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Abstract The unitary S-code description of the one-

body Kepler problem is shown to unfold naturally 
from a primigenial sphere (with centre at the attracting 
gravitational centre and radius related to the universal 
constant of gravitation). In this spherical scenery all 
the Kepler problem fundamental elements are recov-

ered by simple linear vector combinations.
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1 Introduction

Our unitary S-description [5–10] of the classical one-

body Kepler problem is revisited and shown to find its 
primeval source in a sphere, which we denote by Sp�1 , 
and which has centre at the attractive centre of the 
gravitational force acting on the body and radius p�1 

related to the universal constant of gravitation. This 
primigenial sphere unravels, in a sort of inbred order 
of its elements, not only the cone of the orbital Kepler 
conic sections, but also the various, fundamental 
elements of the Kepler problem.

To begin with, we recall that the classical three-

dimensional Kepler problem describes the motion of a

particle in a central, attractive, inverse square law

field. The Kepler motion occurs in a fixed plane,

orthogonal to the constant angular momentum vector

C per unit of mass

C ¼ x ^ _x ð� � d=dtÞ ð1Þ

where x represents the particle position vector with

respect to the attractive centre and ^ denotes the

wedge product. The Kepler orbit is a conic, commonly

expressed by the vector polar equation

x ¼ p

1þ e cos h
q ðx ¼ rqÞ ð2Þ

in the plane polar coordinate system ðr; hÞ, with the 
origin at the fixed attracting centre and with the two 
orthogonal unit vectors q ¼ q ðhÞ ; s ¼ s ðhÞ pointing 
in the direction of increasing r and h.

The two scalar parameters p and e represent, 
respectively, the semi-latus rectum and the eccentric-

ity of the orbit, which is a circle for e ¼ 0, an ellipse 
for 0\e\1, a parabola for e ¼ 1, the left branch of an 
hyperbola for e [ 1 (the right branch being excluded 
by the condition r [ 0, see Fig. 1).

In our previous works [5–10] we introduced the 
peculiar sum vector S which encompasses (in a sort of 
genetic code) all the geometrical and dynamical 
information about the Kepler problem.

For instance, the vector S:
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1. Allows to express the equation (2) of the whole 
family of the Kepler orbits as the simple scalar 
product

S � x ¼ 1; ð3Þ

2. ‘Conceals’ a constant vector N, unraveling the 
cone structure in R3 which generates all the 
Kepler orbits as conic sections;

3. Discloses a peculiar genesis of the celebrated 
regularizing KS-map, devised to regularize at the 
origin (collision) the plane Kepler problem. 

In this paper, we show how the two vectors S and N

(together with the cone structure, the regularizing map

and other features of the Kepler problem) turn up to be

much more entangled and organized than what

appeared in our previous papers on the S-encoding:

they are all originated by simple, linear combinations

of the primitive elements that define the primigenial

sphere Sp�1 .

This result ensues, first, from an autonomous and

self-consistent review of the well known governing

expression for the Newtonian law of gravitation

F ¼ �K2

r3
x; ð4Þ

2 Symmetry and planarity: both in Newton’s

gravitation law

Our basic goal is to interlace strictly the two funda-

mental properties of the Kepler problem: symmetry 
and planarity. Commonly derived [1–3] from the 
Newtonian law of gravitation (4), these properties 
notoriously reveal that the central Kepler motion 
exhibits:

a. Spherical symmetry (invariance under rotation in 
R3 about any axis through the fixed attractive 
point) whence the motion is commonly described 
by spherical polar coordinates ðr; h; /Þ;

b. Rotational symmetry (invariance under rotation 
about a given fixed axis, namely the constant 
direction of the conserved angular momentum 
vector C);

c. Planarity, so that the motion occurs in the plane 
orthogonal to C and through the fixed attractive 
centre, whence the motion is simply described by 
plane polar coordinates ðr; hÞ as in (2). 

Our goal is to embody both symmetry and planarity 
directly in the classical expression (4) of the force F. 
The result is achieved:

a. By choosing a fixed right-handed unit system

fF; I; J;Kg in R3, with the origin at the attractive

centre F and with K directed along C, so that

C ¼ C K ð5Þ

ellipse

circle

parabola

hyperbola

Fig. 1 The family of Kepler

confocal conics

and, secondly, by enlightening the role of both the 
spherical angles which parameterize a sphere. In this 
spherical scenario the well-known eccentricity vector 
e, the Runge–Lenz vector and the Kepler mechanical 
energy E acquire a particular interpretation.



b. By identifying the I; J-plane with the polar fq; sg-
plane, the particle position vector x being given by

x ¼ r q ð6Þ

(see Fig. 2).

