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1. Introduction

In civil engineering dynamics the
of reported problems related to exce
represent a sample of the many cases that indicate the level of 
uncertainty with which civil structural engineers are faced nowa-
excitation.
The main cause of this unsatisfactory situation is that structures are 

cases and assembly structures (grandstands, spectator galleries, 
etc.) in entertaining venues induced by active people. Significant 

structural motion felt in 1996 on the Manchester United’s Old 
Trafford Stadium and their London rival Arsenal during pop con-
certs are the first notable problems in the UK [1]. Five years later 
the Cardiff showpiece Millennium Stadium needed to be stiffened 
to satisfy safety regulations for concert events [2], while in 2003 
Leeds Town Hall had to be evacuated after only 30 min of a rock 
concert as a 1000-strong crowd of fans induced vibrations so large 
that the floor occupied visibly cracked [3]. In continental Europe 
alarming levels of vibrations estimated above 50%g were observed 
on Nürnberg football stadium in Germany [4], while on the other 
side of the Atlantic a similar account was given of the Maracanã 
stadium in Rio de Janeiro Brazil [5]. More recently, during an aer-
obic exercise session a group of seventeen people caused the 39-
story residential–commercial building in Seoul to shake for ten 
minutes, prompting hundreds to flee in panic [6]. All these
becoming more flexible. Substantial developments in work-manship 
and structural materials have enabled daring architects and structural 
engineers to promote more slender designs than previously. These 
reduce the mass and stiffness of a structure, hence it is more likely to 
have a natural frequency within the typ-ical range of rates of repetitive 
body motion of active occupants (i.e. up to 5 Hz) yielding a large (and 
often resonant) dynamic response. Moreover, there is a lack of adequate 
design guidance relevant to crowd rhythmic excitation. BS 6399-1:1996 
[7], BRE Digest 426 [8], the User’s Guide to the National Building Codes 
of Canada [9] Commentary D (Part 4 of Division B) and ISO 10137:2007 
[10] were shown to be over-conservative based upon observations of 
real structures [11]. The Institution of Structural Engineers (IStructE), 
Department for Communities and Local Government (DCLG), 
Department for Transport, Local Government and the Regions (DTLGR) 
and Department for Culture, Media and Sport (DCMS) have been closely 
involved with a number of UK research projects designed to address the 
problem [12–18] and the results have been fed into two world leading 
design recommendations [19,20]. Their latest design guidance on crowd 
dynamic loading of grandstands [20] is a step in the right direction but 
still not perceived as the final version. The vital
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Nomenclature

fb bouncing rate or bouncing frequency
F(t) force time history
G body weight
ai dynamic load factors (DLF)
ui Fourier phases
fs sampling rate
Ti; T 0k cycle intervals
si; s0k normalised cycle intervals
lT mean of Ti

Ssðf mÞ; S0sðf nÞ; S0sðf Þ ASD of si and s0k
Df, Df0 spectral spacing
Asðf mÞ;A

0
sðf nÞ Fourier amplitudes of si

Wj Gaussian heights (weights)
cj Gaussian centres
b Gaussian widths
Z(t) template shape
Ei; E

0
k energy of weight normalised cycles

Etc energy of template cycle
DEi disturbance term
nk scaling factor
q0, q1 coefficients of linear regression
q correlation coefficient
N number of cycles
T duration of force signal
refinement should address modelling the actual nature of human 
activities and the corresponding loads. Although there can be no 
absolute certainty on the way any random group of people will 
behave, the guidance is grounded on a conservative deterministic 
representation of crowd dynamic loading. More adequate models 
would portray it as a stochastic process suitable for probabilistic 
performance-based assessment of structural vibration response. 
This should be done in a similar fashion as modelling wind, wave or 
earthquake loading has been done for decades, all of them 
characterised by considerable uncertainty and randomness – the 
feature this study specifically aims to address.

