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Highlights

• We describe the development of a 3-phase single-fluid algebraic VoF solver supporting phase-change.
• Capture the interface between coexisting miscible phases is crucial to model fuel cavitation.
• We introduce a novel benchmark case to verify the conservation of the phase-fraction equations in presence of phase-change.
• The proposed solver enables prediction of swirl cavitation and hydraulic flip regime in fuel-injectors.



A Three-Phase VOF Solver for the Simulation of In-nozzle Cavitation Effects on
Liquid Atomization

F. Giussania,b, F. Piscagliaa, G. Saez-Mischlichc, J. Hèlieb
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Abstract

The development of a single-fluid solver supporting phase-change and able to capture the evolution of three fluids,
two of which are miscible, into the sharp interface capturing Volume of Fluid (VOF) approximation, is presented. The
transport of each phase-fraction is solved independently by a flux-corrected transport method to ensure the bounded-
ness of the void fraction over the domain. The closure of the system of equations is achieved by a cavitation model, that
handles the phase change between the liquid and the fuel vapor and it also accounts for the interaction with the non-
condensable gases. Boundedness and conservativeness of the solver in the transport of the volume fraction are verified
on two numerical benchmarks: a two-dimensional bubble rising in a liquid column and a cavitating/condensing liquid
column. Finally, numerical predictions from large-eddy simulations are compared against experimental results avail-
able from literature; in particular, validation against high-speed camera visualizations and Laser Doppler Velocimetry
(LDV) measurements of cavitating microscopic in-nozzle flows in a fuel injector is reported.

Keywords: three-phase LES-VOF, internal nozzle flows, cavitation, primary atomization, injection, OpenFOAM

1. Introduction

Cavitation plays a pivotal role in achieving finer atomization of spray to favor an improved fuel economy and
reduced emission levels during combustion [1, 2]; however, it may also cause a significant reduction in the nozzle
volumetric efficiency and in the stability of the spray [3] and to potential damage of the injector components, leading
to reduced reliability of the injector. In injector nozzles, after a surface spot is initially surrounded by a cavitating flow
region, it tends to erode at an accelerated pace: cavitation pits increase the turbulence of the flow and create crevices
that act as nucleation sites for new cavitation bubbles, thus leading to an avalanche effect. From high speed camera
visualizations on transparent glass nozzles, two different forms of cavitations have been distinguished [4, 5] and
they are known as “geometry-induced” and “vortex” (or string) cavitation respectively. Geometry-induced cavitation
is initiated at sharp corners where the pressure falls below the saturation value [6, 7, 8] because of a sudden flow
detachment and the accompanying recirculation region. String (or vortex) cavitation, conversely, develops by the
evolution of the vorticity which allows the formation of geometry-scale vortices and is significantly influenced by
the walls and the interaction with other vortices [9]; additionally, low pressure regions in the centers of the vortices
in the nozzle can generate a phase-change or entrap and stabilize bubbles that were entrained in their proximity,
similarly to what is observed in hydromachines [10, 11]. Vortex cavitation in the injector nozzles was first observed
by Kim [12] and since then it has been described in further studies performed in enlarged nozzle replicas and was
termed as “string cavitation” [13, 14]. The main differences between vortex cavitation in propellers and turbines
and those in fuel injectors arise from the geometric configuration of the nozzle and the operating conditions of the
flow. String cavitation in nozzle flows develops in very confined volumes, that may allow formation of large-scale
vortices relative to the nozzle geometry, where each cavitating vortex may interfere with other vortices and where
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the influence of the walls can be significant. Also, huge pressure drops in fuel injectors are encountered within
very short distances (few hundreds of micrometers) while the lifetime of the formed vortical structure is usually
only a fraction of the injection period. Cavitation strings are usually formed during fuel injection in areas where
large-scale vortical structures develop: this happens when local pressure level is lower than the vapor pressure of
the fuel. In a typical nozzle geometry, cavitation vortices are located between the separation point on the needle
surface and the separation point at the hole inlet corner, and where there is sharp flow turning inside the sac volume
of the injector. Unlike geometrical cavitation, string cavitation is present in any nozzle geometry: with sac-type and
Valve Covered Orifice-type (VCO) nozzles, with either cylindrical or tapered holes, whose inlet can be either sharp
or rounded. Cavitation modeling in high-pressure injection involves the simulation of multiphase (in the context of
this paper refers to liquid and gas) and multicomponent (several instances of the same phase) flows and poses great
challenges. These challenges are due to the presence of the interfaces between phases and large or discontinuous
properties variations across interfaces between phases and/or components; additionally, the modeling of small-scale
interactions between phases and components has a significant impact on macroscopic flow properties, this is why
LES turbulence modeling is often required. Two approaches are commonly used for the simulation of multiphase
and multicomponent flows. In the first approach, each phase and/or component is considered to fill a distinct volume
and the interfaces between the phases and/or components are captured explicitly. This approach is a generalization
of two-fluid approach [15]; typical applications [16, 17, 18] include the prediction of the motion of large bubbles
in a liquid, the motion of liquid after a dam break, the prediction of jet breakup, and the capture of any liquid-gas
interface. The mutual interaction at the interface can be described as an interfacial momentum transfer and, when
interfacial mass and energy transfer are involved, they also need to be included in the equation sets. In order to model
the transfer of mass for cavitation with a minimum set of equations for closure, an equation of state to correlate density
and speed of sound with pressure and temperature is required: no additional transport equations are used for the vapor
phase, whose void fraction is determined by the mixture composition. Similarly to barotropic models, the density is
a function of pressure only. In the second approach, the phases and/or components are spatially averaged to lead to
a homogeneous mixture; relative velocity among the phases is neglected, which implies the absence of closure for
the transfer of mass, momentum and energy at the interfaces while thermal equilibrium among the different phases
is usually assumed. These methods are generally identified by the Volume of Fluid (VOF) [19], the Level Set (LS)
[20] and the Coupled Level Set-Volume of Fluid (CLSVOF) [21, 22, 23]. The number of phase fraction equations
solved can vary depending on the number of fluid interfaces to capture. Fluid properties, such as density and viscosity,
sharply vary across the interface of the different phases; finally, the rate of the transfer of mass is controlled by source
term built on Rayleigh-Plesset equation [24, 25, 26, 27]. Several attempts have been done to combine the potentiality
of the VOF with the simplicity of mixture model. In [28] the cavitating fluid mixture (liquid and vapor) is considered
as primary phase while the non-condensable gas is the secondary phase; in this case, only one interface is captured
by solving the phase-fraction equation for the non-condensable (NC) gas and the void fraction of the cavitating fluid
mixture is equal to (1−αnc); the volume fraction of the fuel vapor in the cavitating fluid mixture is estimated from the
mixture composition, where the densities of the different components are computed through non-linear equations of
state. In [29], a mass transfer model published in [30] was extended to an eight-equation two fluid-model to include
non-condensable gases. Other methods to describe a three-phase flow while considering non-condensable gases are the
use of the homogeneous mixture model combined with a barotropic two-fluid cavitation model [31], or the coupling
of a two-fluid approach with VOF [32]. In the latter case, a two-fluid approach is used to describe the interaction
between liquid and vapor in the nozzle, while VOF is used to model the jet formation. All the mentioned models have
in common the aspect that they capture a single interface between the non-condensable gases and a multi-component
mixture [33, 34]. Barotropic models are widely used for complex simulations because they are simple to implement
and numerically stable. On the other hand, one of the main limitations using a barotropic equation of state is in the
underestimation of the vorticity change, because it does not account for the misalignment between the gradient of
pressure and the gradient of density (∇ρ×∇p)/ρ2 [35], unless a non-linear correlation between pressure and density is
used [33]. This contribution, called baroclinity, is important either in compressible fluids and also in incompressible
and inhomogeneous fluids and it is identified by the interface in a VOF method. Another challenge when cavitation
is modeled using barotropic models is in the definition of an appropriate equation of state for the mixture, which
includes air in addition to liquid and vapor. Capture the interface between coexisting miscible phases (fuel vapor
and non-condensable gases in this work) in injector nozzles may be important in presence of swirl cavitation and
hydraulic flip regime [36, 37], when a severe detachment of flow pockets [37, 38] transported away from the hole
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allows non-condensable gases to flow back into the nozzle. This happens both in simplified, straight, central hole
injectors [39] and in non-axial nozzles, in which large pressure fluctuations are observed in the nozzle. Recently,
attempts to extend VOF, in order to include air in transport and in cavitation model have been done [40], [41] where
each phase is considered as a compressible fluid but the cavitation model used [42, 43] have been previously developed
under incompressible formulation. Conversely, in [44] each phase is considered incompressible and isothermal but
the change of density is addressed at the interface and keeps in consideration the presence of the air inside cavitation
model. A multi-fluid quasi-VOF model with the transport of three phases has been proposed also in [45], considering
different velocities among phases and thus momentum transfer rate among interfaces. Although several authors have
developed different methodologies to describe cavitation and the jet formation, any simple benchmark has not been
found in literature in order to provide any further information about the mass conservation guaranteed by the cavitation
model, either using the Rayleigh-Plesset equation [24, 27] or using a barotropic equation of state coupled with vapor
quality. Some tests have been performed using a shock tube or Rayleigh bubble collapse test case [46, 47, 48, 49],
which deal with surface capture regardless of mass conservation when the phase change occurs.