The two choices (5) and (6) enable us to introduce

the vector C in the expression (4), which can now be 
re-written as

F ¼ �K2

r2
q ¼ �C2

r2

K2

C2
q:

If we denote by p the constant ratio

p ¼ C2

K2
ð7Þ

so that

F ¼ �C2

r2
p�1 q;

we finally arrive at the wedge product

F ¼
C ^

�
C ^ p�1q

�

r2
: ð8Þ

This is the vector expression sought for. The Newton’s 
gravitational force F, via the vector C, displays 
explicitly both the Kepler symmetry and the Kepler 
planarity.

What is now surprising is that the vector expression 
(8):

– Winds up with the parameter p given by (7), which

coincides exactly with the semi-latus rectum

parameter of the literature;

– Discloses the existence of the following radial

vector

p�1q

which turns out to be fundamental for the orga-

nization of the entire Kepler problem.

3 The primigenial sphere Sp�1 . The spherical

angles and the rescaling vector �

The radial vector p�1q ¼ p�1qðhÞ which appears in

(8) may be interpreted as the vector which, for each h,

defines the equator of a sphere with radius p�1 and

centre at F. We characterize this sphere by Sp�1 .

By adopting spherical coordinates (see Fig. 3)

X ¼ p�1 sin / cos h
Y ¼ p�1 sin / sin h
Z ¼ p�1 cos /

8
<

:

where the longitude angle h and the colatitude angle /
satisfy

h 2 ½0; 2p�; / 2 ½0; p�;

the sphere is notoriously characterized in R3 by the set

of vectors P� F, given explicitly by

P� F ¼ p�1 ½sin / ðcos h Iþ sin h JÞ þ cos / K �:
ð9Þ

Now, since in the plane polar description we have

that

cos h Iþ sin h J ¼ q;

F

Z

θ

I

JK

X

Y

ρ

τ

P
r

x = rρ

x

Fig. 2 The cartesian

fF; I; J;Kg and the polar

fF;q; sg frames



we rewrite the vector expression (9) of the sphere as

P� F ¼ p�1 ½sin / qþ cos / K�: ð10Þ

Let us notice that the longitude angle h appears in (10), 
although indirectly, through q ¼ qðhÞ.

As for the colatitude angle /, we can go further, and 
try to introduce in (10) its positive related range

0 � sin / � 1

(obviously satisfied, being / 2 ½0; p�).
To do so, we define the ‘rescaling vector’ � by the 

following

Definition 3.1 For each fixed plane unit vector 
q ¼ qðhÞ and for each fixed angle /, the ‘rescaling 
vector’ is the plane vector

� ¼ sin / qðhÞ ¼ �q ð11Þ

which belongs to the equatorial plane of the sphere and

whose magnitude

� ¼ j � j ¼ sin /

‘rescales’ the unit magnitude of q and satisfies the

range

0� �� 1 : ð12Þ

Consequently, the introduction of the vector �  in 
(10) leads us to the

Definition 3.2 We call ‘primigenial sphere’ of the 
Kepler problem the sphere Sp�1 defined by the locus of 
vectors

P� F ¼ p�1 ð�þ cos / KÞ ð13Þ

p
2

that is the sphere with centre at the attractive origin F

of the inertial right-handed frame fF; I; J; Kg of R3 

and with radius p�1 related to the physical constants of 
the Kepler problem by (7) (see Fig. 3) .

Of course, if / ¼ , we recover, by (13), the equator 
P � F ¼ p�1 q of the sphere. And the equator plays a 
fundamental role, as shown in the following section.

4 Inside and outside the equator. The projection

vector

The new rescaling vector �  allows to decompose the 
vectors (13) which define the primigenial sphere Sp�1 

as:

P� F ¼ p�1 � þ p�1 cos / K
¼ ðP0 � FÞ þ ðP� P0Þ ð14Þ

(see Fig. 4).

We call the vector

P0 � F ¼ p�1 � ð15Þ

the projection vector since it characterizes all the

points P of the sphere Sp�1 by giving their correspond-

ing projections P0 on the equatorial plane.

In particular, the point P0 is:

(a) At the center F of the equator for � ¼ 0;

(b) Inside the equator for 0\�\1;

(c) On the equator for � ¼ 1.

