥T ∥, ∥T ∥].
(iii) If T is anti self-adjoint, then σS(T) ⊆ {p ∈ H : Re p = 0}. If, in particular, T ∈ B(H ) is anti

self-adjoint, then

σS(T) ⊆ {p ∈ H : Re p = 0 and |p| ≤ ∥T ∥}.
(iv) If T is unitary, then σS(T) ⊆ S.

Proof. If T ∈ L(H ), then the containments illustrated in (i)-(iii) follow readily from the
definition of σS(T). If T ∈ B(H ), then the containments illustrated in (i)-(iv) follow readily
from (2.8). �

We will also need the following two versions of the Riesz representation theorem.

Theorem 2.16. Let X be a compact Hausdorff space and C(X,R) denote the normed space of
real-valued continuous functions on X together with the supremum norm ∥ · ∥∞. Corresponding to
any bounded linear functional ψ : C(X,R) → R there exists a signed Borel measure µ on X such that

ψ( f ) =

X

f (t)dµ(t) for all f ∈ C(X,R). (2.9)
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If, in addition, ψ is a positive linear functional, then µ is a positive Borel measure on X. In both cases
µ is unique.

Proof. See, e.g., Theorem D in Section 56 of Ref. 27 for the case when ψ is a positive bounded
linear functional on X and, e.g., Chapter 21 in Ref. 32 for the more general case. �

III. A FUNCTIONAL CALCULUS FOR BOUNDED NORMAL OPERATORS

LetH be a right quaternionic Hilbert space and B(H ) denote the set of all bounded right linear
operators on H . In Ref. 24, established the existence of some functional calculi for a quaternionic
bounded normal operator. Before introducing the functional calculus for bounded normal operators,
we first need some notation and results. In the rest of the paper, we say quaternionic Hilbert spaceH
for right quaternionic Hilbert space.

Theorem 3.1. Let N be an orthonormal basis of a quaternionic Hilbert space H . Then every
x ∈ H can be decomposed uniquely via

x =

z∈N

z⟨x, z⟩, (3.1)

where 
z∈N

z⟨x, z⟩ B sup{

z∈Nf

z⟨x, z⟩ : Nf is a non-empty finite subset of N }.

Proof. See, e.g., Proposition 2.6 in Ref. 24 with the caveat that the inner product in Ref. 24 is
antilinear in the first variable and linear in the second variable. �

Definition 3.2. Let J ∈ B(H ) be anti self-adjoint and unitary and j ∈ S. LetH j
± denote the closed

complex (with respect to the complex plane C j) subspaces given by

H j
± = {x ∈ H : Jx = ±x j}. (3.2)

We will now formulate some useful results from Ref. 24 in the following lemma.

Lemma 3.3 (Ref. 24). If J is an anti self-adjoint and unitary operator and j ∈ S, then

(i) H j
± , {0}.

(ii) As a C j-Hilbert space,H admits the following direct sum decomposition:

H = H j
+ ⊕ H

j
−. (3.3)

Proof. The proofs of items (i) and (ii) can be found in Proposition 3.8(d) and Lemma 3.10 in
Ref. 24, respectively. �

Definition 3.4. Fix an orthonormal basis N of a quaternionic Hilbert space H . The left scalar
multiplication Lp ofH induced by N is the map

(p, x) ∈ H ×H → px ∈ H
given by

px B

y∈N

yp⟨x, y⟩.

Lemma 3.5 (Statement (a) of Proposition 3.8 in Ref. 24). LetH be a quaternionic Hilbert space.
If J ∈ B(H ) is an anti self-adjoint and unitary operator, then corresponding to any fixed j ∈ S, there
exists a left-scalar multiplication Lp so that

J = L j .
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In the following theorem, we will make use of the operator |T | B (T∗T)1/2 for T ∈ B(H ). See
Section 2.4 of Ref. 24 for a definition of the square root of a positive operator which relies on the
functional calculus therein.

Theorem 3.6. Let T ∈ B(H ) be normal. Then there exist uniquely determined operators A B
(1/2)(T + T∗) and B B (1/2)|T − T∗| which both belong to B(H ) and an operator J ∈ B(H ) which
is uniquely determined on {Ker(T − T∗)}⊥ so that the following properties hold:

(i) T = A + J B.
(ii) A is self-adjoint and B is positive.

(iii) J is anti self-adjoint and unitary.
(iv) A, B, and J mutually commute.
(v) For any fixed j ∈ S, there exists an orthonormal basisNj of H with the property that J = L j.

Proof. Properties (i)-(iv) appear in Theorem J on page 4 of Ref. 24. Property (v) follows from
Lemma 3.5. �

Definition 3.7. LetΩ ⊆ H. We callΩ axially symmetric if p0 + ip1 ∈ Ωwith p0,p1 ∈ R and i ∈ S,
then p0 + jp1 ∈ Ω ∩ C j for all j ∈ S.

Remark 3.8. Let T ∈ L(H ). In view of Theorem 2.14, σS(T) is an axially symmetric subset of
H.

Definition 3.9. Let Ω ⊆ H be an axially symmetric set and let D ⊆ R2 be such that

D = {(u, v) ∈ R2 : u + jv ∈ Ω for some j ∈ S}.
Let S(Ω,H) denote the quaternionic linear space of slice continuous functions, i.e., S(Ω,H) consists
of functions f : Ω → H of the form

f (u + jv) = f0(u, v) + j f1(u, v) for (u, v) ∈ D and for j ∈ S,
where f0 and f1 are continuous H-valued functions on D so that

f0(u, v) = f0(u,−v) and f1(u, v) = − f1(u,−v).
If f0 and f1 are real-valued, then we say that the continuous slice function f is intrinsic. The subspace
of intrinsic continuous slice functions is denoted by SR(Ω,H).

Remark 3.10. We observe that if f ∈ SR(Ω,H) and we consider the restriction of f to Ω j B
Ω ∩ C j, where j ∈ S, then f has values in C j. This fact makes clear the notation SR(Ω j,C j).

The following functional calculus will be useful for proving a spectral theorem for a normal
operator T ∈ B(H ).

Theorem 3.11 (Theorem 7.4 in Ref. 24). Let T ∈ B(H ) be normal. There exists a unique contin-
uous *-homomorphism

ΨR,T : f ∈ SR(σS(T),H) → f (T) ∈ B(H )
of real-Banach unital C∗-algebras such that

(i) ΨR,T(χσS(T )) = IH , where

χσS(T )(p) =



1 if p ∈ σS(T)
0 if p < σS(T) .

(ii) ΨR,T(id) = T, where id denotes the inclusion map from σS(T) to H.
(iii) If J is as in Theorem 3.6, then J commutes with the normal operator f (T).
(iv) If f ∈ SR(σS(T),H), then ∥ f (T)∥ = ∥ f ∥∞.
(v) If f ∈ SR(σS(T),H), then

σS( f (T)) = f (σS(T)). (3.4)
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Remark 3.12. For the convenience of the reader, we will now outline the construction of f (T)
for f ∈ SR(σS(T),H). Fix j ∈ S. Since σS(T) ∩ C j is compact, there exist sequences of real-valued
polynomials {φn}∞n=0 and {ψn}∞n=0 on D ⊆ R2, where D is as in Definition 3.9, with

φn(u, v) = φn(u,−v) for n = 0,1, . . .

and

ψn(u, v) = −ψn(u,−v) for n = 0,1, . . . ,

so that

f0(u, v) = lim
n↑∞

φn(u, v) uniformly on D ⊆ R2 (3.5)

and

f1(u, v) = lim
n↑∞

ψn(u, v) uniformly on D ⊆ R2, (3.6)

respectively.
Since φn(u, v) and ψn(u, v) have real coefficients and A and B are commuting self-adjoint oper-

ators, it follows easily that φn(A,B) ∈ B(H ) and ψn(A,B) ∈ B(H ) are self-adjoint. Next, we define

f0(T)x B lim
n↑∞

φn(A,B)x, x ∈ H (3.7)

and

f1(T)x B lim
n↑∞

ψn(A,B)x, x ∈ H . (3.8)

Note that the limit in (3.7) exists since φn(A,B) = φn(A,B)∗ and hence

∥{φm(A,B) − φn(A,B)}x∥2 = ⟨{φm(A,B) − φn(A,B)}2x, x⟩
≤ ∥{φm(A,B) − φn(A,B)}2∥∥x∥2

= ∥φm − φn∥2
∞∥x∥2 (3.9)

→ 0, as m,n ↑ ∞,

since (3.5) holds. Note that formula (7.3) in Ref. 24 was used to obtain (3.9). The verification of the
existence of the limit given in (3.8) is similar. The normal operator f (T) ∈ B(H ) is given by

f (T) = f0(T) + J f1(T). (3.10)

Lemma 3.13. Fix a normal operator T ∈ B(H ). If

f = f0 + f1 j ∈ SR(σS(T) ∩ C j,H),
then f0(T) and f1(T) (given in (3.7) and (3.8), respectively) are self-adjoint.