While it is widely recognised that the most severe crowd-
induced loading of entertaining venues comes from jumping, it is 
often rightly assumed that bouncing loads are more realistic for 
groups and crowds in the long term. Bouncing is a typical action in 
response to aural stimulation and has often been described as 
attempting to ‘‘jump’’ whilst the feet remain in contact with the 
ground [11]. People find bouncing preferable to jumping due to the 
lower energy consumption [12], which makes it particularly 
comfortable during long concert events [20]. The magnitude of the 
loading is smaller and more regular in comparison to high loads 
from jumping [21,22], but as the subject remains in contact with 
the structure they can comfortably achieve a greater activity rate. 
For instance, Yao et al. [12] reported that bouncing frequen-cies can 
be as high as 4.5 or even 5 Hz. For all these reasons, the focus of the 
present study is on bouncing loads only.

A key ingredient of a reliable load model of bouncing crowds is 
a reliable model of individual bouncing forces. Measured individ-
ual force time histories are characterised by immense 
inter-subject variability and are invariably near-periodic [23,17], 
indicating their narrow band nature (Fig. 1). However, to ease 
design process, they are commonly assumed identical, perfectly 
periodic and presentable via Fourier series [20]:

FðtÞ ¼ G
Xm

i¼1

ai cosð2pifbt �uiÞ ð1Þ

Here F(t) is the force magnitude at time t, with G representing the 
body weight in the same unit (most frequently N). Coefficients ai 

and ui are the dominant Fourier amplitudes and phase angles cor-
responding to m integer multiples of the bouncing rate fb (Fig. 1b). 
Known as ‘‘dynamic load factors’’ (DLFs), ai were studied on a lim-
ited sample of bouncing force records and the results were reported 
in the Working Group guideline [20]. However, ui have been ignored 
(i.e. ui = 0) and the values have never been publicised in detail. 
Section 3 presents results of fitting both ai and ui to the lar-gest 
database of experimentally measured individual bouncing force 
signals established in Section 2. In the context of the present study, 
these results are used in Section 3 to describe morphology of the 
bouncing force signals.
It is now widely accepted that the modelling strategy based on 
Fourier harmonics leads to significant loss of information during 
the data reduction process [24–26,22,27,28]. For example, 
Brownjohn et al. [25] demonstrated that neglecting the energy 
around dominant Fourier harmonics (Fig. 1b), which is a result of 
uneven footfalls, yields up to 50% error in predicted vibration 
response. More recent study by Van Nimmen et al. [29] showed 
that precision of simulated resonant vibration response primarily 
depends on whether variability of timing between successive foot-
falls is taken into account. A model of variability of successive 
bouncing intervals is elaborated in Section 4, while variability of 
the corresponding force amplitudes is presented in Section 5.

The primary objective of the present study is to build a mathe-
matical framework that can generate the correct interface forces 
between individuals and the occupied structure. Key modelling 
parameters are carefully selected to enable model calibration 
against force signals recorded under a wide range of conditions. 
Here, it is shown how the modelling parameters can be extracted 
from forces generated on a flat stationary surface, hence discount-
ing the effect of human–structure dynamic interaction [11], while 
the test subjects were bouncing to an auditory stimulus only. 
However, there is convincing evidence that environment, vibration 
level, age, gender and fitness, as well as different combinations of 
auditory, visual and tactile stimuli exert a strong influence on indi-
viduals bouncing and the resulting forces [11]. These still need to 
be measured and incorporated into the suggested modelling 
framework.

2. Experimental data collection

The data collection was carried out in the Light Structures 
Laboratory in the University of Sheffield, UK. A test protocol, 
approved by the Research Ethics Committee of the University of 
Sheffield, required all participants should complete a Physical 
Activity Readiness Questionnaire and a preliminary fitness test 
(measuring blood pressure and resting heart rate) to check whether 
they were suited to the kind of physical effort required during the 
experiment. Measurements of the body mass, age and height were 
taken for test subject who passed the fitness test. Although 
different types of footwear affect the force records [30], all 
participants wore comfortable flat shoes due to health and safety 
reasons.