For the future, we find it convenient to extend 
the range (12) by considering the points outside 
the equator, thus by adding

(d) Outside the equator for � [ 1. 

φ

θ

Y

X

Z

P

F

= ρ = (cos θ I θ J)
= | |

+ sin
= sinφ

| P − F |= p−1

Fig. 3 The sphere Sp�1 with

radius p�1, center F. The

rescaling vector �



P� � F ¼ p�1 ðsin /� q þ cos /�KÞ ð16Þ

which define a circular right cone with axis K and 
semi-aperture /� (see Fig. 5).

Moreover, among the circular cones given by (16), 
we fix our attention to the cone corresponding to the 
particular relation

sin /� ¼ cos /�: ð17Þ
p
4

Since /� ¼ , this particular cone (Fig. 5) is charac-

terized by the vectors

P�p
4
� F ¼

ffiffiffi
2
p

2
p�1 ðq þ KÞ: ð18Þ

Of course this circular cone is a ‘limited, finite’ one:

the arrowed points P�p
4

belong to the sphere of finite

radius p�1 (the scalar factor
ffiffi
2
p

2
p�1 bringing the

magnitude
ffiffiffi
2
p

of the sum vector q þ K exactly to

the finite value p�1 and the magnitude of the projection

vector P�0 � F corresponding to the finite value

� ¼
ffiffi
2
p

2
of �).

Thus, with the aim at arriving at the (infinite) cone

which generates the Kepler orbits, we rescale (18) and 
finally give the following

Definition 5.1 The circular C -cone associated to the 
primigenial sphere Sp�1 of the Kepler problem, is the 
extended circular right cone, with vertex at F, 
characterized by the vector equation

C � F ¼ k p�1 ðq þ KÞ ð19Þ

with the positive scalar parameter k 2 R and with p�1

given by (7).

In cartesian coordinates, being Fð0; 0; 0Þ and C ¼
ðXC ; YC ; ZCÞ where

XC ¼ kp�1 cos h; YC ¼ k p�1 sin h;
ZC ¼ k p�1

the scalar cartesian equation of the right C-cone is

X 2
C þ Y2

C � Z2
C ¼ 0: ð20Þ

p
4

Remarks (1) Of course, the cartesian equation (20) 
coincides with the standard one for a circular right 
cone with semi-aperture . But the C-cone, through its 
vector definition C � F given by (19), is intrinsically 
and explicitly related to the Kepler problem via the 
physical Kepler value p�1and via its vertex, the 
attractive centre F of the force F. (2) How the C-cone 
generates the Kepler orbits is revealed in the following 
section.

6 The primigenial role of the sphere Sp�1

The vector expression (13) of the sphere Sp�1 relies, at 
the core, on the two spherical coordinates h and /: 
but, whereas the fixed unit vector K ¼ Kð0Þ, 
correspond-ing to the angle / ¼ 0, appears explicitly, 
the fixed unit vector I ¼ qð0Þ, corresponding to the 
angle h ¼ 0, appears only implicitly through the 
particular rescaling vector � ¼ � qðhÞ corresponding to 
h ¼ 0.

We recover this (implicit) fixed direction I ¼ qð0Þ 
by considering the particular, constant rescaling 
vector �0 defined by setting h ¼ 0 and / ¼ /0 in the 
definition of � given by (11) (the fixed, constant

P0

φ

θ

Y

X

Z

P

F

P0 − F = p−1

Fig. 4 The sphere and the projection vector P0 � F ¼ p�1�

5 From the sphere Sp�1 to the C-cone

Now we are ready to bring into life the cone which 
generates the Kepler conic orbits (the famous ‘conic’ 
sections).

As before we stick to the vector definition (13) of 
the sphere Sp�1 , considered as the ‘star’ of vectors P � 
F of the same magnitude p�1 issuing from its centre F 
(and not as the equivalent definition, i.e. as the locus of 
equidistant points).

Accordingly, in the star of vectors (13) we select, for 
each fixed, constant value /� of the colatitude /, the 
related vectors:



colatitude value /0 and its physical meaning will be 
explored in Section 9).

The new constant vector �0 is thus defined by:

�0 ¼ sin /0 qð0Þ ¼ sin /0 I ¼ �0 I

and lies on the I-axis.