Proof. We claim that

lim
n↑∞

⟨φn(A,B)x, y⟩ = ⟨ f0(T)x, y⟩, x, y ∈ H , (3.11)

and

lim
n↑∞

⟨ψn(A,B)x, y⟩ = ⟨ f1(T)x, y⟩, x, y ∈ H . (3.12)

Assertion (3.11) follows directly from

|⟨φn(A,B)x, y⟩ − ⟨ f0(T)x, y⟩| ≤ ∥φn(A,B) − f0(T)∥∥x∥∥y∥
= ∥φn − f0∥∞∥x∥∥y∥,
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where item (iv) of Theorem 3.11 was used to obtain the last line. Assertion (3.12) is shown in much
the same way. In view of (3.11),

⟨ f0(T)x, y⟩ = lim
n↑∞

⟨φn(A,B)x, y⟩
= lim

n↑∞
⟨x, φn(A,B)y⟩

= ⟨x, f0(T)y⟩, x, y ∈ H .

Thus, f0(T) is self-adjoint. The fact that f1(T) is self-adjoint can be completed in much the same way
using (3.12). �

IV. THE SPECTRAL THEOREM FOR BOUNDED NORMAL OPERATORS BASED
ON THE S-SPECTRUM

In this section we shall consider normal operators T which are bounded, i.e., T ∈ B(H ). We will
generate a spectral theorem based on the S-spectrum using Theorems 2.16 and 3.11. This approach
is analogous to a well-known approach in the classical case, i.e., whenH is a complex Hilbert space.
See, e.g., the book of Lax29 for details.

Fix a normal operator T ∈ B(H ) and j ∈ S. By Theorem 3.6, there exist commuting operators
A B (1/2)(T + T∗) and B B (1/2)|T − T∗|, where |W | = (W ∗W )1/2 for W ∈ B(H ), and J which all
belong to B(H ) so that T = A + JB and A and B are uniquely determined by T .

Lemma 4.1. Let C(Ω+j ,R) denote the set of real-valued continuous functions on Ω+j = σS(T) ∩
C+j and SR(Ω j,R) denote the set of real-valued functions in SR(Ω j,H), where Ω j = σS(T) ∩ C j. Let
C0(Ω+j ,R) denote the subset of functions f ∈ C(Ω+j ,R) such that f |Ω j ∩ R = 0. The following state-
ments hold:

(i) There exists a bijection between C(Ω+j ,R) and SR(Ω j,R).
(ii) If Ω+j ∩ R , ∅, then there exists a bijection between C0(Ω+j ,R) and purely imaginary functions

in SR(Ω j,H).
(iii) If Ω+j ∩ R = ∅, then there exists a bijection between C(Ω+j ,R) and purely imaginary functions

in SR(Ω j,H).

Proof. The proof is broken into steps.

Step 1: Prove (i).
If g ∈ C(Ω+j ,R), then the function

g̃(u, v) =



g(u, v) if u + jv ∈ Ω+j
g(u,−v) if u + jv ∈ Ω−j

,

where

Ω
−
j = σS(T) ∩ C−j

and

C−j = {u + jv : u ∈ R and v ≤ 0}
belongs to SR(Ω j,R). Conversely, if f ∈ SR(Ω j,C j) is real-valued, then

f̃ = f |Ω+
j
∈ C(Ω+j ,R).

Step 2: Prove (ii).
If Ω+j ∩ R , ∅ and g∈ C0(Ω+j ,R), then the function

g̃(u, v) =



jg(u, v) if u + jv ∈ Ω+j
− jg(u,−v) if u + jv ∈ Ω−j
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belongs to SR(Ω j,C j). Conversely, if f ∈ SR(Ω j,C j) is purely imaginary, i.e., f = j f1, with f1 real-
valued, then f̃ = j f |Ω+

j
∈ C0(Ω+j ,R).

Step 3: Prove (iii).
If Ω+j ∩ R = ∅ and g ∈ C(Ω+j ,R), then the function

g̃(u, v) =



jg(u, v) if u + jv ∈ Ω+j
− jg(u,−v) if u + jv ∈ Ω−j

belongs to SR(Ω j,C j). Conversely, if f ∈ SR(Ω j,C j) is purely imaginary, i.e., f = j f1, with f1 real-
valued, then f̃ = j f |Ω+

j
∈ C(Ω+j ,R). �

Let T ∈ B(H ) be normal, fix x ∈ H and let

ℓx(g) = ⟨g(T)x, x⟩, g ∈ C(Ω+j ,R).
It is readily checked that ℓx is a real-valued bounded linear functional on C(Ω+j ,R). Moreover, ℓx is
a positive functional. Indeed, if h is a continuous non-negative function on Ω+j , then there exists a

function g given by g(u, v) = 
h(u, v) so that g ∈ C(Ω+j ,R) and g(T) = g(T)∗. Thus,

ℓx(h) = ⟨h(T)x, x⟩ = ⟨g(T)x, g(T)x⟩
= ∥g(T)x∥2 ≥ 0.

Theorem 2.16 yields the existence of a uniquely determined positive valued measure µx (for a
fixed j ∈ S) so that

ℓx(g) =

Ω+
j

g(p)dµx(p), g ∈ C(Ω+j ,R). (4.1)

In view of (4.1), we may use the formula

4⟨T x, y⟩ = ⟨T(x + y), x + y⟩ − ⟨T(x − y), x − y⟩ + e1⟨T(x + ye1), x + ye1⟩
− e1⟨T(x − ye1), x − ye1⟩ + e1⟨T(x − ye2), x − ye2⟩e3

− e1⟨T(x + ye2), x + ye2⟩e3 + ⟨T(x + ye3), x + ye3⟩e3

− ⟨T(x − ye3), x − ye3⟩e3, (4.2)

where {1,e1,e2,e3} denotes the standard basis of H, to obtain a uniquely determined H-valued mea-
sure µx, y (relative to a fixed j ∈ S) so that

⟨g(T)x, y⟩ =

Ω+
j

g(p)dµx, y(p), g ∈ C(Ω+j ,R), (4.3)

where

4µx, y = µx+y − µx−y + e1µx+ye1 − e1µx−ye1 (4.4)
+ e1µx−ye2e3 − e1µx+ye2e3 + µx+ye3e3 − µx−ye3e3.

Definition 4.2. The Borel sets of σS(T) ∩ C+j will be denoted by B(σS(T) ∩ C+j ).

Lemma 4.3. The H-valued measure µx, y given in (4.4) enjoys the following properties:

(i) µxα+yβ,z = µx,zα + µy,z β, α, β ∈ H.
(ii) µx, yα+zβ = ᾱµx, y + β̄ µx,z, α, β ∈ H.

(iii) |µx, y(σS(T) ∩ C+j )| ≤ ∥x∥∥y∥.
(iv) µ̄x, y = µy,x,

for all x, y, z ∈ H .

Proof. Properties (i)-(iii) are easily obtained from (4.3) using the uniqueness of µx, y (relative to
a fixed j ∈ S) and the properties of ⟨·, ·⟩. Property (iv) follows from properties (i) and (ii). �
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It follows from properties (i) and (iii) in Lemma 4.3 that Φy(x) = µx, y(σ), where y ∈ H and
σ ∈ B(σS(T) ∩ C+j ) are fixed, is a continuous right linear functional onH . Moreover, it follows from
property (ii) in Lemma 4.3 that

Φyα(x) = αΦy(x), α ∈ H.

It follows from the Riesz representation theorem for quaternionic Hilbert spaces (see Theorem 6.1
in Ref. 13 and also Proposition 1.10 in Ref. 30 for a statement and proof in a more general Clifford
algebra setting) that corresponding to any x ∈ H , there exists a unique vector w ∈ H such that

Φy(x) = ⟨x, w⟩, (4.5)

i.e., µx, y(σ) = ⟨x, w⟩. Since the left hand of (4.5) depends linearly on x and anti-linearly on y and the
right hand side depends linearly on x, it follows that Φy(x) depends linearly on x and anti-linearly
on y ,

E(σ)y = w,
for some

E(σ) ∈ B(H ).
Thus,

µx, y(σ) = ⟨x,E(σ)y⟩, σ ∈ B(σS(T) ∩ C+j ),
and, in view of property (iv) in Lemma 4.3,

E(σ) = E(σ)∗, σ ∈ B(σS(T) ∩ C+j ) (4.6)

and hence,

µx, y(σ) = ⟨E(σ)x, y⟩, σ ∈ B(σS(T) ∩ C+j ). (4.7)

Since µx is countably additive, µx, y is also countably additive. Consequently, the B(H )-valued
measure E is also countably additive, i.e.,

E *
,

∞
n=0

σn
+
-
=

∞
n=0

E(σn) (4.8)

for any sequence of pairwise disjoint sets

{σn}∞n=0 ⊆ B(σS(T) ∩ C+j ).
The limit in (4.8) is meant with respect to the strong operator topology.