Each participant was engaged in twelve bouncing tests, thereby 
generated twelve force signals. During each test a participant was 
asked to bounce to a steady metronome beat which was randomly 
selected from the frequency range 1.2–4.5 Hz with the increment 
of 0.3 Hz. A test lasted between 25 and 45 s, being shorter for the 
higher frequencies so the participant would not tire much. Rests 
were allowed between the tests.
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Fig. 1. Example of measured bouncing (a) force–time history and its Fourier (b) amplitude and (c) phase spectra.
The corresponding force signals were recorded by an AMTI 
BP-400600 force plate [31] that was rigidly fixed to the laboratory 
floor (Fig. 2). The signals were sampled at fs = 200 Hz. In total, 80 
volunteers (51 males and 29 females, body mass 72.7 ± 15.4 kg, 
height 171.2 ± 9.2 cm, age 26.4 ± 7.1 years) were drawn from
Fig. 2. Experimental setup.
students, academics and technical staff of the University of 
Sheffield who all together generated 960 vertical bouncing force 
signals of kind illustrated in Fig. 3. After a visual inspection, 60 sig-
nals recorded at high bouncing rates were cast aside. This is 
because some test subjects struggled to follow metronome beats at 
the top frequency range, occasionally stopped moving and 
therefore generated unrepresentative force time histories.

In the remaining part of the paper, the so established database 
is used to provide a mathematical model which can reliably simu-
late the measurements. Sections 3–5 show how the force shape 
and the stochastic features of intra-subject variability of bouncing 
rate and force amplitudes can be extracted and modelled for a sin-
gle force record. Section 6 compares simulated force signals against 
their measured counterpart. In Section 7 the modelling procedure 
presented in the previous sections is applied to all force records in 
the database, leading to a numerical generator of random bouncing 
force signals which can account for intra- and inter-subject diver-
sity of bouncing loads.
3. Modelling shape of bouncing forces

Despite all the criticism of the Fourier approach in Section 1, Eq. 
(1) is not abandoned entirely in the present study. It is used to 
describe the ‘‘repetitive’’ shape of individual force signals between 
the successive bouncing cycles, so called ‘‘template shape’’. A 
bouncing cycle can be defined between any two nominally identi-
cal events in the force time history. Since the vertical force ampli-
tudes oscillate around body weight of the test subject, the point 
where the amplitude is equal to the body weight and has a
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Fig. 3. Examples of bouncing force records generated at given metronome beats (a) 1.5 Hz, (b) 2.4 Hz and (c) 3.3 Hz.
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Fig. 4. A portion of the force record from Fig. 3b.

Fig. 5. Resampled G-normalised cycles for DTW.
negative gradient was selected as starting (and completing) event 
(Fig. 4).

From the 30 s long force signal illustrated partly in 
Figs. 3b and 4 and yielding about 70 cycles, the central portion 
comprising 66 successive cycles was extracted for further analysis. 
Four cycles (i.e. approximately 5% of all cycles measured) at the 
beginning and the end of the force time history were discarded 
as unreliable since their natural variability might have been 
affected by the measuring process.

The selected 66 cycles have been normalised by the body weight 
G, lined up at their origins and resampled to fs/fb data points. Fig. 5 
confirms that there is a common shape (here called ‘‘template’’ 
shape) that nonlinearly distorts along time and ampli-tude axes on 
the cycle-by-cycle basis. Due to misalignments of the
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Table 1
Results of curve fitting the template shape Z(t).

Parameters fb = 2.40 Hz

i = 1 i = 2 i = 3 i = 4

ai (–) 0.55 0.42 0.07 0.02
ui (rad) �1.18 �1.85 2.26 2.58
common events along the time axis, such as positions of the local 
extreme values, point-by-point numerical average over the actual 
66 cycles would be a poor representation of the template shape. 
Hence, the average was calculated after the common events had 
been aligned using dynamic time warping (DTW), a method com-
monly used in iris scans, finger print and voice recognition [32]. The 
DTW nonlinearly shifts common events (Fig. 6) while
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Fig. 8. DLFs vs. bo
minimising the sum of squared differences between their ampli-
tudes [33]. Although wavelet analysis might look as easier option, 
note that ‘‘mother’’ wavelets can be only linearly scaled [34].