The objective of this study is to present the development of a three phase VOF solver for three incompressible flu-
ids (liquid fuel, fuel vapor and non-condensable gases), two of which are miscible, where fuel cavitation/condensation
is modeled through the Rayleigh-Plesset equation. Three different test cases are proposed for the solver validation:
a) a modified version of the test case presented in [50, 51] to explore the accuracy of the solver in capturing three
interfaces without phase change. Different formulations to compute the surface tension in the VOF method have been
investigated and a comparison among them has been shown; b) a novel one-dimensional test case, that consists of a
1D column half filled with liquid, where non-condensable gas (air) stays above the liquid. The hydrostatic pressure
field resulting from the weight force of each fluid in quiescent state produces a pressure gradient Δp at the inter-
face, letting the onset of cavitation in the liquid. Later on, condensation of the vapor is enforced to reach the initial
state. The relative mass conservation error is monitored, together with other relevant quantities, to prove the con-
servativeness of the solver; c) the three-dimensional internal-nozzle flow of an injector, whose experimental results
are available in the literature at one operating point [52]. The discretization of the governing equations used in this
study is based on the finite-volume approach as implemented in OpenFOAM [53]. Mass and momentum are solved
using the pressure-implicit split-operator (PISO) algorithm [54]. The cavitation and the condensation term have been
included in a semi-implicit formulation of the phase-fraction equations, where a flux corrected transport technique
[55] is used to preserve boundedness of the solution; cavitation modeling follows the theory by Schnerr and Sauer
[43] with the extensions proposed by Yuan [56]. The implemented three-phase solver is able to capture the interface of
three phases, namely the liquid, the condensable gas (vapor) and the non-condensable gas (air). Turbulence is modeled
using LES: large turbulent scales are resolved, while smaller scales are modeled [57, 58, 59]. This separation of scales
is explicitly or implicitly [60, 61] obtained by filtering out the small flow scales that cannot be properly represented
by the mesh [57]; their effect must be modeled on the filtered field by means of the so called subgrid-scale (SGS)
model. Although the multiphase nature of the problem, the use of LES models is also very popular in multi-phase
single-fluid VOF simulations [62, 63, 64, 65, 66, 67]. It is worth mentioning that several numerical studies have been
led with Unsteady Reynolds Averaged Naviers Stokes (URANS) equations but this approximation can significantly
underestimate the formation and the extent of cavitation due to an overestimated turbulent viscosity in the cavitating
zones [68, 69, 70, 71, 72]. A comparative study between URANS and LES models [46] shows that URANS models
fail to predict the incipient cavitation when the inlet flow pressure is not far from the pressure at the nozzle outlet,
while LES is able to better capture the cavitation onset thanks to a better characterization of the different flow scales.
A possible solution to overcome the limitations of URANS when applied to cavitation modeling consists in reducing
the eddy-viscosity predicted by the turbulence model [68]; this approach looks promising, but its validity does not
seem general; LES looks therefore to be the best approach for the problem discussed, despite of its high computational
cost.

The paper is organized as follows: the theory of the three phase solver with phase change is discussed from Sec.
2 to Sec. 5; the discretized solution of the phase fraction equations in presence of phase-change, and its coupling to
the segregated solution of the governing equations is presented in Sec. 6, 7 and Sec. 8. Then, the rising bubble test
case [50] and a new one-dimensional liquid-column benchmark test case have been used for validation in Sec. 10 and
11. Finally, the simulation of a three-dimensional internal nozzle flow and its validation is presented in Sec. 12. Main
conclusions are summarized in Sec. 13.
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2. Phase-fraction equations in the VOF solver

The cavitating fluid, the vapor and the non-condensable gas in the three-phase flow are represented in a single-fluid
approximation as a mixture of phases, in which the phase-fraction distribution includes a sharp yet resolved transition
between the phases.

An algebraic-type VoF method belonging to the family of the interface-capturing methods [73], is used to capture
the interface; more specifically, the interface is visualized by the contour of a scalar function, that is assumed to be the
iso-value (set to 0.5 in this work) of the void fraction of the phase considered. Each phase i has a partial volume Vi,
that is a fraction of the volume V of the cell element (Vi ⊆ V) and it is defined by its local volume fraction αi ∈ [0;1]:

αi =
Vi

V
(1)

with:

3∑
i=1

αi = 1 (2)

a “mixture” density:

ρ =
∑

i

αiρi (3)

and a “mixture” viscosity:

μ =
∑

i

αiμi (4)

It is important to note that density in the solver varies with pressure, through the phase transport equations. The effect
of the heat transfer on the temperature, that should be accounted by solving the energy equation, is not considered in
the present work. The complete system of equations for three-phase flow with phase change are the phase-fraction
equations, that are written as: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂αl

∂t
+ ∇ · (Uαl) = −S α

ρl

∂αv

∂t
+ ∇ · (Uαv) =

S α

ρv

∂αnc

∂t
+ ∇ · (Uαnc) = 0

(5)

In the system of equations (5), S α is a source term to model the phase-change (cavitation or condensation) at the liquid
interface through the cavitation model and couples the effects of the cavitation with the evolution of the interface
directly:

S α =
ρvρl

ρ + αnc(ρl − ρnc)
Dαv

Dt
(6)

In Eq. (6) the subscripts l and v are adopted for liquid and vapor (that are involved in the phase change) respec-
tively, while the subscript nc is adopted for non-condensable gases. It is important to note that the closure of the
system of equations (5) in presence of a cavitation/condensation source term S α requires to explicitly resolve the
transport of a third phase fraction (non-condensable phase), to include a cavitation model and to couple the equations
with the compatibility condition (2); in this way, the system is closed and implicitly bounded, thanks to (2). In absence
of source terms, 3-phase VOF solvers usually calculate the void fraction of non-condensable gases directly from Eq.
(2), that is sufficient for closure only in that case. These aspects are discussed in detail in Appendix A and Appendix
B, where the derivation of the full system of equations is shown and the formulation of the source terms for the phase
change is also described.
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2.0.1. Counter-gradient transport in VOF

In the FV framework, numerical diffusion, which is very high in the transport term in second-order spatial dis-
cretization, “smears” the sharp liquid-gas interface. In OpenFOAM, the strategy commonly followed in multiphase
VOF solvers to model the transport of the void fraction consists in adding a convection term which compresses the in-
terface and preserves boundedness: this is similar to what is done for the treatment of the scalar-flux second-moment
closure, used for the “counter-gradient” transport in some complex combustion models describing the dynamic of
turbulent flames [74]. In the VOF treatment, a common closure used for counter-gradient transport has the form:

∇ · [Uc α (1 − α)] (7)

where Uc is the compression velocity at the interface between the phases, which is a consequence of the different
densities and the term α(1 − α) ensures boundedness [55]. In the VOF solver used, the compression velocity is
modeled as:

Uc = cα|U|n̂i j (8)

The employed formulation of the compression velocity is:

Uc = min
[
cα|U|,max(|U|)] n̂i j (9)

The discretized form of Eq. (7) is a flux (counter-gradient term, Eq. 38) computed at the cell faces using a Total
Variation Diminishing (TVD) scheme. In this work, the TVD scheme used is called interfaceCompression scheme
[55], in which the limiter ψ to compute the flux is defined as:

ψ(φP, φN) = min
{
max

[
1 − max

(√
1 − 4 · φP · (1 − φp),

√
1 − 4 · φN · (1 − φN)

)
, 0

]
, 1

}
(10)

ψ is bounded between 0 and 1; φP is the value of the variable, defined at the cell center, where the limiter is applied;
φN is the value of the same variable in the neighboring cells.

The compression rate should be set in order to ensure interface sharpness. Higher values of the compression rate
might introduce numerical instability or slow convergence. The term Cα in Eq. (9) is the compression coefficient and it
is set to unity in this work. The compression coefficient Cα is a binary coefficient which switches interface sharpening
on (Cα ≥1) or off (Cα=0). With Cα set to 0 for a given phase pair, there is no imposed interface compression resulting
in phase dispersion according to the multi-fluid model. If Cα is set to 1, sharp interface capturing is applied and VOF-
style phase fraction capturing occurs, forcing interface resolution on the mesh. If a compression term is not applied,
the interface will be very diffuse. In most applications, it is suggested a cα of the order of unity [55]. A complete
discussion about the interface compression method and the compression coefficient can be found in [75].