Lemma 4.4. Fix a normal operator T ∈ B(H ) and let J ∈ B(H ) be as in Theorem 3.6 and E(σ)
be given by (4.7) and Ω+j = σS(T) ∩ C+j for j ∈ S. The following statements hold:

(i) If g ∈ C(Ω+j ,R), then

⟨g(T)x, y⟩ =

Ω+
j

g(p)d⟨E(p)x, y⟩, x, y ∈ H . (4.9)

(ii) If σS(T) ∩ R = ∅ (respectively, σS(T) ∩ R , ∅), then, for any f = f0 + f1 j ∈ C(Ω+j ,C j)
(respectively, C0(Ω+j ,C j)), where f0 and f1 are real-valued,

⟨ f (T)x, y⟩ =

Ω+
j

f0(p)d⟨E(p)x, y⟩ +

Ω+
j

f1(p)d⟨JE(p)x, y⟩, x, y ∈ H . (4.10)

(iii) E(σ) and J commute for all σ ∈ B(Ω+j ).

Proof. Assertion (4.9) follows directly from (4.3) and (4.7). We will now prove assertion (4.10).
In view of (4.9) and (3.10),



023503-13 Alpay, Colombo, and Kimsey J. Math. Phys. 57, 023503 (2016)

⟨ f (T)x, y⟩ = ⟨{ f0(T) + f1(T)J}x, y⟩
= ⟨ f0(T)x, y⟩ + ⟨ f1(T)Jx, y⟩
=


Ω+
j

f0(p)d⟨E(p)x, y⟩ +

Ω+
j

f1(p)d⟨E(p)Jx, y⟩, x, y ∈ H .

Thus, the proof of (4.10) will be complete upon showing that

d⟨E(p)Jx, y⟩ = d⟨JE(p)x, y⟩, x, y ∈ H .

To see this, let g ∈ C(Ω+j ,R) and use (4.9) and the fact that g(T) and J commute to obtain
Ω+
j

g(p)d⟨E(p)Jx, y⟩ = ⟨g(T)Jx, y⟩ = ⟨Jg(T)x, y⟩ =

Ω+
j

g(p)d⟨JE(p)x, y⟩.

If we write ν = ⟨E(p)Jx, y⟩ and ν = ⟨JE(p)x, y⟩ and then

ν = ν0e0 + ν1e1 + ν2e2 + ν3e3

and

ν = ν0e0 + ν1e1 + ν2e2 + ν3e3,

where νa and νa, a = 0, . . . ,3 are real signed measures and {ea}3
a=0 is the standard basis for H, then

it follows from Theorem 2.16 that

νa = νa, a = 0, . . . ,3.

Therefore, items (iii) and (ii) hold. �

Theorem 4.5. The B(H )-valued countably additive measure E, given by (4.7), for all σ,τ ∈
B(σS(T) ∩ C+j ), enjoys the following properties:

(i) E(σ) = E(σ)∗.
(ii) ∥E(σ)∥ ≤ 1.

(iii) E(∅) = 0 and E(σS(T) ∩ C+j ) = IH .
(iv) E(σ ∩ τ) = E(σ)E(τ).
(v) E(σ)2 = E(σ).

(vi) If σS(T) ∩ R = ∅ (respectively, σS(T) ∩ R , ∅), then E(σ) commutes with f (T) for all f ∈
C(σS(T) ∩ C+j ,C j) (respectively, f ∈ C0(σS(T) ∩ C+j ,C j)).

(vii) E(σ) and E(τ) commute.

Proof. The proof is broken into steps.

Step 1: Show (i) and (ii).
Property (i) has already been noted in (4.6). Property (ii) follows directly from property (iii) in

Lemma 4.3. Indeed, if x = y in property (iii) in Lemma 4.3, then

µx,x(σ) ≤ µx,x(σS(σS(T) ∩ C+j ) ≤ ∥x∥2

and hence

⟨E(σ)x, x⟩ ≤ ∥x∥2 for x ∈ H ,

i.e., IH − E(σ) is a positive operator for all σ ∈ B(σS(T) ∩ C+j ). Therefore, property (ii) holds.

Step 2: Show (iii).
Since µx, y(∅) = 0, we may use (4.3) to deduce E(∅) = 0. Similarly, putting g(p) = 1 in (4.3)

yields g(T) = IH for all x, y ∈ H and thus

⟨x, y⟩ =

σS(T ) ∩ C+

j

dµx, y = ⟨E(σS(T) ∩ C+j )x, y⟩,

i.e., E(σS(T) ∩ C+j ) = IH .
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Step 4: Show (iv).
It is clear that for all real-valued polynomials φ and ψ on σS(T) ∩ C j, for j ∈ S which satisfy

φ(u, v) = φ(u,−v)
and

ψ(u, v) = ψ(u,−v),
we have that (φψ)(T) = φ(T)ψ(T), φ(T) = φ(T)∗, and ψ(T) = ψ(T)∗ (see Remark 3.12). Thus,

σS(T ) ∩ C+
j

φ(p) dµψ(T )x,x(p) = ⟨φ(T)ψ(T)x, x⟩

= ⟨(φψ)(T)x, x⟩
=


σS(T ) ∩ C+

j

φ(p)ψ(p)dµx,x(p). (4.11)

Since E(σ) = E(σ)∗, (4.7) implies that

µx,x(σ) ∈ R for all σ ∈ B(σS(T) ∩ C+j ).
Similarly, since ⟨ψ(T)x, x⟩ is real, (4.7) implies that

µψ(T )x,x(σ) ∈ R for all σ ∈ B(σS(T) ∩ C+j ).
In view of the identification given in item (i) of Lemma 4.1, the density of real-valued polynomials
in the space C(σS(T) ∩ C+j ,R) and the Riesz representation theorem given in Theorem 2.16, (4.11)
implies that

dµψ(T )x,x(p) = ψ(p)dµx,x(p).
But then we may use identity (4.4) and the fact that ψ(p) is real-valued to obtain

dµψ(T )x, y(p) = ψ(p)dµx, y(p).
Thus, in view of (4.7),

⟨E(σ)ψ(T)x, y⟩ =

σ

ψ(p) dµx, y(p) for σ ∈ B(σS(T) ∩ C+j ).
Since E(σ) = E(σ)∗ for σ ∈ B(σS(T) ∩ C+j ),

σS(T ) ∩ C+
j

ψ dµx,E(σ)y = ⟨ψ(T)x,E(σ)y⟩ = ⟨E(σ)ψ(T)x, y⟩ =

σS(T ) ∩ C+

j

ψ χσ dµx, y,

where

χσ(p) =



1 if p ∈ σ
0 if p < σ

.

Since ψ is real-valued, we also have
σS(T ) ∩ C+

j

ψ dµ(m)
x,E(σ)y =


σS(T ) ∩ C+

j

ψ χσ dµ(m)
x, y for m = 0, . . . ,3, (4.12)

where µ(m)
x, y and µ(m)

x,E(σ)y are real-valued signed measures given by

µx, y =

3
m=0

µ
(m)
x, yem

and

µ
(m)
x,E(σ)y =

3
m=0

µ
(m)
x,E(σ)yem.

Recall that {em}3
m=0 is the standard basis for H.
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In view of the identification given in item (i) of Lemma 4.1, the density of real-valued polynomials
in the space C(σS(T) ∩ C+j ,R) and the Riesz representation theorem given in Theorem 2.16, (4.12)
implies that

dµ(m)
x,E(σ)y = χσ dµ(m)

x, y for m = 0, . . . ,3

and hence

dµx,E(σ)y = χσ dµx, y.

Therefore,

µx,E(σ)y(τ) =

σS(T ) ∩ C+

j
∩ τ

χσdµx, y = µx, y(σ ∩ τ) for σ, τ ∈ B(σS(T) ∩ C+j )

and hence as

µ(σ) = ⟨E(σ)x, y⟩ for σ ∈ B(σS(T) ∩ C+j ),
we obtain E(σ)E(τ) = E(σ ∩ τ) for σ,τ ∈ B(σS(T) ∩ C+j ).
Step 5: Show (v).

Property (v) can be obtained from Property (iv) when σ = τ.

Step 6: Show (vi).
Let A, B, and J be as in Theorem 3.6. We have already observed in item (iii) of Lemma 4.4 that

E(σ) and J commute. One can show in a similar fashion that A and E(σ) commute and B and E(σ)
commute. Thus, in view of the construction of f (T) given in Remark 3.12, f (T) and E(σ) commute.