As a consequence, the sphere Sp�1 , via its ðP � FÞ-
vector definition (13) in the fI; J; Kg-frame, is char-

acterized by the following four primitive elements

p�1; q; K; �0 ¼ �0I; ð21Þ

which are: the radius, two unit orthogonal vectors (the

first one related to the longitude angle h, measured

starting from I) and the rescaling vector �0 (related by

�0 ¼ sin /0 to the colatitude angle /0, measured

starting from K).

Now, what is surprising is that simple combinations

of these primitive elements, such as the following

simple linear combinations:

p�1 ðq þ KÞ ð22Þ

p�1 ð�0 þ KÞ ð23Þ

p�1 ð�0 þ qÞ ð24Þ

for each h, the whole C-cone structure (19) or 
(20), strictly related to the primigenial sphere Sp�1 .

We now compare the scalar equation (20) of the C-
cone with a scalar one obtained by considering the 
second combined vector (23). For a general represen-

tation in R3, we rewrite this vector (which lies in the fI; 
Kg-plane) by relaxing the restriction � 0 ¼ �0I so that 
this constant vector is � 0 ¼ �X I þ �Y J whence the 
vector (23) becomes

p�1
�
�0 þK

�
¼ �X

p
I þ �Y

p
J þ 1

p
K ð25Þ

which has tip point, say N, with coordinates

X ¼ p�1 �X; Y ¼ p�1�Y ; Z ¼ p�1 ð26Þ

which satisfy the scalar equation sought for

X2 þ Y2 � Z2 ¼ ð�0
2 � 1Þp�2 ð27Þ

where �0 ¼ j �0 j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�X

2 þ �Y
2

p
and Z [ 0.

In this equation, the sign of the term ð�0
2 � 1Þ 

depends on the rescaling values 0 � �0 � 1 and �0 [ 1. 
But these ranges remind us that an ellipse, a 

parabola and the left branch of the hyperbola corre-

spond to the same ranges of the well known eccen-

tricity 0 � e � 1 and e [ 1.

Thus, by comparing the scalar Eq. (27) with (20), 
we may state that:

φ = φ∗
1

φ = φ∗
2

F F

φ = π
4

Fig. 5 The Sphere and its

cones for / ¼ cost. The C-
cone for / ¼ p

4

Table 1 The Combined primitive elements

Combined vector Comparison Name

p�1 ðq þ KÞ p�1 ðq þ KÞ C-cone = N-cone

p�1 ð�0 þ KÞ p�1 ðe þ KÞ ¼ N N vector

p�1 ð�0 þ qÞ p�1 ðe þ qÞ ¼ S Sum vector S

originate immediately all the fundamental elements of 
the Kepler problem.

That is why we called the sphere ‘primigenial’.

The combined vectors examined (Table 1).

We are now examining in detail the Table 1 which 
reassumes the combined vectors (22)-(24) (obtained 
exclusively by following our Sp�1 spherical scheme) 
and compares them with the fundamental vectors we 
obtained by different procedures in [5–9].

a. The C-cone: a 3-dimensional characterization of 
Kepler orbits. The vectors (22), rescaled by k, give,



Proposition 6.1 The tip points N of the combined 
vectors (23) which lie inside the C-cone correspond to 
elliptical orbits, those on the cone to parabolic ones 
and those outside the cone to hyperbolic orbits (Fig. 6).

b. The cone structure. The C-cone coincides 
exactly with what we have defined and called (for 
other reasons) N-cone in [9] . For uniformity we will 
call it here C-cone.

c. The Rescaling vector � 0 and the Eccentricity 
vector e. As a consequence of the results obtained in a. 
we may set

�0 ¼ e ¼) �0 ¼ e

so that:

Proposition 6.2 The constant rescaling vector

�0 ¼ �0I corresponding to h ¼ 0 and to the particular

angle / ¼ /0, turns out to be the eccentricity vector

e ¼ e I of the literature which characterizes each type

of the orbits (e ¼ 0 for circles, 0\e\1 for ellipses,

e ¼ 1 for parabolas, e [ 1 for hyperbolas).

Remark The important fact is that in the literature 
the eccentricity vector is shown to rely on the concept 
of geometrical ratio (see [2, 3]), whereas in our 
description it comes from a completely different 
spherical approach.

d. The combined vector N. The vector defined in

(23) has the same coordinate Z ¼ p�1 of the North 
pole of the sphere Sp�1 : that is why we denoted its tip 
point by N. This vector, deeply rooted into the 
spherical scheme of this work and strictly related to 
the Kepler conic orbits via the previous Proposition 
5.1, coincides, being � 0 ¼ e, with the vector N

N � N � F � p�1 ðe þ KÞ;

we introduced in [9] in a completely different way (see 
Fig. 7a) where e ¼ eI.