To ensure that the compression term does not bias the solution, it should only introduce flow of α, normal to the
interface, in the direction of the volume average interface normal n̂i j. For a three-phase solver it has been computed
as net gradient of the phase i − th at the interface [53]:

n̂i j =
α j∇αi − αi∇α j

||α j∇αi − αi∇α j|| (11)

In the convention adopted (see Fig. 1), n̂i j always points towards the lighter fluid. A common practice is to use the
compression term only where surface sharpness wants to be preserved: in the proposed formulation, the convection-
based term is used only to compress the interface between the immiscible (liquid fuel) and the miscible phases (fuel
vapor and non-condensable gases). The phase-fraction equations for the three phase VOF take the form:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂αl

∂t
+ ∇ · (αlU) + ∇ · (αlαvUclv

) + ∇ · (αlαncUclnc
)︸����������������������������������︷︷����������������������������������︸

compression term, liquid-vapor + liquid-non condensable gases

= − ρv

ρ + αnc(ρl − ρnc)
Dαv

Dt

∂αv

∂t
+ ∇ · (αvU) + ∇ · (αlαvUclv

)︸����������︷︷����������︸
compression term, liquid-vapor

=
ρl

ρ + αnc(ρl − ρnc)
Dαv

Dt

∂αnc

∂t
+ ∇ · (αncU) + ∇ · (αlαncUclnc

)︸������������︷︷������������︸
compression term, liquid-non condensable gases

= 0

(12)
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Figure 1: Schematic of the interface between two fluids. fσ is the surface force per unit inter-facial area ; n̂ and κ are namely the interface normal
and the interface curvature. According to the sign convention adopted, fσ is always oriented towards the concave interface and n̂ always points
towards lighter couple of fluids [76].

In Eqs. 12, no additional terms to model interface compression between miscible phases are used; numerical
diffusion is assumed to be sufficient to model the small diffusion of mass at the interface when convection is dominant
(i.e. with large values of Reynolds and low Schmidt numbers). Different modeling approaches for sub grid-scale
computation of the mass transfer are only proposed for low-Re and high Schmidt number flows [77, 78, 79]. The term
Dαv

Dt
in Eqs. (12) includes the effects of the phase change (cavitation/condensation) and it is therefore linked to the

cavitation/condensation model.

3. Mass conservation in the VOF solver

During cavitation and condensation, liquid and vapor phase are both affected by a strong variation of density. The
latter influences significantly the numerics of the segregated solver. Therefore, to ensure the stability of the solver
under the aforementioned condition, the continuity equation is used in its non-conservative form as suggested in [80]
and which it has already been used [43, 81, 44]:

∇ · U = −1
ρ

Dρ

Dt
(13)

The advantage of using volume fluxes rather than mass fluxes (conservative form) consists of having continuous
volume fluxes at the interface, thus favoring the solution of pressure correction equation. With phase change and three
phases, Eq. (13) can be rewritten as:

∇ · U = ρl − ρv

ρ + αnc(ρl − ρnc)
Dαv

Dt
(14)

The derivation of the RHS of Eq. (14) is reported in Appendix A.

4. Momentum conservation in the VOF solver

The momentum equation reads:

∂ (ρU)
∂t

+ ∇ · (ρU ⊗ U) = −∇p̂ + ∇ · τ + fσ + S U − g · x∇ρ (15)

where p̂ is a modified pressure, that is calculated by removing the hydrostatic part from the static pressure p, τ is
the deviatoric stress tensor, S U includes the source terms, fσ is the surface force per unit inter-facial area calculated at
the fluid interface in the control volume, g is the gravitational acceleration. The term −g · x∇ρ in the RHS of Eq. (15)
is a consequence of the removal of the modified pressure p̂ from the static pressure:
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p̂ = p − ρg · x (16)

which yields:

∇p̂ = ∇p − ∇(ρg · x) = ∇p − ρg − g · x∇ρ (17)

so:

−∇p + ρg = −∇p̂ − g · x∇ρ (18)

The use of p̂ in the momentum equation favors a more stable solution of the density jumps at the sharp interface
and simplifies the implementation and setup of the boundary conditions on pressure. In Eq. (15), fσ is defined as:

fσ = σ κ n̂ δ (x − xs) (19)

where σ is the fluid surface tension coefficient in [N/m], n̂ is the unit vector normal to the liquid interface, whose
center is located in xs, δ is the Dirac function to ensure that the force is applied only at the liquid interface, κ is the
interface curvature [m−1], which is defined as:

κ ≡ −∇ · (n̂ · S f ) (20)

Where Sf is the cell faces surface area vector defined as the scalar product between the cell faces normal and the
cell face area. In Eq. (19), fσ is always oriented towards the concave interface (Fig. 1). It is important to note that the
interface curvature in Eq. (19) and (20) used is the one of the interface of the phase with highest density (liquid in this
case):

n̂ =
∇αl

‖∇αl‖ (21)

The surface tension coefficient σ appearing in Eq. (19), has been written as an average of the surface tensions
weighted with the phase-fractions computed in the control volume:

σ =
αvσlv + αncσlnc

αv + αnc

(22)

where σlv is the surface tension between the liquid fuel and fuel vapor, while σlnc is the surface tension between
liquid fuel and non-condensable gases. Similarly to viscosity and density, the surface tension coefficient σ for the
mixture is computed as a weighted-average, where the weighting factors are the void fractions; the concept of miscible
phases implies that their surface tension coefficient is zero, so σ does not include the surface tension between fuel
vapor and non-condensable gases. Finally, to compute the surface tension force, the term n̂ δ (x− xs) in Eq. (23) must
be also modeled. The Continuous Surface Force (CSF) approximation [82] is therefore used, yielding to:

fσi
= σκ∇αi (23)

It must be remarked that CSF is the simplest model commonly used in VOF solvers. Despite its popularity, it
has been proven (in surface tension dominated/driven flow) that it does not guarantee momentum conservation [83],
leading to the onset of physically unrealistic velocities at the interface. This parasitic current can be relevant when the
flow is highly dominated by surface tension forces. For that reason, several different formulations as the Continuum-
Surface-Stress (CSS) approximation [84] and the Ghost fluid Method (GFM) [85] have been proposed. The former
is based on the integral formulation rather than on the volumetric one, and gives more advantages such as inclusion
of the tangential stresses due to a variable surface tension (i.e Marangoni Effect). However, since it was only applied
within high-order (spline-based) front-tracking interface description framework [86, 87], CSF is rather preferred for
its simplicity, especially if surface tension is not dominant. On the contrary, the GFM is a technique used to handle
sharp transitions and in the case of capillary forces, it explicitly introduces the singular pressure jump condition
into the discretization equations. Each phase is then artificially extended across the interface, producing ghost cells
which contain properties of the extrapolated phase used for the discretization scheme, removing the tendency for the
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adjacent inter-facial cells to diffuse due to the sharp transition. This method has been also extended by several authors
[88, 89, 90] but always based on LS and CLSVOF since they can compute in a more accurate way the interface
curvature [91].

If LES-specific filtering operations are applied to the momentum and to the phase-fraction equations in a single-
fluid multiphase solver, additional sub-grid terms appear. These terms can be identified under the so called interface-
specific sub-grid contributions. The term coming from the filtering applied to the term representing the surface tension
forces (fσi

= σκ∇αi) in the momentum equation is a Sub-grid Curvature Tensor (SCT); while terms coming from the
filtering of the phase advection terms (∇ · (Uαi)) are known as Sub-grid Mass Transfer terms (SMT). Published works
on two-phase flow interfacial flows without phase-change [92, 93, 94] proved that in specific flow configurations [92],
those sub-grid terms cannot be neglected. At least three possible closure terms have been published to model the
Sub-grid Curvature Tensor: the Sub-Grid Surface Dynamics (SGSD) model [95], the Sub-grid curvature model [96]
and the ADM-τ [97, 98]. No works have been found by the authors where the Sub-grid Mass Transfer term has been
modeled, even if in [92, 99] it is reported that in some cases (like the “separation of phase” test case) it may have the
same order of magnitude of the filtered resolved advection term. On the other hand, the vapor phase-fraction αv is
hardly subject to high-frequency fluctuation according to the definition of Eq. (B.5), because the pressure fluctuations
only acts directly on the time-derivative of the bubble radius R [65]. Since cavitation is modeled by several micro-
bubbles, their status is little sensitive to pressure pulsation rather than to the mean pressure distribution; for this
reason, the sub-grid scale related to the SMT should be negligible with respect to the filtered vapor volume fraction
field in the cavitation regions where the mean pressure is relatively uniform. Moreover, in the flow regions with sharp
pressure gradient, the vapor volume fraction is itself small enough to allow SMT to be neglected. It must be underlined
that, the proposed closure terms for SCT have been developed for explicit filtering approach; when deconvolution is
performed, the velocity obtained is not strictly equal to U = U+Usgs, being the deconvolution operator approximated.
Finally, the “separation of phase” test [92], used for the sub-grid interface analysis, is dominated by the surface tension
forces effects. According to authors’ research, no published works studied the contribution of the sub-grid interface
with high speed flows including phase-change: such a study would therefore represent a big step towards an improved
mathematical description of the formulation of LES single-fluid VOF solvers with phase-change. It is worth to remind
that in the Finite Volume (FV) approach, both the computational grid and the discretization of the operators implicitly
act as a top-hat filter to the equations [100]. Since most of the CFD solvers in the FV framework are usually limited
to second order accuracy [101], the SCT and the SMT term coming from filtering of the equations would be probably
biased by the discretization schemes and by the grid [102, 103], even when explicit filtering is applied.

The filtering procedure would produce another additional term in the phase-fraction equations (Eqs.12) with phase-
change. However, no information about these terms was found in literature.