Step 7: Show (vii).
Property (vii) follows from Property (iv) interchanging τ and σ. �

Definition 4.6. A B(H )-valued measure E on σS(T) ∩ C+j will be called a spectral measure if E
has Properties (i)-(vi) in Theorem 4.5. Note that E(σ) is a positive operator for allσ ∈ B(σS(T) ∩ C+j ).

We are now ready to state and prove the main result of the section.

Theorem 4.7. Suppose T ∈ B(H ) is normal, let J ∈ B(H ) be as in the decomposition of Theo-
rem 3.6 and fix j ∈ S. LetΩ+j = σS(T) ∩ C+j andΠ j

± denote the orthogonal projection ontoH j
± given in

(3.3), respectively. If σS(T) ∩ R = ∅ (respectively,σS(T) ∩ R , ∅), then there exists a unique spectral
measure E j on Ω+j so that

⟨ f (T)x, y⟩ =

Ω+
j

f0(p) d⟨E j(p)x, y⟩ +

Ω+
j

f1(p) d⟨JE j(p)x, y⟩, x, y ∈ H , (4.13)

or, equivalently,

⟨ f (T)x, y⟩ =

Ω+
j

f (p) d⟨Π j
+E j(p)x, y⟩ +


Ω+
j

f (p) d⟨Π j
−E j(p)x, y⟩, x, y ∈ H , (4.14)

for f = f0 + f1 j ∈ C(Ω+j ,C j) (respectively, C0(Ω+j ,C j)), where f0 and f1 are real-valued. Moreover,
upon identifying the complex plane Ck with C j in the natural way by the mapping ϕk j, we have
E j(ϕk j(σ)) = Ek(σ),σ ∈ B(Ω+k) for all j, k ∈ S.

Remark 4.8. In point of fact, (4.13) holds for a much larger class of functions than C(σS(T) ∩
C+j ,C j) or C0(σS(T) ∩ C+j ,C j) regardless of whether or not σS(T) ∩ R , ∅ (see Section V).

Proof of Theorem 4.7. Formula (4.13) was established in item (ii) of Lemma 4.4. Formula (4.14)
follows from (4.13). Indeed, if we write y = y+ + y− ∈ H with respect to the decomposition
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H = H j
+ ⊕ H

j
− (see (3.3)) and use (3.2), then

⟨ f (T)x, y⟩ =

Ω+
j

f0(p)d⟨E j(p)x, y⟩ +

Ω+
j

f1(p)d⟨E j(p)x,−J(y+ + y−)⟩

=


Ω+
j

f0(p)d⟨E j(p)x, y⟩ −

Ω+
j

f1(p)d⟨E j(p)x, y+ j⟩

+


Ω+
j

f1(p)d⟨E j(p)x, y− j⟩

=


Ω+
j

f (p)d⟨E j(p)x, y+⟩ +

Ω+
j

f (p)d⟨E j(p)x, y−⟩

=


Ω+
j

f (p)d⟨Π j
+E j(p)x, y⟩ +


Ω+
j

f (p)d⟨Π j
−E j(p)x, y⟩.

The fact that there is only one spectral measure E j on σS(T) ∩ C+j such that (4.13) holds follows
directly from the uniqueness of the measure µx, y(σ) = ⟨E(σ)x, y⟩ on Ω+j (see (4.4)). The claimed
invariance E j(ϕ jk(σ)) = Ek(σ) relative to j, k ∈ S drops out easily from the aforementioned unique-
ness of E j and Theorem 2.14. �

Corollary 4.9. In the setting of Theorem 4.7, the following statements hold:

(i) If T ∈ B(H ) is a positive operator, then there exists a unique positive operator T1/2 B W ∈
B(H ) so that W 2 = T.

(ii) T ∈ B(H ) is self-adjoint if and only if

⟨T x, y⟩ =

[−∥T ∥,∥T ∥]

t d⟨E j(t)x, y⟩, x, y ∈ H . (4.15)

(iii) T ∈ B(H ) is anti self-adjoint if and only if

⟨T x, y⟩ =

[0,∥T ∥]

t d⟨JE j(t)x, y⟩, x, y ∈ H . (4.16)

(iv) T ∈ B(H ) is unitary if and only if

⟨T x, y⟩ =

[0,π]

cos(t)d⟨E j(t)x, y⟩ +

[0,π]

sin(t)d⟨JE j(t)x, y⟩. (4.17)

Proof. As we have observed in item (i) of Theorem 2.15, if T ∈ B(H ) is a positive operator, then
σS(T) ⊆ [0, ∥T ∥]. Thus, using Theorem 4.7 we have the existence of a uniquely determined spectral
measure E so that

⟨T x, y⟩ =

[0,∥T ∥]

t d⟨E j(t)x, y⟩. (4.18)

Let g(t) = t1/2 for t ∈ R. Since g ∈ C(σS(T),R), it follows from Theorem 4.7 that

⟨W x, y⟩ B ⟨g(T)x, y⟩ =

[0,∥T ∥]

t1/2 d⟨E j(t)x, y⟩

satisfies W 2 = T . Thus, we have established the existence of a positive operator W ∈ B(H ) so that
W 2 = T . The proof that W is unique follows from the uniqueness of the spectral measure E, just as
in the case thatH is a complex Hilbert space.

The proofs of (ii)-(iv) follow readily from Theorem 4.7 and (2.8). �

V. SPECTRAL INTEGRALS

The goal of this section is to extend the integral representation in Theorem 4.7 to a more general
class of functions. This will be useful when proving a spectral theorem for unbounded operators in
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Section VI. To this end we will adapt part of Chapter 4 of the book33 to the quaternionic setting.
Most of the proofs of the properties of spectral integrals are easily adapted from the classical case
presented in Ref. 33, i.e., whenH is a complex Hilbert space. However, some facts require additional
arguments which we will highlight.

Throughout this section, we will fix j ∈ S, a spectral measure E (see Definition 4.6) on a set
Ω ⊆ C j and an anti self-adjoint and unitary operator J ∈ B(H ) which commutes with E.

Definition 5.1. Let B(E,Ω,C j) denote the set of all boundedΩ-measurable C j-valued functions
f on Ω with the norm

∥ f ∥∞ = sup
p ∈ Ω

| f (p)|.

Let Bs(E,Ω,C j) denote the subset of simple functions in B(E,Ω,C j), i.e., all C j-valued functions of
the form f (p) = n

m=1 cm χσm(p), whereσ1, . . . ,σn are pairwise disjoint sets inB(Ω), c1, . . . ,cn ∈ C j

and

χσ(p) =



1 if p ∈ σ
0 if p < σ

.

If f ∈ Bs(E,Ω,C j), then we may define

I( f ) =

Ω

f (p) dE(p) B
n

m=1

{Re(cm)IH + Im(cm)J}E(σm), (5.1)

and

I( f ) =

Ω

f (p) dE(p) B
n

m=1

{Re(cm)IH − Im(cm)J}E(σm).

Lemma 5.2. If f ∈ Bs(E,Ω,C j), then

∥I( f )∥ ≤ ∥ f ∥∞. (5.2)

Proof. If f =
n

m=1 cm χσm, where c1, . . . ,cn ∈ C j andσ1, . . . ,σn are disjoint sets inB(Ω), then,
using properties (ii)–(iv) in Theorem 4.5 and the fact that ∥J∥ = 1,

∥I( f )x∥2 = ∥
n

m=1

{Re(cm) + Im(cm)J}E(σm)x∥2

=

n
m=1

∥{Re(cm) + Im(cm)J}E(σm)x∥2

≤
n

m=1

|cm|2∥E(σm)x∥2

≤ ∥ f ∥2
∞∥x∥2.

Thus, (5.2) holds. �

Fix f ∈ B(E,Ω,C j). Since Bs(E,Ω,C j) is a dense subset of B(E,Ω,C j), there exists a sequence
of functions { fn}∞n=0 belonging to Bs(E,Ω,C j) so that

lim
n↑∞

∥ fn − f ∥∞ = 0.

In view of (5.2), {I( fn)x}∞n=0 is a Cauchy sequence inH . Let I( f ) be given by

I( f )x = lim
n↑∞
I( fn)x, x ∈ H .

Note that f does not depend on the choice of the sequence { fn}∞n=0 and, consequently, neither does
I( f ).
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Lemma 5.3. If f = f0 + f1 j and g = g0 + g1 j belong to B(E,Ω,C j), where f0, f1, g0, and g1 are
real-valued, α, β ∈ C j and x, y ∈ H , then

(i) I( f )∗ = I( f̄ ), I(α f + βg) = α I( f ) + β I(g).
(ii) ⟨I( f )x, y⟩ = 

Ω
f0(p)d⟨E(p)x, y⟩ +


Ω

f1(p)d⟨JE(p)x, y⟩.
(iii) I( f g) = I( f )I(g).
(iv) ∥I( f )x∥2 =


Ω
| f (p)|2d⟨E(p)x, x⟩.