Since the DTW can warp only two signals at a time, 65 of the 66 
cycles were warped individually onto a ‘‘reference cycle’’ (Fig. 6). It 
is one of the actual 66 cycles that minimises the sum of 
point-by-point Euclidean distances to their simple numerical 
point-by-point average [35]. The resulting warped cycles and the 
template shape are shown in Fig. 6b.

The shape of the template cycle Z(t) can be described as a sum of 
its first four Fourier harmonics (Eq. (2)). The results of the curve 
fitting are summarised in Fig. 7 and Table 1.

ZðtÞ ¼
X4

i¼1

ai cosð2pifbt �uiÞ ð2Þ
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Table 2
Mean value and (standard deviation) of ai and ui at different bouncing rates.

fb (Hz) a1 (–) a2 (–) a3 (–) a4 (–) u1 (rad) u2 (rad) u3 (rad) u4 (rad)

1.2 0.23 (0.12) 0.20 (0.09) 0.06 (0.05) 0.02 (0.02) �1.01 (0.24) �2.0 (0.40) �1.16 (1.65) 0.76 (1.67)
1.5 0.33 (0.17) 0.23 (0.11) 0.05 (0.05) 0.02 (0.02) �1.15 (0.31) �2.11 (0.44) �0.53 (1.74) 1.39 (1.34)
1.8 0.43 (0.20) 0.23 (0.12) 0.04 (0.03) 0.02 (0.01) �1.20 (0.18) �2.20 (0.68) �0.03 (1.70) 0.86 (1.87)
2.1 0.57 (0.21) 0.21 (0.11) 0.04 (0.03) 0.02 (0.01) �1.29 (0.13) �1.82 (1.57) 0.49 (1.38) 0.49 (2.11)
2.3 0.58 (0.23) 0.20 (0.09) 0.04 (0.03) 0.01 (0.01) �1.29 (0.09) �2.35 (0.70) 1.03 (1.22) �0.61 (1.97)
2.7 0.65 (0.21) 0.19 (0.08) 0.03 (0.02) 0.01 (0.01) �1.31 (0.07) �2.39 (0.90) 1.09 (0.99) �1.32 (1.45)
3.0 0.66 (0.19) 0.17 (0.08) 0.03 (0.02) 0.01 (0.01) �1.32 (0.06) �2.31 (1.34) 1.30 (0.77) �1.45 (0.82)
3.3 0.68 (0.17) 0.17 (0.06) 0.03 (0.02) 0.01 (0.01) �1.31 (0.05) �2.01 (1.91) 1.15 (0.98) �1.07 (1.14)
3.6 0.68 (0.17) 0.16 (0.06) 0.03 (0.02) 0.01 (0.01) �1.32 (0.05) �1.64 (2.27) 1.08 (0.93) �1.09 (1.12)
3.9 0.67 (0.17) 0.15 (0.06) 0.03 (0.02) 0.01 (�0) �1.33 (0.05) �1.68 (2.25) 1.06 (1.22) �0.61 (1.51)
4.2 0.68 (0.18) 0.15 (0.06) 0.02 (0.02) 0.01 (0.01) �1.32 (0.04) �1.25 (2.58) 0.95 (1.10) �0.58 (1.66)
4.5 0.74 (0.17) 0.16 (0.06) 0.02 (0.01) 0.01 (0.01) �1.32 (0.03) �1.42 (2.75) 0.19 (1.66) �1.11 (1.80)
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All attempts to develop a general model of the template shape 
for all individuals and across all measured bouncing rates had gone 
awry. The results of fitting Eq. (2) to the database established in 
Section 2 indicate the sheer randomness of bouncing force records 
and a lack of strong correlation between the bouncing rates and 
Fourier amplitudes ai (Fig. 8) and phases ui (Fig. 9). Mean values 
and standard deviations reported in Table 2 are derived using ai and 
ui coefficients that correspond to 0.3 Hz wide frequency clusters 
which centres match the 12 bouncing rates given to the test 
subjects during the data collection (Section 2). For example, the 
cluster which centre is at 2.1 Hz contains ai and ui of all force 
records which fundamental frequency is within the range 1.95–
2.25 Hz. Figs. 8 and 9 and Table 2 clearly demonstrate inadequacy 
of the deterministic model adopted in the Working Group design 
guideline. However, in the context of the present study the results 
helped justify the choice of the random force model elaborated in 
Section 7.