5. Cavitation model

Cavitation may consist either of small bubbles (bubbly-flow cavitation) or may contain large pockets of vapor
(cloud cavitation) [104]; with a sharp interface-capture method, the bubble must be larger than the cell to be accurately
resolved, otherwise a sub-model is needed. In the approach followed in this work, a sub-model for cavitation is always
used to provide an expression for the term Dαv

Dt
. This is required to close the system of governing equations (12), (14)

and (15). The rates of fuel vaporization and condensation are determined by a simplification of the Rayleigh-Plesset
equation which assumes spherical bubbles of radius R subject to uniform pressure variations. Spherical bubbles are
then represented by a fraction of the vapor phase in the computational cell; from [81] and considering that liquid,
vapor and non-condensable gases may coexist in a control volume, it follows:

Vv = Nb

4
3
πR3 = n0Vl

4
3
πR3 (24)

where Vv and Vl are respectively the volume of the vapor and the liquid in the computational cell of volume V, Nb is
the number of spherical bubbles of radius R in the computational cell and n0 is defined as the bubble concentration per
unit volume of pure liquid. The use of relations of Eq. (24) requires an a-priori knowledge of the nuclei concentration
n0 and an estimation of their initial radius R. Some measurements of cavitation nuclei were carried out a few decades
ago on water using Cavitation Susceptibility Meter (CSM) and Holographic measurement [105]; even though the
holographic measurements have proved to be more accurate than CSM, both techniques cannot detect bubbles at the
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sub-micrometer scale and they may omit many additional nuclei. In addition, the growth of the smallest bubbles is
affected by the surface tension, that is not considered [25] to have a simple correlation describing the bubble growth.
A proper estimation of the surface tension would require a numerical approach to determine the bubble growth rate,
but it would require a significant increase of the computational cost [25]. Nucleation can be originated either by
homogeneous and by heterogeneous nuclei as well (air dissolved in the liquid, particles, etc) [104, 106]. For the
sake of simplicity, only homogeneous nuclei have been considered in the present model; as a consequence, it is not
straightforward to set the value of this parameter for the case of high-pressure injection, since measurements of nuclei
are not available in literature. For fuel injection, it is usually accepted that the number of nuclei, due to impurities, are
large enough that they should not influence the results of the model. Dissolved gas could also contribute [107], but as
a first step, in the present study they are not considered as nucleon precursors. The complete expression for the rate
of fuel vaporization, derived in Appendix B, is:

Dαv

Dt
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3αv
DR
Dt

R+R4 4
3 πn0

[
ρ+αnc (ρv−ρnc )
ρ+αnc (ρl−ρnc )

] = − 3αvmax(p−psat ,0)
√

2
3

1
ρl |p−psat |

R+R4 4
3 πn0

[
ρ+αnc (ρv−ρnc )
ρ+αnc (ρl−ρnc )

] = αv

(
Dαv

Dt

)+
i f p > psat

αl4πn0R2 DR
Dt

1+R3 4
3 πn0

[
ρ+αnc (ρv−ρnc )
ρ+αnc (ρl−ρnc )

] = −αl4πn0R2min(p−psat ,0)
√

2
3

1
ρl |p−psat |

1+R3 4
3 πn0

[
ρ+αnc (ρv−ρnc )
ρ+αnc (ρl−ρnc )

] = αl

(
Dαv

Dt

)−
i f p < psat

(25)

which can be rewritten as a net contribution between cavitation and the condensation:

Dαv

Dt
=

(
Dαv

Dt

)+
αv +

(
Dαv

Dt

)−
αl (26)

In the transport equation for the liquid phase αl in the system (12) Dαv

Dt
is replaced by rewriting Eq. (26) in the

form:

Dαv

Dt
=

(
Dαv

Dt

)+
αv +

(
Dαv

Dt

)−
αl

=

(
Dαv

Dt

)+
(1 − αnc − αl) +

(
Dαv

Dt

)−
αl

=

[(
Dαv

Dt

)−
−

(
Dαv

Dt

)+]
αl +

(
Dαv

Dt

)+
(1 − αnc)

(27)

while in the transport equation of the vapor phase αv, still in the system (12), Eq. (26) is manipulated to write Dαv

Dt

in the form:

Dαv

Dt
=

(
Dαv

Dt

)+
αv +

(
Dαv

Dt

)−
αl

=

(
Dαv

Dt

)+
αv +

(
Dαv

Dt

)−
(1 − αv − αnc)

=

[(
Dαv

Dt

)+
−

(
Dαv

Dt

)−]
αv +

(
Dαv

Dt

)−
(1 − αnc)

(28)

Both in Eq. (27) and (28), the first term in the square brackets is the coefficient of a part of the equation that will be
implicitly solved, while the remaining part is explicitly solved. As it will be explained in the further sections, solving
the source term in a semi-implicit fashion favors improved numerical stability and boundedness. The final form of the
system describing the transport of the three phase fractions reads:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂αl

∂t
+ ∇ · (αlU) + ∇ · (αlαvUclv

) + ∇ · (αlαncUclnc
)︸����������������������������������︷︷����������������������������������︸

compression term, liquid-vapor + liquid-non condensable gases

= − ρv

ρ + αnc(ρl − ρnc)

{[(
Dαv

Dt

)−
−

(
Dαv

Dt

)+]
αl +

(
Dαv

Dt

)+
(1 − αnc)

}

∂αv

∂t
+ ∇ · (αvU) + ∇ · (αlαvUclv

)︸����������︷︷����������︸
compression term, liquid-vapor

=
ρl

ρ + αnc(ρl − ρnc)

{[(
Dαv

Dt

)+
−

(
Dαv

Dt

)−]
αv +

(
Dαv

Dt

)−
(1 − αnc)

}

∂αnc

∂t
+ ∇ · (αncU) + ∇ · (αlαncUclnc

)︸������������︷︷������������︸
compression term, liquid-non condensable gases

= 0

(29)

6. Solution algorithm

The code resolves the governing equations by the Finite Volume (FV) Solution Method; a cell-centered formula-
tion with co-located arrangement is used for the sequential solution of the governing equations on a polyhedral mesh.
The segregated solution of the governing equations (mass and momentum) is achieved by a pressure-velocity coupling
algorithm. The turbulent viscosity μt is modeled using the Wall-Adapting Local Eddy-viscosity model (WALE) [108],
which has been proved to be suitable for wall-bounded flows and single-fluid approach [9].

7. Discretized form of the phase-fraction equations

The solver has been developed in order to model high-speed injection and primary atomization. This a very
challenging task for interface tracking and capturing methods. In this regard, the most important factor that must
be considered is the mutual effect of turbulence and cavitation. Breakup and cavitation processes are dominated by
surface instabilities, which are affected by turbulence, by the boundary conditions and by the numerics. Turbulence
in the liquid, and to a lesser extent in the gas phase, strongly influences the predictions in the injection breakup; the
fact that surface structures being resolved are of a similar space and time-scale to small, but not the smallest, turbulent
structures suggests that this interaction cannot be realistically represented by traditional RANS modeling and that LES
turbulence is the most appropriate approach. The use of LES imposes tight constraints on the numerics in the case
setup: high resolution schemes and accurate numerics are required for differentiation, in order to preserve the energy
associated with the resolved turbulent structures and to avoid a numerical error working as artificial dissipation [102].
On the other hand, high-order methods applied to high-speed flows in complex geometries may lead to instabilities;
for this reason, special care must be taken in the discretization of the convection of momentum and of the temporal
derivatives. In particular, the numerical fluctuation created by the VOF approach, possibly coming from the com-
pression and mostly from the cavitation/condensation source terms, are preserved by second-order time-differencing
schemes; as a result, a wrong accumulation of energy may be found and, in turn, the simulation is destabilized. The
stencil of the discretization for the phase-fraction equations of system (29) makes use of a first-order time differencing
scheme, as it happens when first order hyperbolic PDE are used [109]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(αn+1
l
− αn

l
)p

Δt
Vp +

∑
f

Fn
f = Bn

lp

[(
Dαv

Dt

)−
−

(
Dαv

Dt

)+]n

p

αn+1
lp

Vp + Bn
lp

[(
Dαv

Dt

)+]n

p

(1 − αnc)n
pVp

(αn+1
v − αn

v)p

Δt
Vp +

∑
f

Fn
f = Bn

vp

[(
Dαv

Dt

)+
−

(
Dαv

Dt

)−]n

p

αn+1
vp

Vp + Bn
vp

[(
Dαv

Dt

)−]n

p

(1 − αnc)n
pVp

(αn+1
nc − αn

nc)p

Δt
Vp +

∑
f

Fn
f = 0

(30)

where the subscript P in the equations indicates that quantities are defined at the center of the Control Volume
(CV);

∑
f Fi,f is the sum of the convective fluxes for the i − th phase (see Sec. 8) and:
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Bn
lp
=

[
− ρv

ρ + αnc(ρl − ρnc)

]n

p

(31)

Bn
vp
=

[
ρl

ρ + αnc(ρl − ρnc)

]n

p

(32)

System of equations (30) is then solved explicitly as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

αn+1
lp
=

αn
lp
−∑

f Fn
i,f
Δt
Vp
+ Bn

lp

[(
Dαv

Dt

)+]n

p

(1 − αnc)n
pΔt

1 − Bn
lp
Δt

[(
Dαv

Dt

)−
−

(
Dαv

Dt

)+]n

p

αn+1
vp
=

αn
vp
−∑

f Fn
i,f
Δt
Vp
+ Bn

vp

[(
Dαv

Dt

)−]n

p

(1 − αnc)n
pΔt

1 − Bn
vp
Δt

[(
Dαv

Dt

)+
−

(
Dαv

Dt

)−]n

p

αn+1
ncp
= αn

ncp
− Δt

Vp

∑
f

Fn
i,f

(33)