(v) ∥I( f )∥ ≤ ∥ f ∥∞.

Proof. In view of the density of Bs(E,Ω,C j) in B(E,Ω,C j) and (5.2), it suffices to check (i)-(v)
when f , g ∈ Bs(E,Ω,C j). The assumption that E(σ) and J commute for all σ ∈ B(Ω) will be a
useful tool for checking (i)-(v) and will be used without further mention. If f =

n
m=1 cm χσm and

g =
n

m=1 dm χτm belong to Bs(E,Ω,C j), then

⟨I( f )∗y, x⟩ =
n

m=1

⟨y,{Re(cm)IH + Im(cm)J}E(σm)x⟩

=

n
m=1

⟨{Re(cm)IH − Im(cm)J}E(σm)y, x⟩

= ⟨ I( f̄ )y, x⟩, x, y ∈ H .

Thus, the first assertion in (i) holds. The second assertion in (i) is easily checked.
We will now check that (ii) holds. Since

⟨I( f )x, y⟩ =
n

m=1

{Re(cm)⟨E(σm)x, y⟩ + Im(cm)⟨JE(σm)x, y⟩}

=


Ω

f0(p)d⟨E(p)x, y⟩ +

Ω

f1(p)d⟨JE(p)x, y⟩,
where f0 and f1 are real-valued functions which satisfy f = f0 + f1 j, (ii) holds.

We will now check that (iii) holds. Since

I( f g) =
n

ℓ,m=1

{Re(cℓ)Re(dm) − Im(cℓ)Im(dm)}E(σℓ ∩ τm)

+

n
ℓ,m=1

{Re(cℓ)Im(dm) + Im(cℓ)Re(dm)}JE(σℓ ∩ τm)

=

n
ℓ,m=1

{Re(cℓ)IH + Im(cℓ)J}{Re(dm)IH + Im(dm)J}E(σm)E(τn)

=



n
ℓ=1

{Re(cℓ)IH + Im(cℓ)J}E(σℓ)






n
m=1

{Re(dm)IH + Im(dm)J}E(τm)



= I( f )I(g),
(iii) holds.

Assertion (iv) is a direct consequence of (i)–(iii). Indeed,

∥I( f )x∥2 = ⟨I( f )x, I( f )x⟩
= ⟨I(| f |2)x, x⟩
=


Ω+
j

| f (p)|2d⟨E(p)x, x⟩, x ∈ H .

Finally, assertion (v) is a direct consequence of assertion (iv). �

Remark 5.4. If T ∈ B(H ) is normal and E j is the spectral measure on σS(T) ∩ C+j for j ∈ S
appearing in Theorem 4.7, then item (ii) of Lemma 5.3 ensures that

f (T) = I( f ), f ∈ C(σS(T) ∩ C+j ,C j). (5.3)
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We will now extend the functional calculus for functions in B(E,Ω+j ,C j) to a more general class
of functions which will be useful when proving the spectral theorem for unbounded normal operators.

Definition 5.5. Let B∞(E,Ω,C j) denote the space of all B(Ω)-measurable functions f : Ω →
C j ∪ {∞} which satisfy

E({p ∈ Ω : f (p) = ∞}) = 0,

where E is a spectral measure.

Definition 5.6. A sequence of sets {σn}∞n=0, where σn ∈ B(Ω) for n = 0,1, . . . is called a bound-
ing sequence for a subset of functions F ⊆ B∞(E,Ω,C j) if

(i) f ∈ F is bounded on σn for n = 0,1, . . .,
(ii) σn ⊆ σn+1 for n = 0,1, . . .,

(iii) E(∪∞n=0σn) = IH ,

where E is a spectral measure.

Remark 5.7. If {σn}∞n=0 is a bounding sequence, then the following assertions follow from the
definition of a spectral measure (see Definition 4.6):

(i) E(σn) ≼ E(σn+1).
(ii) E(σn)x → x as n ↑ ∞, x ∈ H .

(iii) The set
∞

n=0 E(σn)H is dense inH .

We will now give meaning to I( f ) for f ∈ B∞(E,Ω,C j).
Definition 5.8. Fix f ∈ B∞(E,Ω,C j) and let {σn}∞n=0 be a bounding sequence for f . We let

I( f )x = lim
n↑∞
I(χσn f )x (5.4)

with domain

D(I( f )) = {x ∈ H :

Ω

| f (p)|2d⟨E(p)x, x⟩ < ∞}. (5.5)

Given a quaternionic measure µ on Ω ⊆ C j, we will let L2(Ω, µ) consist of all measurable func-
tions such that

∥ f ∥L2(Ω, µ) =
(
Ω

| f (p)|2d |µ|(p)
)1/2

< ∞,

where |µ| denotes the total variation of µ defined by

|µ|(σ) = sup
σ=⊔∞

m=1σm

|µ(σm)|, σ ∈ B(Ω).

Here ⊔ denotes a disjoint union.

Lemma 5.9. If E is a spectral measure on Ω ⊆ C j and µx, y(σ) = ⟨E(σ)x, y⟩, x, y ∈ H , then

(i) |µx, y(σ)| ≤ µx(σ)1/2µy(σ)1/2 for σ ∈ B(Ω).
(ii) If f ∈ L2(Ω, µx) and g ∈ L2(Ω, µy), then

�����


Ω

Re{( f g)(p)}dµx, y(p) +

Ω

Im{( f g)(p)}dµx,−J y(p)
�����
≤ 2∥ f ∥L2(Ω, µx)∥g∥L2(Ω, µJ y).

Proof. The proof of Lemma 4.8(i) in Ref. 33 can easily be adapted to obtain item (i) in our present
setting. Since

�����


Ω

Re{( f ḡ)(p)}dµx, y(p)
�����
≤

Ω

|Re{( f ḡ)(p)}|d |µx, y |(p)
≤

Ω

|( f ḡ)(p)|d |µx, y |(p),
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one may proceed as in the proof of Lemma 4.8(ii) in Ref. 33 to obtain
Ω

|( f ḡ)(p)|d |µx, y |(p) ≤ ∥ f ∥L2(Ω, µx,x)∥g∥L2(Ω, µy, y)

and hence
�����


Ω

Re{( f ḡ)(p)}dµx, y(p)
�����
≤ ∥ f ∥L2(Ω, µx,x)∥g∥L2(Ω, µy, y).

Similarly, one can show that
�����


Ω

Im{( f ḡ)(p)}dµx, y(p)
�����
≤ ∥ f ∥L2(Ω, µx,x)∥g∥L2(Ω, µ−J y,−J y).

But since

µ−J y,−J y(σ) = ⟨E(σ)(−J y),−J y⟩ = ⟨E(σ)y, y⟩ = µy, y(σ),
we have the advertised upper bound. �

Lemma 5.10. If f ∈ B∞(E,Ω,C j) and {σn}∞n=0 is a bounding sequence for f , then

(i) A vector x belongs to D(I( f )) if and only if the sequence {I(χσn f )x}∞n=0 converges inH , or,
equivalently,

sup
n=0,1, ...

∥I( f χσn)x∥ < ∞.

(ii) I( f ) does not depend on the choice of bounding sequence for f .
(iii) The set ∪∞n=0E(σn)H is a dense subset of D(I( f )) with respect to the norm ∥x∥I( f ) = ∥x∥ +

∥I( f )x∥, x ∈ D(I( f )). Moreover,

E(σn)I( f ) ⊆ I( f )E(σn) = I( f χσn), n = 0,1, . . . . (5.6)

Proof. We have already observed in Definition 4.6 that E(σ) is a positive operator onΩ for every
σ ∈ B(Ω). Thus, µx is a positive measure onΩ, where µx(σ) = ⟨E(σ)x, x⟩. Consequently, the proof
of items (i)-(iii) can be completed in much the same way as in items (i)-(iii) of Theorem 4.13 in
Ref. 33. �

In the following theorem, W shall denote the closure of an operator W ∈ L(H ), while f̄ denotes
the usual conjugation of the function f .

Theorem 5.11. If f , g ∈ B∞(E,Ω,C j) and α, β ∈ C j, then

(i) I( f̄ ) = I( f )∗.
(ii) I(α f + βg) = αI( f ) + βI(g).

(iii) I( f g) = I( f )I(g).
(iv) I( f ) is a closed normal operator onH and

I( f )∗I( f ) = I( f f̄ ) = I( f̄ f ).
(v) D(I( f )I(g)) = D(I(g)) ∩ D(I( f g)).