Section 6 shows how the template shape can be scaled while 
creating successive cycles of a synthetic force–time history to 
reflect the variability of timing and amplitudes present in the actual 
force record. Modelling the variations between the succes-sive 
cycle intervals and their amplitudes precedes in the next two 
sections.
0
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Fig. 10. ASD of si series and its curve fit.
4. Variability of bouncing intervals

Variability of the consecutive cycle intervals Ti (i = 1, . . . , 66) can
be represented by a dimensionless series si:
si ¼
Ti � lT

lT ð3Þ
lT ¼ meanðTiÞ

Mean of si is zero and its auto spectral density (ASD) can be 
cal-culated as [34]:

Ssðf mÞ ¼
A2

sðf mÞ
2Df

; f m ¼
m
66

; m ¼ 0; . . . ;32 ð4Þ

where As(fm) is a single-sided discrete Fourier amplitude spectra 
and Df = 1/66 is the spectral line spacing (Fig. 10). Although the
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ASD does not depend on the length of si series, more data points 
might reveal a smoother and very likely a richer ASD structure. 
However, the Research Ethics Committees in the University of 
Sheffield limited length of the force records due to ethical reasons.

The variance of si is the integral of the ASDs [34]. Unlike random 
number generators, such as probability density functions, the ASD 
contains information of the frequency content of si series, i.e. the 
‘‘pattern’’ of variation between the consecutive si values. Therefore, 
assuming that for a given bouncing rate a test subject maintains the 
same bouncing style for any period of bouncing, a model of the ASD 
can be used to synthesise artificial s0k (k = 1, . . ., N) series of arbitrary 
length (e.g. N � 66) with the statistical properties of the actual si 

series. Empirical evidence is provided in Section 6.
The ASD Ss(fm) can be analytically described by a sum of 33 

equidistant Gaussians (Fig. 10):

S0sðf Þ ¼
X33

j¼1

Wje
�
ðf�cj Þ

2

2b2 ð5Þ

If the Gaussian centres cj are placed in each data point on the 
quasi-frequency axis and all Gaussian bells have the same prede-
fined widths b = Df, their heights Wj can be optimised using the 
non-linear least-square method [36] to fit exactly the actual ASD 
(Fig. 10).

To create a series of synthetic cycle intervals T 0k (k = 1, . . ., N), Eq.
(5) first calculates S0sðf nÞ values at equidistant data points fn = nDf

0
,

where n = 0, . . ., N/2 � 1 and Df
0
= 1/N. These are then used in Eq.

(4) to compute the corresponding Fourier amplitudes

A0sðf nÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Df 0S0sðf nÞ

q
. Assuming the uniform distribution of the

phase angles in the range ½�p; p�; A0sðf nÞ are then fed into the 
inverse FFT algorithm to generate s0k series. Different s0k series with 
the same variance and the frequency content can be created by 
varying the sets of random phase angles. Finally, multiplying s0k
by lT and adding the offset lT, yields a synthetic T0k series 
(Fig. 11). Working under assumption that a test subject keeps the 
same bouncing style in a narrow range of bouncing rates, lT can 
take a slightly different value l0T to generate cycle intervals corre-
sponding to rate 1=l0T . This is an important aspect of modelling 
strategy described in Section 7.
5. Variability of force amplitudes

Energy of bouncing cycles Ei can be defined as the integral of the 
weight-normalised force amplitudes over the corresponding cycle 
intervals Ti (Fig. 4).