Total Variation Diminishing (TVD) [110] is applied in the calculation of αn+1
lp

and αn+1
vp

, to ensure a stable solution
and boundedness of the phase fraction with large density ratios. In this way, the oscillations in the solution near dis-
continuities in the phase-fraction equations (represented by the interface of the VOF) are smoothed and monotonicity
is preserved. Phase transition leads to large values of the fluxes: this is particularly apparent in the calculation of the
transport equation for the liquid phase. It has a direct effect on the stability of the solver and may put constraints in the
time-step advancement. Similar considerations may be drawn for the transport equation of the vapor phase, but in this
case the contribution on the fluxes deriving from the phase transition (condensation) is not so large as for the liquid
and a bounded solution can be achieved. To stabilize the solution of the transport equation for the liquid fraction in
(29), the term αl∇ · U is added and subtracted on its RHS. The equation is then written as:

∂αl

∂t
+ ∇ · (Uαl) + ∇ · (Uclv

αlαv) + ∇ · (Uclnc
αlαnc) = − ρv

ρ + αnc(ρl − ρnc)
Dαv

Dt
− αl∇ · U + αl∇ · U =

= − ρv

ρ + αnc(ρl − ρnc)
Dαv

Dt
− αl

Dαv

Dt
(ρl − ρv)

ρ + αnc(ρl − ρnc)
+ αl∇ · U =

=
Dαv

Dt

ρlρv

ρ + αnc(ρl − ρnc)

[
− 1
αl

+ αl(
1
ρl

− 1
ρv

)
]
+ αl∇ · U =

=
Dαv

Dt

ρlρv

ρ + αnc(ρl − ρnc)
Al + αl∇ · U

(34)

The discretized form of Eq. (34) reads:

(αn+1
l
− αn

l
)p

Δt
Vp +

∑
f

Fn
f = Bn

lp

[(
Dαv

Dt

)−
−

(
Dαv

Dt

)+]n

p

αn+1
lp

Vp + Bn
lp

[(
Dαv

Dt

)+]n

p

(1 − αnc)n
pVp + α

n
lp

∑
f

Un
f · S f (35)

where

Bn
lp
=

[
ρlρv

ρ + αnc(ρl − ρnc)
Al

]n

p

(36)
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The final expression to calculate the liquid fraction αn+1
l

in (29) is:

αn+1
lp
=

αn
lp

(1 +
∑

f Un
f
· S f

Δt
Vp

) −∑
f Fn

f
Δt
Vp
+ Bn

lp

[(
Dαv

Dt

)+]n

p

(1 − αnc)n
pΔt

1 − Bn
lp
Δt

[(
Dαv

Dt

)−
−

(
Dαv

Dt

)+]n

p

(37)

Multiple calculations of the system of equations (33), with updated values of the phase fractions, are performed to
favor a bounded and more accurate solution. This procedure is repeated iteratively until the global conservation of the
void fractions is reached. It is important to note that, similarly to what is done in the calculation of the specie transport,
the last phase (non-condensable gases in this cases) is usually solved as the complement to reach the unity. In the case
of cavitating flows, as discussed in the previous paragraph, the solution of the phase fraction equations is required
for closure; this means that, after the iterative procedure just described to calculate independently αl, αv and αnc is
completed, the (small) residual error must be added to the non-condensable phase fraction before the pressure-velocity
coupling is calculated.

8. Discretization of the convective fluxes in the phase fraction equations (MULES)

The implemented system of phase-fraction equations for the three-phase VOF, Eq. (12), have been discretized
following the Multidimensional Universal Limiter with Explicit Solution (MULES), to ensure boundedness and con-
sistency even in presence of flow cavitation and condensation. The method to solve the phase fraction equations is
fundamentally explicit and introduces a strict Courant number limit with a direct impact on time step advancement;
time step sub-cycling, commonly used to enlarge time-steps in VOF solvers, is applied here to ensure consistency and
boundedness of the solution with strong cavitation/condensation. One of the critical issues with the VOF method used
is the discretization of the advective term in Eq. (37), that includes either the convective fluxes and the counter-gradient
term (compressive fluxes):∑

f

Fn
i,f =

∑
f

αn
i f

U f · S f︸������︷︷������︸
convective fluxes

+
∑

f

αn
i f

∑
j�i

αn
j f

UCi j f
· S f

︸�������������������︷︷�������������������︸
counter-gradient transport

=
∑

f

Fn
αf
+

∑
f

Fn
Cf

(38)

Numerical diffusivity of first order schemes might smear the interface; on the other hand, higher order schemes
are unstable and may cause numerical oscillations. It is therefore needed to derive advection schemes able to keep
the interface sharp and to produce monotonic profiles of the color function. In the modified system of phase fraction
equations (33), the Flux Correct Transport (FCT) technique has been applied: flux limiters are computed by an
iterative procedure which allows the use of high-order schemes preserving boundedness, mass conservation and sharp
interface capturing. The theory originally formulated in [111] was further extended to multi-dimensional problems
in [112]. The method involves several stages of calculation: first, the discretization of the advective term Fn

α f
is

provided by a higher FH
f ,i and a lower order FL

f ,i (obtained applying a monotonic and a diffusive advective scheme)
flux approximation; Then, an anti-diffusive flux (FA) is defined to attempt and reduce the numerical diffusion resulting
from the lower order scheme. An estimate of the anti-diffusive fluxes FA for the i − th phase equation is given by:

FA
f ,i = FH

f ,i − FL
f ,i (39)

Anti-diffusive fluxes FA
f ,i are limited to FC

f ,i
by a flux-limiting technique [112] based on the calculation of a TVD

limiter λ to prevent undershoots and overshoots in the phase fraction in the control volume:

FC
f ,i = λ FA

f ,i with λ ∈ [0, 1] (40)

being λ = f (Fn
α f

) a function of the void fractions.
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9. Definition of test cases and setup

Simulations have been performed on three different cases, in order to test the numerical properties of the newly
implemented solver (in the following referred as interPhaseChangeMixingFoam) in terms of ability to: a) capture the
interfaces, while maintaining them sharp; b) preserve the conservativeness and the boundedness of the solution of the
phase-fraction equations with phase-change. Finally, the robustness of the solver and its application to the description
of real flow physics is tested on a large parallel simulation of an injector geometry. Validation test cases that will be
discussed in the further sections are:
1) the evolution of a two-dimensional bubble rising in a liquid column [50], to test the ability of the solver to properly

capture the interface between fluids of different densities;

2) the study of the evolution of a free-surface in a partially cavitating/condensing liquid column, to verify the con-
servativeness and boundedness while phase-fraction equations are solved with phase-change;

3) a cavitating flow evolving inside an injector nozzle [52, 113].

10. Bubble rising in a liquid column

The two-dimensional bubble rising in a liquid column [50] has been proposed as a validation test-case to study
the ability of the multiphase solvers to capture an interface. The first test case studied consists of a two-dimensional
rising bubble problem, where a gas bubble immersed in a chamber filled with liquid moves until it breaks up. The case
setup, the boundary conditions and the physical properties of the fluid are described in Fig. 2. Forces acting on the
bubble are surface tension and gravity. The domain has an aspect ratio width/height=0.5; no-slip boundary conditions
on the velocity are set at the upper and lower boundaries, while free-slip is applied at the right and left bounds; gravity
g is oriented towards the negative y direction. At time t = 0 s, the bubble center is located at (x, y) = (0.5, 0.5) and the
bubble radius is rb,0 = 0.25 m. This test-case has been already used by the authors in [114] to validate a 2-phase VOF
solver and it is now used again with some necessary modifications in the case setup: as shown in Fig. 2, the evolution
of the bubble in the surrounding liquid (identified by the void fraction α1) is now captured by the transport of two
identical phases (α2 = α3). In this test, phase change is disabled. It is expected that the solution of the three-phase
solver tends to the solution of the two-phase solver of [114]. This is not trivial in the VOF framework, since global
conservation of the phase fractions is more difficult as the number of phases increases and in a single-fluid solver it is
strictly linked to the calculation of the fluid properties (see Eq. 3 and 4).
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Parameter Value Unit

ρ1 1000 kg/m3

ρ2 = ρ3 1 kg/m3

μ1 10 kg m−1s−1

μ2 = μ3 0.1 kg m−1s−1

g -0.98 m/s2

σ 1.96 N/m

Re 35 –

Eo 125 –

Figure 2: Bubble rising in a liquid column: case setup, boundary and initial conditions. Four different grid resolutions are tested: a) 40x80 cells; b)
80x160 cells; c) 160x320 cells; d) 320x640 cells (reference solution).