(vi) If x ∈ D(I( f )) and y ∈ D(I(g)), then

⟨I( f )x, I(g)y⟩ =

Ω

Re( f (p)g(p))d⟨E(p)x, y⟩ +

Ω

Im( f (p)g(p))d⟨JE(p)x, y⟩.
(vii) If x ∈ D(I( f )), then

∥I( f )x∥2 =


Ω

| f (p)|2d⟨E(p)x, x⟩.

Proof. The proof of items (i)-(iv) whenH is a complex Hilbert space (see items (i)-(v) of The-
orem 4.16 in Ref. 33) can easily be adapted to the case whenH is a quaternionic Hilbert space. Item
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(vii) follows directly from item (vi) when g = f and x = y . What remains is to show (vi). To this
end, we will adapt the argument for the proof of Proposition 4.15 in Ref. 33.

In view of items (i) and (ii) of Lemma 5.10,
Ω

Re{( f ḡ χm)(p)}d⟨E(p)x, y⟩ +

Ω

Im{( f ḡ χm)(p)}d⟨JE(p)x, y⟩ (5.7)

= ⟨I( f ḡ χσm)x, y⟩
= ⟨I( f χσm)x, I(g χσm)y⟩.

Since x ∈ D(I( f )) and y ∈ D(I(g)), f ∈ L2(Ω, µx,x) and g ∈ L2(Ω, µy, y), where µx, y(σ) =
⟨E(σ)x, y⟩, σ ∈ B(Ω). Therefore, we may use Lemma 5.9 to get that the integrals given in

κm B


Ω

Re{( f ḡ χm)(p)}d⟨E(p)x, y⟩ +

Ω

Im{( f ḡ χm)(p)}d⟨JE(p)x, y⟩
exist and hence

�����


Ω

Re{( f ḡ χσm)(p)}d⟨E(p)x, y⟩ +

Ω

Im{( f ḡ χσm)(p)}d⟨JE(p)x, y⟩ − κm
�����
→ 0

as m ↑ ∞. But then the formula advertised in (vi) follows from letting m ↑ ∞ in (5.7). �

Theorem 5.12. If f ∈ B∞(E,Ω,C j), then I( f ) is invertible if and only if f does not vanish E-a.e.
on Ω. In this case,

I( f )−1 = I(1/ f ), (5.8)

where we use the convention that 1/0 = ∞ and 1/∞ = 0.

Proof. The proof whenH is a complex Hilbert space (see Proposition 4.19 in Ref. 33) can easily
be adapted to the case whenH is a quaternionic Hilbert space. �

Lemma 5.13. If g : Ω → Ω ⊆ C j, h ∈ B∞(E,Ω,C j), and E is the spectral measure on Ω̃ given
by

E(σ) = E(g−1(σ)), σ ∈ B(Ω),
then E(σ) and J commute for all σ ∈ B(Ω), h ◦ g ∈ B∞(E,Ω,C j), and

IE(h) = IE(h ◦ g),
i.e., 

Ω
Re{h(p̃)}d⟨E(p̃)x, y⟩ +


Ω

Im{h(p̃)}d⟨J E(p̃)x, y⟩

=


Ω

Re{h(g(p))}d⟨E(p)x, y⟩ +

Ω

Im{h(g(p))}d⟨JE(p)x, y⟩, (5.9)

for all x ∈ D(IE(h)) = D(IE(h ◦ g)), where IE and IE denote the spectral integrals with respect to E
and E, respectively.

Proof. One can reason as in the proof of Proposition 4.24 in Ref. 33 (with the caveat that polar-
ization formula (4.2) must be used) to get

D(IE(h)) = D(IE(h ◦ g)),
Ω

Re(h(p̃))d⟨E(p̃)x, y⟩ =

Ω

Re(h(g(p))d⟨E(p)x, y⟩,
and 

Ω
Im(h(p̃))d⟨E(p̃)x,−J y⟩ =


Ω

Im(h(g(p))d⟨E(p)x,−J y⟩.

Since E(σ) and J commute and E(σ) and J commute, by assumption, we have (5.9). �
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VI. THE SPECTRAL THEOREM FOR UNBOUNDED NORMAL OPERATORS BASED
ON THE S-SPECTRUM

In this section we will consider normal operators T which are unbounded. The strategy will be
to transform T into a normal operator ZT ∈ B(H ) and use Theorem 4.7 and a change of variable
argument to obtain a spectral theorem for T based on the S-spectrum. Obtaining a spectral theorem
for unbounded operators in the aforementioned way has been done in the classical case, i.e., when
H is a complex Hilbert space, see, e.g., the book of Schmüdgen.33

Given T ∈ L(H ), we let

ZT = TC1/2
T , (6.1)

where CT = (IH + T∗T)−1 ∈ B(H ) (the proof that CT is bounded can be carried out in a similar manner
to the classical complex Hilbert case, see, e.g., Proposition 3.18(i) and Lemma 1.10 in Ref. 33).

Theorem 6.1. Let T ∈ L(H ) be a densely defined closed operator onH . The operator ZT has
the following properties:

(i) ZT ∈ B(H ), ∥ZT ∥ ≤ 1 and

CT = (IH + T∗T)−1 = IH − Z∗T ZT . (6.2)

(ii) (ZT)∗ = ZT ∗.
(iii) If T is normal, then ZT is normal.

Proof. The proof is based on the proof of Lemma 5.7 in Ref. 33 and is broken into steps.

Step 1: Prove (i).
First note that

{CT x : x ∈ H } = D(IH + T∗T) = D(T∗T). (6.3)

Consequently, if x ∈ H , then

∥TC1/2
T C1/2

T x∥2 = ⟨T∗TCT x,CT x⟩
≤ ⟨(IH + T∗T)CT x,CT x⟩
= ⟨C−1

T CT x,CT x⟩
= ⟨x,CT x⟩
= ∥C1/2

T x∥2.

Thus, if y ∈ {C1/2
T x : x ∈ H }, then

∥ZT y∥ = ∥TC1/2
T y∥ ≤ ∥y∥. (6.4)

As Ker(CT) = {0}, we have that Ker(C1/2
T ) = {0} and thus {C1/2

T x : x ∈ H } is a dense subset ofH .
As T is a closed operator by assumption and C1/2

T ∈ B(H ), we get that ZT is closed as well. Thus,
we have {C1/2

T x : x ∈ H } ⊆ D(T), D(ZT) = H and, in view of (6.4), ∥ZT ∥ ≤ 1.
Next, it follows from (6.4) and C1/2T∗ ⊆ Z∗T that

(IH − CT)C1/2
T =C1/2

T (IH + T∗T)CT − C1/2
T CT

=C1/2
T T∗TC1/2

T C1/2
T

⊆ Z∗T ZTC1/2
T .

Thus, Z∗T ZTC1/2
T = (IH − CT)C1/2

T and, as {C1/2
T x : x ∈ H } is a dense subset ofH , we get (6.2).
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Step 2: Prove (ii).
Using (6.2) we get that CT ∗ = (IH + TT∗)−1. If x ∈ D(T∗), then let y = CT ∗x. Therefore,

x = (IH + TT∗)y
and

T∗x = T∗(IH + TT∗)y = (IH + T∗T)T∗y.
Thus, CT ∗x ∈ D(T∗) and hence

CTT∗x = T∗y = T∗CT ∗x. (6.5)

It follows easily from (6.5) and (6.2) that p(CT ∗)x ∈ D(T∗) and

p(CT)T∗x = T∗p(CT ∗)x
for any real polynomial p of a real variable. By the Weierstrass approximation theorem, there exists a
sequence of real polynomials {φn}∞n=0 which converge uniformly in supremum norm to the function
t → t1/2 on [0,1]. Using Property (iv) of Theorem 3.11 we have that

lim
n↑∞

∥φn(CT) − C1/2
T ∥ = lim

n↑∞
∥φn(CT ∗) − C1/2

T ∗ ∥ = 0.

Since T is a closed operator, T∗ is also a closed operator. Thus, we have

C1/2
T T∗x = lim

n↑∞
φn(CT)T∗x = lim

n↑∞
T∗φn(CT ∗)x

=T∗(CT ∗)1/2x for x ∈ D(T∗).
As C1/2

T T∗ ⊆ (TC1/2
T )∗ = ZT ∗, we get that

ZT ∗x = C1/2
T T∗x = T∗(CT ∗)1/2x = (ZT)∗x

for x ∈ D(T∗). Finally, since D(T∗) is dense inH , we have that ZT ∗x = (ZT)∗x, i.e., ZT ∗ = (ZT)∗.
Step 3: Prove (iii).

Using (6.2) on T and T∗ and the fact that TT∗ = T∗T we have

IH − Z∗T ZT = (IH + T∗T)−1 = (IH + TT∗)−1 = IH − Z∗T ∗ZT ∗.