The relationship between the two parameters (Fig. 12) can be 
described by the following linear regression model:
Ei ¼ q1Ti þ q0 þ DEi ð6Þ

Parameters q1 = 0.972 and q0 = 0.012 are regression coefficients 
and DEi is a disturbance term, typically modelled as a random 
Gaussian noise [37].

Hence, having generated synthetic cycle intervals T0k (k = 1, . . .  , 
N) as explained in Section 4, the corresponding energies E0k can be
calculated using Eq. (6). The energies are then assigned to a 
sequence of N bouncing cycles by scaling the amplitudes of the
template shape with factors nk:

nk ¼
E0k
Etc

ð7Þ

where Etc is the energy of the template shape. The empirical evi-
dence is provided in the next section.

6. Synthetic force signals

This section integrates the models of template shape 
(Section 3), variability of the cycle intervals (Section 4) and vari-
ability of force amplitudes (Section 5) to generate an example of 
synthetic individual force signal. Comparison of Figs. 13a–
b and 14a–b highlights the close match with the actual force record 
in both time and frequency domains.

The likelihood of creating two identical synthetic forces is min-
imal since T0k and E0k are random variables. However, artificial sig-
nals generated using the modelling parameters extracted from the 
same force measurement are statistically equivalent. This is 
because the morphology of bouncing cycles is controlled by the 
common template shape Z(t), cycle intervals T0k are created from the 
same ASD, which further implies the statistical equivalence of 
energies E0k and force amplitudes due to the linear regression given 
by Eq. (6).

The next section shifts the focus of the study from a single indi-
vidual to a wide human population, where individuals are consid-
ered as unique entities and their bouncing loads described as a 
random narrow band process.

7. Generator of random force signals

Parameters of the template shape Z(t), the ASD S0sðf Þ, distur-
bance term DEi(t) and the regression coefficients q1 and q0, were 
extracted from each of the 900 force signals recorded in Section 2 
and stored in 900 MATLAB structure files [38], here called ‘‘mat 
files’’. As in Section 3, the mat files were classified into the 0.3 Hz 
wide clusters which centres correspond to the 12 bouncing rates in 
the range 1.2–4.5 Hz (Table 2). Assumption that a person would 
generate very similar force signals when bouncing at rates that are 
within a cluster’s narrow frequency range was already



10 15
Time [s]

5 20 25 30

(a)

(b)
]-[

G/sedutilp
ma

ecroF

2

1.5

1

0.5

2.5

0
]-[

G/sedutilp
ma

ecroF

2

1.5

1

0.5

2.5

0

Fig. 13. (a) Measured and (b) an example of synthetic force–time series.
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Fig. 15. Poor correlation between body weight G and the fundamental DLF a1.
introduced in Section 4. Hence, it can be further assumed that the 
modelling parameters stored in any mat file within a cluster can be
used to generate synthetic force signals at any bouncing rate 
within the cluster’s frequency range. This is the key aspect of the 
random modelling approach adopted in this section.

The lack of correlation (q = �0.09) between the body weight G 
and the fundamental dynamic loading factor a1 in Fig. 15 suggests 
that the body weight does not affect the force amplitudes. Hence, G 
values can be generated independently and randomly using prob-
ability density functions, such as reported by Hermanussen et al.
[39] and Ogden et al. [40], and used to scale synthetic
G-normalised force signals of a kind shown in Fig. 13b.