The physical properties of interest of the fluid, listed in Fig. 2, are:

- the Eötvös number Eo, defined as the ratio between the buoyancy force and surface tension:

Eo =
ρ1U2

g L

σ
(41)

- the Reynolds number Re of the liquid, defined as:

Re =
ρ1UgL

μ1
(42)

where L = 2 rb,0 is the characteristic length scale and Ug =
√

2grb,0 is the characteristic rising velocity. At high
values of Eo, the bubble shape will be something in between the shape observed for the skirted and the dimpled
ellipsoidal-cap regimes, implying that a breakup is likely to occur [115]. Simulations at high values of Eo are chal-
lenging for interface capturing algorithms and can yield to different predictions of the evolution and of the formation
of newly created droplets. Following the work of [50], the evolution of the bubble has been investigated for a total
time T = L/Ug. and a fixed time step with Δt = 1/(2Nx) s has been used for time marching. In the surrounding region
of the bubble initial conditions for the void fractions are α2 = α3 = 0 and α1 = 1; in the bubble region, α1 = 0, α2 = 1
and α3 = 0 (left half) and α2 = 0 and α3 = 1 (right half) are set. This leads to a stair-cased shaped interface, so a
preliminary simulation without gravity (g = 0) is needed to obtain a smooth initial bubble shape. The results from the
zero-gravity precursor simulation are then used as the initial condition for the actual simulation.

Quantitative validation of the described code extensions, based on geometrical metrics proposed in [50], is now
presented. For a fair comparison with [50], the grid used is Cartesian with a resolution Nx × 2Nx cells, being Nx 40,
80, 160 and 320 respectively (four grids were tested in total). The monitored quantities from the simulations were:
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a) bubble center of mass:

xc =

∫∫
A
(α2 + α3)xc dxdy∫∫
A
(α2 + α3) dxdy

(43)

b) degree of circularity for a two-dimensional domain [116], being bubble Area defined as Ab = πr
2
eq:

C =
perimeter of equivalent circle
actual perimeter of the bubble

=
2πreq∫∫

A
(∇α2 + ∇α3)dxdy

=
2π

√
Ab

π∫∫
A
(∇α2 + ∇α3)dxdy

=
2π

√
Ab

π∫∫
A
(∇α2 + ∇α3)dxdy

(44)

where req is the equivalent radius, defined as:

req =

√
Ab

π
=

√∫∫
A
(α2 + α3)dxdy

π
(45)

The C parameter is equal to unity for a perfectly circular bubble and lower than unity for other cases;

c) mean rising velocity:

uc =

∫∫
A

(α2 + α3)U dxdy∫∫
A

(α2 + α3) dxdy
(46)

Results in this section are organized as follows: using the procedure of [50], simulations on the four grids (40x80,
80x160, 160x320 and 320x640 cells respectively) are presented, to monitor the grid-dependency of the results. In a
second step, the solution from the finest grid is taken as reference solution and it is compared with CFD simulations
from three incompressible interfacial flow codes, namely: a) TP2D [117, 118] and FreeLIFE [119], that are based on
the level-set approach applied on a static grid; b) MooNMD [120] where the interface is tracked in a Lagrangian man-
ner and inner mesh points are then projected onto the interface by solving a linear elasticity problem. The evolution
in time of the quantities described above is studied on four grids of different resolution: results are reported in Fig.
3 and in Tab. 1, while in Fig. 4 and 5 the graphical evolution of the bubble with different grids is reported. Bubble
circularity (Fig. 3-b) shows a monotonic diminishing tendency, that does not seem very influenced by the mesh reso-
lution, until the beginning of the bubble break-up. Conversely, mean bubble rising velocity (Fig. 3-c) does not present
a monotonic tendency and this can be justified by the local deformation of the bubble, that is increasing in time. Two
local maxima are clearly visible: while the bubble is rising, its velocity reaches a first maximum ucmax,1 , whose position
looks independent by the mesh resolution used; this allows to assume that all the grids have sufficient resolution to
describe the main features of the bubble before break-up. The second maximum is instead occurring when the tail in
the bottom region of the bubble becomes relevant; in this case, the mesh resolution influences the predictions, since
the bubble tail and its ligaments are differently described from coarser to finer grid resolution. Thinner predicted tails
favor a larger velocity in the second local peak and its shifting to later times. As the break-up of the tail occurs, the
mean rising velocity decreases again. Finally, the evolution of the bubble centroid, Eq. (43), is mostly independent
by mesh resolution until the size of the tails becomes relevant and influences the position of the bubble mass in the
domain.
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Figure 3: Two-dimensional bubble rising in a liquid column, validation test case. Evolution in time of: (a) bubble centroid location C; (b) bubble
circularity C ∈ [0; 1] and (c) bubble rising velocity uc; circularity is equal to unity if the bubble shape is a perfect circle. Test have been performed
by interPhaseChangeMixingFoam using four different grids: .... 40x80 cells; – – – 80x160 cells; — 160x320 cells; — 320x640 cells.

Table 1: Minimum circularity, maximum rising velocities and final position of center of mass and their corresponding time occurrence for
interPhaseChangeMixingFoam. ucmax,1 and ucmax,2 denote the first and the second local peak of the bubble rising velocity, see Fig. 3-c.

grid 40x80 80x160 160x320 320x640
Cmin 0.5579 0.5186 0.5002 0.50072

t(Cmin) 3.0 3.0 3.0 3.0
ucmax,1 0.2409 0.2461 0.2487 0.2488

t(ucmax,1 ) 0.725 0.725 0.725 0.7234
ucmax,2 0.2144 0.2244 0.2309 0.2345

t(ucmax,2 ) 1.725 1.88125 1.959375 2.009375
xc(t f inal) 1.094 1.1058 1.1164 1.1223

The evolution of the bubble shape is monitored at different times; the bubble interface is obtained by an iso-
contour plot of the liquid void fraction using αl = 0.5 as threshold value. In Fig. 4, the temporal evolution of the
bubble using four different meshes is reported to justify previous considerations. From 0 s to 1.8 s the capture of
the bubble surface is almost independent by the mesh resolutions used. As soon as the onset of breakup occurs, the
grid starts producing different deformations of the elongated filaments (2.2 s) leading to completely different flow
configurations, as evidenced in Fig. 5. While coarse grids (40x80 and 80x160) do not capture any breakup, this starts
to appear with the 160x320 mesh and it is reproduced with good detail by the finest mesh.
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Figure 4: Bubble evolution from 0.6 to 3 s calculated by interPhaseChangeMixingFoam on four different grids: .... 40x80 cells; – – – 80x160
cells; — 160x320 cells; — 320x640 cells
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Figure 5: Bubble breakup at time t=3 s. Comparison of interPhaseChangeMixingFoam behavior using four different discretizations: .... 40x80
cells; – – – 80x160 cells; — 160x320 cells; — 320x640 cells

Similarly to [50], relative error of the norm of the temporal evolution of the bubble center of mass xc, of the bubble
circularity C and of the mean rising velocity uc are calculated using a suitable reference solution, represented by the
finer grid:

el1 =

∑N
t=1 |qt,re f − qt |∑N

t=1 |qt,re f |
(47)

el2 =

(∑N
t=1 |qt,re f − qt |2∑N

t=1 |qt,re f |2
)1/2

(48)

el∞ =
maxt |qt,re f − qt |

maxt |qt,re f | (49)

where qt is the temporal evolution of quantity q, and N the number of samples in time of q. Standard linear
interpolation has been used in order to account for different sampling rates between qt,re f and qt, that are calculated
on different grids. For each relative error norm, the Rate Of Convergence (ROC) of q is:

ROC ≈ log10(||ek+1||/|ek |)
log10(hk+1/hk)

(50)

where k denotes the grid refinement level and h = 1/Δx. Since the finest grid (320x640 cells) has been used
as reference solution, the computed ROC will not indicate how well a method converges to the exact solution, but
how it converges to an approximate solution. In Tab. 2 the relative error norms and the rates of convergence are
reported: more than a linear convergence order is achieved in the l1, l2 and l∞ norms as the resolution of the grid
increases. While the order of convergence for the bubble centroid and for mean rising velocity increases with the grid
resolution, the same tendency is not noticed in l1 and l2 norms of the bubble circularity: this is probably due to the
fact that the two coarser grids do not exhibit break-up of ligaments. The order of convergence of the l∞ norm of the
bubble circularity increases with the mesh resolution, because its definition is based on the highest absolute deviation
between the coarsest and finest mesh: in other words, moments in time characterized by the highest deviations (e.g.
bubble break-up) are converging faster with respect to the moments where the bubble is only deformed and where the
mesh resolution does not play a significant role.
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Table 2: Relative error norms and rates of convergence for different grid resolutions. Results for the grid 320x640 is taken as reference.

grid el1 % ROC1 el2 % ROC2 ||e||l∞ % ROC∞
40x80 5.31 - 0.66 - 10.87 -

xc 80x160 2.85 0.8988 0.4 0.7384 6.3 0.7865
160x320 1.01 1.4986 0.17 1.2568 2.67 1.2430
40x80 2.16 - 0.09 - 5.74 -

C 80x160 0.57 1.9271 0.02 1.940 1.79 1.6779
160x320 0.2 1.5213 0.008 1.5179 0.55 1.7119
40x80 1.15 - 0.043 - 2.54 -

uc 80x160 0.54 1.1010 0.02 0.9669 1.47 0.7868
160x320 0.14 1.9202 0.007 1.6625 0.52 1.4966

Finally, a second investigation has been carried out to compare the results from the implemented solver against
[50]. The time t=3 s (Fig. 6) is chosen for comparison being the most representative of the bubble breakup. From Fig.
6 it is apparent that the upper part of the bubble is well described by the different solvers, that make use of different
methods to transport the interface. Differences can be noticed in the tails produced in the bottom part of the bubble,
where each solver differently describes the breakup process, by describing different filament lengths.
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Figure 6: Bubble breakup at time t=3 s; comparison between — interPhaseChangeMixingFoam and − − −: (a) TP2D, (b) FreeLife, (c)
MooNMD.