Making use of Property (ii) we have that

IH − Z∗T ZT = IH − ZT Z∗T ,

i.e., ZT is normal. �

We are now ready to state and prove a spectral theorem for unbounded normal operators on a
quaternionic Hilbert space.

Theorem 6.2. Let T be an unbounded right linear normal operator onH and j ∈ S. There exists
a uniquely determined spectral measure E j on Ω+j = σS(T) ∩ C+j so that

⟨T x, y⟩ =

Ω+
j

Re(p)d⟨E j(p)x, y⟩ +

Ω+
j

Im(p)d⟨JE j(p)x, y⟩, x ∈ D(T), (6.6)

or, equivalently,

⟨T x, y⟩ =

Ω+
j

p d⟨Π j
+E j(p)x, y⟩ +


Ω+
j

p d⟨Π j
−E j(p)x, y⟩, x ∈ D(T), (6.7)

where the operator J ∈ B(H ) is operator appearing in the decomposition in Theorem 3.6 for ZT ∈
B(H ) and Π j

± are as in Theorem 4.7. Moreover, upon identifying the complex plane Ck with C j in
the natural way by the mapping ϕk j, we have E j(ϕk j(σ)) = Ek(σ),σ ∈ B(Ω+k) for all j, k ∈ S.

Proof. The proof is broken into steps.

Step 1: Show that a spectral measure E exists so that (6.6) holds.
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Let B = {p ∈ H : |p| < 1}, ∂B = {p ∈ H : |p| = 1}, and B = B ∪ ∂B. If T is normal, then using
Properties (i) and (iii) in Theorem 6.1 we get that ∥ZT ∥ ≤ 1 and ZT is normal, respectively. Thus, we
may use Theorem 4.7 to obtain a uniquely determined spectral measure F on σS(ZT) ∩ C+j so that

f (ZT) = I( f ) =

σS(ZT )∩C+j

f (p) dF(p) for f ∈ C0(σS(ZT) ∩ C+j ,C j) (6.8)

whenσS(T) ∩ R , ∅ and for all f ∈ C(σS(ZT) ∩ C+j ,C j)whenσS(T) ∩ R = ∅. In addition, it follows
from Theorem 3.2.6 in Ref. 18 that

σS(ZT) ⊆ {p ∈ H : |p| ≤ ∥ZT ∥}
and hence

σS(ZT) ∩ C+j ⊆ B ∩ C+j .
If x ∈ H and σ ∈ B(σS(T) ∩ C+j ), then, in view of item (v) in Lemma 5.3 and (6.8), we have

⟨(IH − Z∗T ZT)F(σ)x,F(σ)x⟩ =

σ

(1 − |p|2)d⟨F(p)x, x⟩. (6.9)

Recall that IH − Z∗T ZT = (IH + T∗T)−1, i.e., Ker(IH − Z∗T ZT) = {0}. Thus, using (6.9) with

σ = ∂B ∩ C+j

we get that supp F ⊆ B ∩ C+j and F(∂B ∩ C+j ) = 0. Therefore,

F(B ∩ C+j ) = F[(B ∩ C+j ) \ ∂(B ∩ C+j )] = IH .

If ϕ(p) = p(1 − |p|2)−1/2, then ϕ ∈ B∞(F,σS(ZT) ∩ C+j ,C j). In view of item (iii) and (v) of The-
orem 5.11 we have

I(ϕ) = I( f )I(g),
where

f (p) = p and g(p) = 1
1 − |p|2 ,

and D(I(ϕ)) = D(I(g)). Using Theorem 5.12, we have

I(g) = I(1/g)−1.

Consequently, we may use item (i) in Corollary 4.9 to obtain

I(g) = {(I(h))1/2}−1,

where

h(p) = 1 − |p|2 ∈ B(F,σS(ZT) ∩ C+j ,C j).
Putting these observations together, we obtain

I(ϕ) = ZT(C1/2
T )−1. (6.10)

Since ZT = TC1/2
T we obtain ϕ(ZT) ⊆ T . Using CT = (IH − Z∗T ZT)1/2, we get that I(ϕ) ⊆ T . Thus,

using Lemma 2.10 we get that

I(ϕ) = T.

Let E j(σ) = F(ϕ−1(σ)), where

ϕ−1(σ) = {p ∈ H : ϕ(p) ∈ σ} for σ ∈ B(σS(T) ∩ C+j ).
It is readily checked that E j = F(ϕ−1) defines a spectral measure on C+j and thus using Lemma 5.13
we get (6.6). The equivalent assertion (6.7) is established in much the same way as the analogous
assertion in Theorem 4.7.
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Step 2: Show that E j from Step 1 is unique.
If E j and E j are spectral measures on σS(T) ∩ C+j which satisfy (6.6), then F = E j(ϕ) and F =

E j(ϕ) are both spectral measures so that

⟨ZT x, y⟩ =

B∩C+

j

Re(p) d⟨F(p)x, y⟩ +

B∩C+

j

Im(p) d⟨JF(p)x, y⟩

=


B∩C+

j

Re(p) d⟨F(p)x, y⟩ +

B∩C+

j

Im(p) d⟨J F(p)x, y⟩, x, y ∈ H . (6.11)

Let P(σS(ZT) ∩ C+j ,R) denote the space of real-valued polynomials on σS(ZT) ∩ C+j . In view of
Lemma 5.3 and Remark 5.4, (6.11) yields

⟨ψ(ZT)x, x⟩ =

σS(ZT ) ∩ C+j

ψ(p)d⟨F(p)x, x⟩

=


σS(ZT ) ∩ C+j

ψ(p)d⟨F(p)x, x⟩, ψ ∈P(σS(ZT) ∩ C+j ,C j), x ∈ H .

As P(σS(ZT) ∩ C+j ,C j) is a dense subset of C(σS(ZT) ∩ C+j ,C j) we have that
σS(ZT ) ∩ C+j

φ(p)d⟨F(p)x, x⟩ =

σS(ZT ) ∩ C+j

φ(p)d⟨F(p)x, x⟩

for all φ ∈ C(σS(ZT) ∩ C+j ,R) and hence, in view of construction of the spectral measure given in

Section IV, F = F. Therefore, E j = E j. The final assertion concerning E j and Ek is proved in a similar
manner to an analogous assertion in Theorem 4.7. �

Corollary 6.3. In the setting of Theorem 6.2, the following statements hold:

(i) If T ∈ L(H ) is a positive operator, then there exists a unique positive operator W ∈ L(H ) so
that W 2 = T.

(ii) T ∈ L(H ) is self-adjoint if and only if

⟨T x, y⟩ =

R

t d⟨E(t)x, y⟩, x ∈ D(T), y ∈ H . (6.12)

(iii) T ∈ L(H ) is anti self-adjoint if and only if

⟨T x, y⟩ =

[0,∞)

t d⟨JE(t)x, y⟩, x ∈ D(T), y ∈ H . (6.13)

Proof. Using Theorem 6.2, the proof is completed as in Corollary 4.9. �

Remark 6.4. We remind the reader that the functional calculus mentioned in Section V is appli-
cable to unbounded normal operators T ∈ L(H ). We conclude this section by stating, in the following
corollary, such a functional calculus.

Corollary 6.5. Let T, E j, and J be as in Theorem 6.2. If f , g ∈ B∞(E,σS(T) ∩ C+j ,C j) and α, β ∈
C j, then

(i) I( f̄ ) = I( f )∗.
(ii) I(α f + βg) = αI( f ) + βI(g).

(iii) I( f g) = I( f )I(g).
(iv) I( f ) is a closed normal operator onH and

I( f )∗I( f ) = I( f f̄ ) = I( f̄ f ).
(v) D(I( f )I(g)) = D(I(g)) ∩ D(I( f g)).
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(vi) If x ∈ D(I( f )) and y ∈ D(I(g)), then

⟨I( f )x, I(g)y⟩ =

Ω

Re( f (p)g(p))d⟨E(p)x, y⟩ +

Ω

Im( f (p)g(p))d⟨JE(p)x, y⟩.
(vii) If x ∈ D(I( f )), then

∥I( f )x∥2 =


Ω

| f (p)|2d⟨E(p)x, x⟩.

ACKNOWLEDGMENTS

D. Alpay thanks the Earl Katz family for endowing the chair which supported his research. D.
P. Kimsey gratefully acknowledges the support of a Kreitman postdoctoral fellowship. F. Colombo
acknowledges the Center for Advanced Studies of the Mathematical Department of the Ben-Gurion
University of the Negev for the support and the kind hospitality during the period in which part of
this paper has been written.

1 Abu-Ghanem, K., Alpay, D., Colombo, F., Kimsey, D. P., and Sabadini, I., “Boundary interpolation for slice hyperholomor-
phic Schur functions,” Integr. Equations Oper. Theory 82(2), 223–248 (2015).