(e) The Kepler orbits as conic sections. The polar

plane. The sphere Sp�1 may be considered as an

extension of the unit sphere with centre at F, that is

X2 þ Y2 þ Z2 ¼ 1: ð28Þ

It follows that (with respect to the unit sphere) each tip

point N of the vector N defines a polar plane, that is the

plane (orthogonal to the line FN) which passes

through the inverse point N� of N so that

j N� � F j ¼ 1
jN�Fj. The points ðX; Y; ZÞ belonging to

�
1� eX

2
�

X2 þ
�
1� eY

2
�

Y2 þ 2peXX þ 2peY Y

�2eX eY XY � p2 ¼ 0

which is a conic section, which, projected orthogo-

nally onto the fI; Jg-plane gives the Kepler conic 
section with focus at the vertex Fð0; 0; 0Þ of the C-
cone, eccentricity e and parameter p. (The Fig. 8 
shows an elliptic conic section).

Proposition 6.4 The polar plane makes an angle b 
with the I-axis such that

tan b ¼ e

which is exactly the eccentricity of the Kepler orbit 
(see Fig. 8).

f. The combined vector S. The combined vector 
(24), which is orthogonal to N, coincides with the 
vector we defined in [6, 7] as the sum vector

S � B � F � p�1ðe þ qÞ

(see Fig. 7b)).

While the vector N gives a 3-dimensional picture of the 
conic orbits, the sum vector S gives a 2-

dimensional one, for it allows to express the standard 
plane polar equation of the whole family of Kepler 
orbits

XF

Y

N N

N

Z

Fig. 6 The C-cone structure and the tip points N

the polar plane satisfy, recalling (26), (27) and (28), 
the equation

p�1eXX þ p�1eY Y þ p�1Z � 1 ¼ 0 ð29Þ 

As a consequence:

Proposition 6.3 The polar plane (29) intersects the 
C-cone in the locus given by the equation



r ¼ p

1þ e cos h

as the simple equation given by the scalar product

S � x ¼ 1:

7 Outburst of the Laplace–Runge–Lenz vector

A remarkable, well-known feature of the Kepler

problem is the existence (beyond the constant angular

momentum vector C) of an additional constant vector,

the so called Laplace–Runge–Lenz vector, that is

V ¼ K2 e:

Now we notice that both our two important vectors N

and S have in common the vector

p�1 e ¼ K2

C2
e

Remark The ‘origin’ of this extra conserved vector is

related in the literature to the so called ‘hidden

symmetry’ of the Kepler problem, for it arises from the

invariance of the Hamiltonian function of the Kepler

problem under the symmetry group of a four-dimen-

sional real rotation group in the four-dimensional

Euclidean space R4.

For us the Laplace–Runge–Lenz vector is not

completely hidden, but it already pops up by itself as

an outstanding vector in the three-dimensional Euclid-

ean arena: it is shared by the two fundamental vectors

N and S.

8 The primigenial sphere and the regularizing KS-

map

The well known singularity for r ¼ 0 in the equation

of the Kepler motion

€x þ K2

r3
x ¼ 0 ð: � d=dtÞ

was removed by Kustaanheimo and Stiefel ([4]) by 
means of the so called KS-regularization in real form, 
which relies on both a time transformation used by 
Levi–Civita and a peculiar coordinate transformation 
(briefly KS-map) given by

�
R4 � f0g

�
�!

�
R3 � f0g

�
: u! x ð30Þ

which maps a parametric four-dimensional Euclidean

space R4 of real vectors u ¼ ðu1; u2; u3; u4Þ onto the

ordinary three-dimensional Euclidean space or real

vectors x ¼ ðx1; x2; x3Þ.

FF H

B
N

S

N

p−1ep−1e

p−1ρ

S = B − F = p−1 (e + ρ)

N = N − F = p−1 (e + K)

N · S = 0

p−1K
(a) (b)

Fig. 7 The constant vector

N. The plane sum vector S:

(Fig. 7).

This is not a coincidence: in the spirit of the 
combined vectors generated by the sphere Sp�1 , if  we

simply rescale this vector by C2 we immediately 
recover the celebrated Laplace-Runge-Lenz vector

V ¼ K2 e

which satisfies

V � C ¼ 0

and which, being a constant vector, notoriously 
expresses the fact that a Kepler orbit does not precess 
in the plane of motion given by C.