20



However, when analyzing monitoring quantities among different solvers using the same mesh resolution, it is
possible to determine if their trends are well reproduced among different approaches.
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Figure 7: Two-dimensional rising bubble problem, validation test case. Evolution in time of: (a) bubble centroid location C; (b) bubble
circularity C ∈ [0; 1] and (c) bubble rising velocity uc; circularity is equal to unity if the bubble shape is a perfect circle. Legend: —
interPhaseChangeMixingFoam, − − − TP2D code, − · − FreeLIFE code, · · · MooNMD [50].

Table 3: Comparison of: a) minimum bubble circularity b) maximum rising velocity c) position of the center of mass for the different codes
compared. The grid resolution used for the tests was 320x640 cells. Subscripts 1 and 2 denote the first and the second local maximum respectively.

interPhaseChangeMixingFoam TP2D FreeLife MoonNMD
Cmin 0.50072 0.5943 0.4647 0.5144

t(Cmin) 3.0 2.3439 3.0 3.0
ucmax,1 0.2488 0.2538 0.2514 0.2502

t(ucmax,1 ) 0.7234 0.7340 0.7281 0.7317
ucmax,2 0.2345 0.2467 0.2440 0.2393

t(ucmax,2 ) 2.009375 2.0553 1.9844 2.0600
xc(t f inal) 1.1223 1.1387 1.1249 1.1376

11. Evolution of the free-surface in a partially cavitating/condensating liquid column

In the bubble rising problem, no phase-change is involved. At the time this paper is written, no simple numerical
test cases are proposed to check if boundedness and conservativeness is ensured while phase-change occurs in a
solver using a VOF method to capture the interface. Mass conservation is easier to achieve with the Homogeneous
Equilibrium Model (HEM), the Homogeneous Relaxation Model (HRM) [121, 122, 123] and the Bubble Model, but it
is critical in VOF methods where phase-change is implemented in the phase-fraction equations. Comparisons between
the Bubble Model and the HRM for an injector test case [124] are reported in [125], where it is shown similar behavior
in the prediction of the cavitation onset and similar limits in the description of condensation effects. With multiphase
flows, the common way to validate models is through visual comparison of the flow evolution: this is still possible
when cloud and wake cavitation occur in proximity of the blades, because pockets of vapor are in a large and well
defined region near the trailing edge. On the other hand, visualization of bubbly flows inside a nozzle is very hard,
because of its micrometric size and of the short lifetime of the vapor bubbles (the order of magnitude is 1 μs). Besides,
in both types of cavitating flows it is hard to split the errors coming from the solution of the momentum equation and
those coming from the resolution of the phase-fraction equations.

In this work, a simple benchmark configuration is proposed to check boundedness and conservativeness of the
VOF solver. The test-case consists of a one-dimensional column, opened at its top, whose dimension is L in y-
direction; half of the volume of the column is filled by 95% of liquid and 5% of fuel vapor, while the remaining half
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of the volume is filled by non-condensable gases (Fig. 8). The system is initially at rest; The pressure distribution
over the vertical y-axis is hydrostatic. In a first stage of the test, which duration of 0.1 s, the condensation term is
disabled and the saturation pressure of the liquid is set to psat = 100300 Pa; as a consequence, in the regions where the
hydrostatic pressure is lower than the saturation pressure, the liquid cavitates, and non-condensable gases are pushed
out of the outlet boundary. The final state of the system at t=0.1 s is then used as initial condition for a second stage
of the test (from t=0.1 s to t=0.2 s), where the vapor is forced to condensate, by setting the saturation pressure of
the fluid to psat = 99700 Pa. The different values of the saturation pressure have been chosen to reproduce similar
pressure gradients in the liquid and in the vapor and thus to have similar magnitude of the source terms (with different
signs) during cavitation and condensation. In the simulations, no-slip boundary conditions are applied at the lower
boundary, free-slip is imposed on the side walls while a Neumann condition is applied at the upper boundary. Tests
on two different one-dimensional grid domains have been performed; discretization along the y-axis was respectively
made of 1x640 cells (this grid will be referred in the following as grid A) and 1x1280 cells (grid B). Monitored
benchmark quantities are the position of the interface, its sharpness and its velocity, together with the overall mass
conservation and the instantaneous mass balance between the liquid fuel and the fuel vapor. The same test-case has
been simulated in two dimensions; additional information about the setup together with the analysis of the results are
included in Appendix C.

Initial Condition

Parameter cavitation case condensation case

α1 α1(t0)=1, y ∈ [0, 0.95) α1(t0)= α1(t f )cav.

α2 α2(t0)=1, y ∈ [0.95, 1) α2(t0)= α2(t f )cav.

α3 α3(t0)=1, y ∈ [1, 2] α3(t0)= α3(t f )cav.

p hydrostatic pressure hydrostatic pressure

U 0 ms−1 0 ms−1

psat 100300 Pa 99700 Pa

Fluid Properties

Parameter Value Unit

ρ1 1000 kg m−3

ρ2 = ρ3 1 kg m−3

μ1 10 kg (ms)−1

μ2 = μ3 0.1 kg (ms)−1

g -0.98 m s−2

σ12 = σ13 1.96 N m−1

Figure 8: Domain, boundary conditions, initial condition and fluids properties of the cavitation/condensation test case.

The final purpose of the proposed benchmark is to establish a reference solution to quantify the conservation
error of the solver and it can be interesting for comparison of the performance of different methodologies to model
phase-change. The following quantities have been used:
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1) evolution of the mass of each phase:

Mi =

∫
αiρidy (51)

2) liquid/vapor and vapor/air mean surface height:

Hlv =

∫
ycαl(1 − αl)dy∫
αl(1 − αl)dy

Hva =

∫
ycαnc(1 − αnc)dy∫
αnc(1 − αnc)dy

(52)

Where yc represents the y component of cell centers

3) liquid/vapor and vapor/non-condensable gas (air) mean interface velocity:

ulv =

∫
Uαl(1 − αl)dy∫
αl(1 − αl)dy

uva =

∫
Uαnc(1 − αnc)dy∫
αnc(1 − αnc)dy

(53)

As in the computation of height, the surface region is identified by the coexistence of the pair of phases.

4) time evolution of the relative mass error, to verify if mass is conserved during phase-change:

Emarching =
|(Ml(t + 1) − Ml(t)) − (Mv(t + 1) − Mv(t))|

Ml(t0)
(54)

This is a sufficient condition for global mass balance to be verified.

5) global mass relative error:

Eglobal =
|(Ml(t f ) − Ml(t0)) − (Mv(t f ) − Mv(t0))|

Ml(t0)
(55)

where pedix 0 and f denote respectively the start and the end of the simulation.

A variable time-step is used in the simulation, to preserve a maximum Courant number CFLmax = 0.1. Second-
order differencing schemes have been applied both for temporal and spatial derivatives.

11.1. Cavitation test: results

Starting from an hydrostatic distribution of pressure in the domain, the liquid starts cavitating (Fig. 9b). Being
the vapor lighter than liquid, it moves towards the upper part of the domain and pushes the non-condensable gas (air)
outside. In Fig. 9a the mass of air in the domain decreases, while the amount of vapor increases (Fig. 9c).
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Figure 9: One-dimensional cavitation problem, validation test case. Evolution in time of: (a) air mass (b) liquid mass; (c) vapor mass. Tests were
carried out on two different grids: .... grid A (640 cells); — grid B (1280 cells).
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At the end of the simulation the surface height Δy of the vapor/air interface is larger if compared to that of the
liquid/vapor, as shown in Fig. 10. Being the ratio ρl/ρv � 103, the volume of the vapor from the cavitation is larger
than the liquid volume.
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Figure 10: One-dimensional cavitation problem, validation test case. Evolution in time of the surface heights: (a) liquid/vapor (b) air/vapor on two
different grids: .... grid A (640 cells); — grid B (1280 cells).

The evolution of the two surfaces fronts is shown in Fig. 11. In both cases, the interface between the fuel vapor
and the non-condensable gas (air) is sharp, because the vapor and the non-condensable gas (air) in the calculation
have the same physical properties; this particular condition avoids any instability at the interface that would produce
mixing of the fluids and then lead to a diffusion of the interface. Conversely, the liquid/vapor interface is stretched
towards the opposite direction: vapor moves towards the upper part of the column, while liquid tends to stay at the
bottom of the domain because of its higher density.
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Figure 11: One-dimensional cavitation problem. Evolution of the void fractions from 0.025 to 0.1 s. Top) grid A, 1x640 cells; bottom) grid B,
1x1280 cells. Legend: αl —, αnc —, αv – – –.