2 Adler, S. L., “Quaternionic quantum mechanics and noncommutative dynamics,” in Proceedings of the Second In-
ternational A. D. Sakharov Conference on Physics, Moscow (World Scientific Publishing, River Edge, NJ, 1997),
pp. 337–341.

3 Alpay, D., The Schur Algorithm, Reproducing Kernel Spaces and System Theory, SMF/AMS Texts and Monographs Vol. 5
(American Mathematical Society, Providence, RI; Société Mathématique de France, Paris, 2001) (translated from the 1998
French original by S. S. Wilson).

4 Alpay, D., Colombo, F., Gantner, J., and Kimsey, D. P., “Functions of the infinitesimal generator of a strongly continuous
quaternionic group,” Anal. Appl. (Singapore) (to appear).

5 Alpay, D., Colombo, F., Gantner, J., and Sabadini, I., “A new resolvent equation for the S-functional calculus,” J. Geom.
Anal. 25(3), 1939–1968 (2015).

6 Alpay, D., Colombo, F., Kimsey, D. P., and Sabadini, I., “The spectral theorem for unitary operators based on the S-
spectrum,” Milan J. Math. (published online).

7 Alpay, D., Colombo, F., Kimsey, D. P., and Sabadini, I., “An extension of Herglotz’s theorem to the quaternions,” J. Math.
Anal. Appl. 421, 754–778 (2015).

8 Alpay, D., Colombo, F., and Sabadini, I., “Schur functions and their realizations in the slice hyperholomorphic setting,”
Integr. Equations Oper. Theory 72(2), 253–289 (2012).

9 Alpay, D., Colombo, F., and Sabadini, I., “Pontryagin-de Branges-Rovnyak spaces of slice hyperholomorphic functions,”
J. Anal. Math. 121, 87–125 (2013).

10 Alpay, D., Colombo, F., and Sabadini, I., “Krein-Langer factorization and related topics in the slice hyperholomorphic
setting,” J. Geom. Anal. 24(2), 843–872 (2014).

11 Alpay, D., Colombo, F., and Sabadini, I., “Perturbation of the generator of a quaternionic evolution operator,” Anal. Appl.
13(4), 347–370 (2015).

12 Alpay, D., Dijksma, A., Rovnyak, J., and de Snoo, H., Schur Functions, Operator Colligations, and Reproducing Kernel
Pontryagin Spaces, Operator Theory: Advances and Applications Vol. 96 (Birkhäuser Verlag, Basel, 1997).

13 Alpay, D. and Shapiro, M., “Reproducing kernel quaternionic Pontryagin spaces,” Integr. Equations Oper. Theory 50(4),
431–476 (2004).

14 Birkhoff, G. and von Neumann, J., “The logic of quantum mechanics,” Ann. Math. 37(4), 823–843 (1936).
15 Colombo, F. and Sabadini, I., “On some properties of the quaternionic functional calculus,” J. Geom. Anal. 19(3), 601–627

(2009).
16 Colombo, F. and Sabadini, I., “On the formulations of the quaternionic functional calculus,” J. Geom. Phys. 60(10),

1490–1508 (2010).
17 Colombo, F. and Sabadini, I., “The quaternionic evolution operator,” Adv. Math. 227(5), 1772–1805 (2011).
18 Colombo, F., Sabadini, I., and Struppa, D. C., “Noncommutative functional calculus,” in Progress in Mathematics, Theory

and Applications of Slice Hyperholomorphic Functions Vol. 289 (Birkhäuser/Springer Basel AG, Basel, 2011).
19 Dunford, N. and Schwartz, J. T., Linear Operators. Part II. Wiley Classics Library, Spectral Theory. Selfadjoint Operators

in Hilbert Space (John Wiley & Sons, Inc., New York, 1988), with the assistance of W. G. Bade and R. G. Bartle, Reprint
of the 1963 original, A Wiley-Interscience Publication.

20 Dunford, N. and Schwartz, J. T., Linear Operators General Theory. Part I. Wiley Classics Library (John Wiley & Sons, Inc.,
New York, 1988), with the assistance of W. G. Bade and R. G. Bartle, Reprint of the 1958 original, A Wiley-Interscience
Publication.

21 Emch, G., “Mécanique quantique quaternionienne et relativité restreinte. I,” Helv. Phys. Acta 36, 739–769 (1963).
22 Farenick, D. R. and Pidkowich, B. A. F., “The spectral theorem in quaternions,” Linear Algebra Appl. 371, 75–102 (2003).
23 Finkelstein, D., Jauch, J. M., Schiminovich, S., and Speiser, D., “Foundations of quaternion quantum mechanics,” J. Math.

Phys. 3, 207–220 (1962).

http://dx.doi.org/10.1007/s00020-014-2184-3
http://dx.doi.org/10.1007/s12220-014-9499-9
http://dx.doi.org/10.1007/s12220-014-9499-9
http://dx.doi.org/10.1007/s00032-015-0249-7
http://dx.doi.org/10.1016/j.jmaa.2014.07.025
http://dx.doi.org/10.1016/j.jmaa.2014.07.025
http://dx.doi.org/10.1007/s00020-011-1935-7
http://dx.doi.org/10.1007/s11854-013-0028-8
http://dx.doi.org/10.1007/s12220-012-9358-5
http://dx.doi.org/10.1142/S0219530514500249
http://dx.doi.org/10.1007/s00020-003-1230-3
http://dx.doi.org/10.2307/1968621
http://dx.doi.org/10.1007/s12220-009-9075-x
http://dx.doi.org/10.1016/j.geomphys.2010.05.014
http://dx.doi.org/10.1016/j.aim.2011.04.001
http://dx.doi.org/10.1016/S0024-3795(03)00420-8
http://dx.doi.org/10.1063/1.1703794
http://dx.doi.org/10.1063/1.1703794


023503-27 Alpay, Colombo, and Kimsey J. Math. Phys. 57, 023503 (2016)

24 Ghiloni, R., Moretti, V., and Perotti, A., “Continuous slice functional calculus in quaternionic Hilbert spaces,” Rev. Math.
Phys. 25(4), 1350006 (2013).

25 Ghiloni, R., Moretti, V., and Perotti, A., “Spectral properties of compact normal quaternionic operators,” in Hypercomplex
Analysis: New Perspectives and Applications, Trends in Mathematics, edited by Bernstein, S., Kähler, U., Sabadini, I., and
Sommen, F. (Springer International Publishing, 2014) (English), pp. 133–143.

26 Ghiloni, R. and Recupero, V., “Semigroups over real alternative *-algebras: Generation theorems and spherical sectorial
operators,” Trans. Amer. Math. Soc. (published online).

27 Halmos, P. R., Measure Theory (D. Van Nostrand Company, Inc., New York, NY, 1950).
28 Horwitz, L. P. and Biedenharn, L. C., “Quaternion quantum mechanics: Second quantization and gauge fields,” Ann. Phys.

157(2), 432–488 (1984).
29 Lax, P. D., Functional analysis, Pure and Applied Mathematics (Wiley-Interscience, John Wiley & Sons, New York, 2002).
30 Mitrea, M., Clifford Wavelets, Singular Integrals, and Hardy Spaces, Lecture Notes in Mathematics Vol. 1575 (Springer-

Verlag, Berlin, 1994).
31 Neumann, J. v., “Allgemeine eigenwerttheorie hermitescher funktionaloperatoren,” Math. Ann. 102(1), 49–131 (1930).
32 Royden, H. L. and Fitzpatrick, P. M., Real Analysis, 4th ed. (Macmillan Publishing Company, New York, 2010).
33 Schmüdgen, K., Unbounded Self-Adjoint Operators on Hilbert space, Graduate Texts in Mathematics Vol. 265 (Springer,

Dordrecht, 2012).
34 Sharma, C. S. and Coulson, T. J., “Spectral theory for unitary operators on a quaternionic Hilbert space,” J. Math. Phys.

28(9), 1941–1946 (1987).
35 Teichmüller, O., “Operatoren im Wachsschen Raum,” J. Reine Angew. Math. 1936(174), 73–124.
36 Viswanath, K., “Normal operations on quaternionic Hilbert spaces,” Trans. Am. Math. Soc. 162, 337–350 (1971).

http://dx.doi.org/10.1142/S0129055X13500062
http://dx.doi.org/10.1142/S0129055X13500062
http://dx.doi.org/10.1090/tran/6399
http://dx.doi.org/10.1016/0003-4916(84)90068-X
http://dx.doi.org/10.1007/BF01782338
http://dx.doi.org/10.1063/1.527458
http://dx.doi.org/10.1515/crll.1936.174.73
http://dx.doi.org/10.1090/s0002-9947-1971-0284843-x