The flow chart in Fig. 16 presents the algorithm to generate an 
artificial force signal. For the preselected values of bouncing fre-
quency fb and duration of bouncing T, the algorithm first estimates 
the number of bouncing cycles N = T ⁄ fb in the signal, then rounds it 
up to the next integer. In the following step it selects randomly and 
equally likely a mat file from the frequency cluster corre-sponding 
to fb. Using the modelling parameters stored in the selected file, it 
generates synthetic cycle intervals T0k, k = 1, . . ., N,



from the corresponding cluster select a
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Fig. 16. Algorithm to generate a synthetic force signal.
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Fig. 17. Examples of artificial force signals generated for the same set of input parameters fb = 2.7 Hz and T = 40 s.
then calculates the corresponding energies of bouncing cycles E0k
and scaling factors nk. Next, the template shape Z(t) is assigned 
to each T0k, scaled by nk and the individual cycles are aligned along 
the time axis. In the last step, the resulting signal is scaled by a ran-
domly generated body weight.

Fig. 17 shows two synthetic signals generated when the model 
was started twice using the same input parameters fb = 2.7 Hz and
T = 40 s. The force time histories are clearly different which proves 
that the model can simulate the inter-subject variability. On the 
other hand, ability to generate signals with different degrees of the 
intra-subject variability is more apparent in the frequency domain 
(Fig. 18). The lesser spread of energy around the dominant 
harmonics in Fig. 18a relative to Fig. 18b indicates more regular 
bouncing of the first ‘‘virtual’’ person.
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8. Discussions and conclusions

Mainly due to the lack of fundamental data and adequate math-
ematical characterisation that will enable easy manual assessment
of vibration response, bouncing loads are assumed in design prac-
tice as perfectly repetitive, identical for all individuals and repre-
sented by a sum of several dominant Fourier harmonics.
However, increasing number of newly built structures facing vibra-
tion serviceability problems due to bouncing people clearly
stressed the need of a more adequate mathematical description.

This study combines the conventional Fourier modelling
approach with novel models of variability of timing and ampli-
tudes/energy of the successive bouncing cycles, yielding a numer-
ical generator of random near-periodic bouncing force time
histories. The modelling parameters are extracted from a large
database of bouncing force records, classified and stored in narrow
clusters with respect to the bouncing rate. Working under assump-
tion that forces generated at very close rates have similar shape,
amplitudes and level of variability, modelling parameters within
a cluster can be used to generate artificial force signals at any rate
within the cluster’s frequency range. The key modelling parame-
ters are random variables, so two identical forces can be generated
only by chance. This radical shift from the conservative determin-
istic model to a randomised and automated generator of artificial
bouncing forces brings the whole field of human-induced vibra-
tions arm to arm with dynamic analysis of structures due to other
key random excitation, such as wind and earthquakes, which has
been done in this way for decades. Moreover, as the model gener-
ates synthetic force signals in a fraction of a second on a standard
PC configuration, it has a great potential to improve efficiency and
cost-effectiveness of vibration serviceability assessment in every-
day design practice.

However, there is still a room for improvement. The current
version of the model runs on the parameters extracted from the
force records measured on a rigid laboratory floor. Hence, it can
be used to study only cases of incipient dynamic instability, i.e.
when the vibration level is not too much perceptible to the occu-
pant and therefore does not affect his/her bouncing motion. An
elaborate database of bouncing force records generated by many
individuals bouncing at different rates on more or less vibrating
surfaces still waits to be established. Also, there are many more
factors affecting human-induced loads, such as different auditory,
visual and tactile stimuli, with or without the motion of the struc-
ture itself. To include them in the model, the variations in the force
amplitudes, energy, timing and shape of successive bouncing
cycles should be modelled as a function of dynamic response of
an occupied structure, human perception to vertical vibrations
and different external cues. Moreover, there is still a gap in the
knowledge on the interaction between individuals in groups and
crowds and its influence on the corresponding net dynamic loads
on the structure. Having a dynamic model of a crowd that consid-
ers each individual as an agent bouncing and interacting with sur-
rounding people, timing of each agent can be coupled with the
proposed individual force model yielding a numerical generator
of crowd bouncing loads. However, interaction between individu-
als within a crowd still needs to be measured and modelled.
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