The regularized equation of motion is the linear

regular differential equation

u 00 þ x2 u ¼ 0

where the symbol 0 denotes the derivative with respect 
to the new time variable and

2x2 ¼ �E

denotes the opposite of the Kepler mechanical energy

E.

Now, the KS-map (30) acquires a simple, interest-

ing interpretation in our spherical arena.

In fact, let us consider the particle position vector 
x ¼ rq and the following spherical elements of the 
unit sphere (the sphere Sp�1 reduced by p�1, given by 
(28)), namely:

a. The two unit vectors K and q.

b. The right-handed colatitude angle /;

These elements suggest to consider (Fig. 9) the 
combination of:

1. A right-handed rotation of / ¼ p
2

through the

origin F, which carries directly the unit vector K

onto the unit vector q;

2. A dilation in the I; J-plane by the positive factor r,

which carries the unit vector q onto the vector

P� F ¼ x ¼ rq, which is exactly the position

vector of a point on the plane Kepler orbit.

This simple compound roto-dilation

K ! q ! rq

(which rotates the unit vector K about the origin F and 
stretches it by the radial distance factor r) may be 
written in a simple quaternion form [7], bringing 
exactly to the KS-map (30) devised by Kustaanheimo 
and Stiefel.

Thus the primitive spherical elements of the 
primigenial sphere incorporate even the regularizing 
KS-map.

Let us add (as shown in [8] via the crazy fountain 
picture), that since q depends on the longitude angle h, 
the whole collection of all these roto-dilations (for 
each fixed h) may be represented by the picture given 
in Fig. 9, where the sprays, spreading in a circular 
fashion from the arrowed point of K, reach the point 
qðhÞ on the plane and then spring away horizontally to 
reach the point x ¼ rq on the same plane.

9 The angle /0 and the Kepler energy. Outlook

Throughout this paper we have endeavored to present 
a simple, spherical investigation of the well-known 
Kepler problem in its natural three-dimensional R3-

arena. We have shown how to construct all the 
characteristic elements of the Kepler problem via 
simple combinations of the basic, primitive elements

β

X

Z

F

F1

F2

N

P2

P1

N∗

Fig. 8 The projection of an elliptic

section onto the Kepler plane



of a primeval structure, the ‘primigenial’ sphere Sp�1 

(see Fig. 10).

Essentially, we have:

a. Rewritten the governing Newtonian attractive

force F so to keep track not only of the symmetries

but also of the planarity of the Kepler motion in

R3;

b. Emphasized the role of both the two spherical

coordinates, the longitude h and the colatitude /
of a sphere;

c. Considered a sphere as a starry sphere, that is as a

locus of vectors, whence it is precisely the vector

equation of the primigenial sphere Sp�1

P-F = p�1 2 þ cos/Kð Þ ð31Þ

which not only generates directly in R3 the C- cone

structure which defines the ’conic’ orbits, but

which also embodies in a natural way the

geometrical and physical elements of the orbits:

the centre of attraction F, the semilatus-rectum

parameter p and the eccentricity e ¼ �0 encapsu-

lated in the extension vector �0.

To further highlight the significance of the primigenial

sphere description, let us add that there is more than

meets the eye, since the colatitude angle /0 is strictly

related to the physical mechanical energy E of the

Kepler problem.

In fact let us rotate the unit vector K in the ðK; IÞ-
plane around F through the particular angle /0 defined

by

sin /0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ep K�2 þ 1

p
ð32Þ

where E denotes the constant energy of the Kepler

orbits. Since E is notoriously related to e by

ρ

φ

θ

Y

X

Z

e

X

K

Z

0 = e

Kφ0

Fig. 10 The primigenial

sphere Sp�1 and its primitive

elementsq ;K ; �0 ¼ e

P − F = x = r ρP

ρ

K

F

Fig. 9 The regularizing KS-map

pictured as a roto-dilation

K ! q! rq



e2 - 1 = 2E  C2 K�4

we find exactly that sin /0 ¼ e, which now has both a 
geometrical interpretation (see Fig. 10 where the 
rotating vector K is a unit one) and a physical one by 
(32).

This last result shows that the finding of a 
primigenial structure (such as the sphere Sp�1 of the 
Kepler problem) is more than a fortuitous invention: 
suitably developed and extended, a primigenial struc-

ture may help in suggesting and obtaining the main 
features and the evolution of other different dynamical 
theories.
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