The liquid/vapor and the air/vapor interface velocities calculated by Eq. (53), are reported in Fig. 12a. The mass
of each phase-fraction has then been monitored to compute the time step continuity error and the global conservation
error for each phase.
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Figure 12: One-dimensional cavitation problem, validation test case. Evolution in time of the mean interface velocity (Eq. 53): (a) liquid/vapor;
(b) vapor/non-condensable gas for two different grids: .... 640 cells; — 1280 cells.

The evolution of the time step continuity error is shown in Fig. 13 on the left. Both for the coarse (grid A) and
the fine mesh (grid B), the error is very small. At the beginning of the simulation and in the early time steps (until
time=0.02 s), it shows an increase that is dependent on the initial conditions, but it is then stabilized to a small value.
As expected, the continuity error is larger for the coarsest grid than the finest grid, but it is still very small and therefore
acceptable. In Fig. 13 the evolution of volume-weighted average void fractions:

αi =

nc∑
j=1

αi j
V j

V
(56)

and the global conservation of the volume-weighted void fractions

α =

3∑
i=1

αi (57)

are shown. In Eq. (56) and (57), nc is the number of computational cells, while V is the total volume of the mesh:

V =

nc∑
j=1

Vj (58)

As apparent from Fig. 13, the boundedness and conservativeness of the solution of the void fractions is satisfied.
Also, the global mass error (Tab. 4) proves that mass is properly conserved during the simulation with very limited
error peaks.

Table 4: Relative error on the global mass conservation for the cavitation test case.
No. cells 640 1280
Eglobal% 0.11301 0.0811
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Figure 13: One-dimensional cavitation test case, evolution in time of: left) mass relative error; center) volume-weighted void fractions; right) sum
of the volume-weighted void fractions. Grid A: 1x640 cells. Grid B: 1x1280 cells.

11.2. Condensation test

The distribution of the phase-fractions derived from the calculation of the liquid column problem with cavitation is
then used as the initial condition for the condensation problem. In Fig .14b it is shown that as soon as the condensation
is artificially triggered (by changing the threshold value of the liquid saturation pressure), the phase fractions of liquid
and the vapor start changing: condensation induces negative velocity fluxes at the liquid/vapor interface, and the vapor
changes direction of its motion, causing a suction of non-condensable gas (air) from the upper boundary.
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Figure 14: One-dimensional condensation problem, validation test case. Evolution in time of: (a) liquid mass; (b) vapor mass and (c) air mass for
two different grids: .... grid A; — grid B.

At t= 0.075 s, the condensation is completed; this is confirmed either by the constant value of the surface height
(Fig. 15) and by the evolution of the surface (Fig. 16). With condensation, the vapor/air interface is still quite sharp,
despite fluctuations at the vapor/liquid interface are visible in Fig. 16 (t = 0.05 s); their nature is purely numerical
and their existence can be justified by analyzing the implicit and the explicit part of the source term in the discretized
form of the void fraction equations, Eq. (33):

- when air impacts the liquid surface, the implicit part of the source term in the second equation of (33) reads:

Bn
v

[(
Dαv

Dt

+
)
−

(
Dαv

Dt

−)]
p

(59)

during condensation, ( Dαv

Dt

−
) = 0 while ( Dαv

Dt

+
) > 0; from Eq. (25), it follows:

Dαv

Dt

+

= f (p − psat) (60)

if fluctuations in pressure appears, then an error peak in Fig. 18 is observed;

- the explict part of the source term in the first equation of (33) is:

Bn
l

(
Dαv

Dt

+
)n

p

(1 − αnc)n
p (61)

during condensation, ( Dαv

Dt

+
) > 0, p > psat. By Eq. (60) and (61), pressure results linked to the evolution of the

void fractions.

As shown in Fig. 18, non-conservation of mass is negligible but it is always present: this is a consequence of adding
the source terms S α for phase-change in the projection method as volume fluxes.
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Figure 15: One-dimensional condensation problem, validation test case. Evolution in time of the surface heights: (a) liquid/vapor; (b) air/vapor on
two different grids: .... grid A; — grid B
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Figure 16: One-dimensional condensation proble. Evolution of the void fractions from 0.025 to 0.1 s. Top) grid A, 1x640 cells; bottom) grid B,
1x1280 cells. Legend: αl —, αnc —, αv – – –.

With condensation, the liquid/vapor and vapor/non-condensable gas (air) mean interface velocity (Eq. 53) be-
comes negative in the y direction and reaches the zero velocity condition in a steep way (see Fig. 17).
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Figure 17: One-dimensional condensation problem, validation test case. Evolution in time of the mean interface velocity (Eq. 53): (a) liquid/vapor;
(b) vapor/non-condensable gas for two different grids: .... 640 cells; — 1280 cells.
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Figure 18: One-dimensional condensation test case, evolution in time of: left) mass relative error; center) volume-weighted void fractions; right)
sum of the volume-weighted void fractions. Grid A: 1x640 cells. Grid B: 1x1280 cells.

Mean interface velocity in Fig. 17 is estimated by Eq. (53). In Fig. 17-b, minor fluctuations in the vapor/non-
condensable gas mean interface velocity appear. This is a consequence of the numerical algorithm adopted for the
iterative solution of Eq. (12), because the residual error at the last iteration is added to αnc. The fluctuations in the
solution of αnc have a very minor impact on mass conservation (see Fig. 18, t<0.07 s). In Fig. 18, a peak in the error
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of the mass conservation is centered around t=0.075 s. From the analisys of the variation of volume-weighted void
fractions in time, this peak occurs when the vapor fully condenses (αv →0) and the number of phases that switches
from three to two. As shown in the same figure, the magnitude of the error peaks is very limited (about 4 · 10−3%)
and the mass relative error follows the same trend that has been noticed in the cavitation problem: after a time of
about 0.02 s, during which the error grows because of the initialization, the error stabilizes to a value of the order
of 10−4%. Also for condensation, it is then demonstrated that mass conservation is satisfied with a good level of
accuracy. Boundedness and conservativeness of the solution of the void fractions (Eq. 56 and 57) in the domain is
satisfied also here.

Moreover, Fig.18 shows also that conservation of the void fraction with phase-change is preserved very well
during the simulation: the global mass error (Tab. 5) is very limited with both the grids.

Table 5: Relative (percentage) error on global mass conservation for condensation test case
No. cells 640 1280
Eglobal% 0.1126 0.0707

12. Simulation of Internal Nozzle Flows

The final problem used for the validation is based on the experiments from [52] and [113], that consist of water
injection in an air reservoir. The thermodynamic conditions of the fluids are listed in Tab. 6.

Table 6: Thermodynamic properties for H2O(liq), H2O(vap), and non-condensable gas (air) at T=20o C.

Parameter Fluid Unit
H2O(liq) H2O(vap) air

density 998 0.73853 1.19 Kg/m3

dynamic viscosity 1.2 · 10−3 1.227 · 10−5 1.725 · 10−5 Kg/(ms)
surface tension 0.07 N/m

saturation pressure 2300 Pa

The transparent injector presents an asymmetric nozzle with a squared-shaped cross-section. A sketch of the
nozzle geometry and position of the Laser Doppler Velocimetry (LDV) beams is reported in Fig. 19, while a detailed
description of the experimental apparatus is documented in [52] and [39].
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Figure 19: Sketch of injector geometry and locations of LDV measurements.

In the present work, the operating condition with an inlet pressure of 0.22 MPa was simulated and a validation
with LDV measurements available from the literature is shown. Input parameters for the simulation are listed in Tab.
7; the cavitation number (Ca), the liquid Reynolds number (Rel), the Weber number (We) and Ohnesorge number (Oh)
are defined as follows:

Ca =
pamb − psat

0.5ρlU
2
l

(62)

Rel =
plUlD

μl

(63)

We =
ρlU

2
l
D

σ
(64)

Oh =

√
We

Re
(65)

where pamb is the ambient pressure, psat is the saturation pressure of the liquid, ρl the density of the liquid water
and Ul is the mean liquid velocity computed from Measured volumetric flow rate and nozzle cross-section area.

Table 7: Experimental operation condition for 0.22 MPa operative point

Parameter Value Unit
pinlet 0.22 MPa
pamb 0.1 MPa

Meas. Volumetric Flow Rate Q 4.8 · 10−5 m3/s
Mean liquid Velocity Ul 12.8 m/s

Re 20577 -
Ca 1.2 -
We 4496.3 -
Oh 3.26 · 10−3 -
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According to [126], being ρl/ρair ∼ 103, the regime of the jet flow is in between second wind-induced breakup and
the atomization regime; the jet is therefore wavy, as it has also been observed in [52]. The cavitation number suggests
the existence of a developing cavitation regime as well, where a vapor cloud forms without reaching the spray domain.
The grid used for the simulations is reported in Fig. 20; in order to limit the overall number of grid cells by ensuring a
proper resolution for a LES simulation, several refinement regions were selected and a wide use of cell gradings was
adopted.

Figure 20: Injector geometry: domain discretization and refinement regions.

Overall information about mesh resolution, cell size and aspect ratio for each region is listed in Tab. 8.

Table 8: Grid resolution and refinement levels for each mesh region.

Mesh region Mesh size [μm] No. Cells
x Ratio y Ratio z Ratio

I 6.5/344 6.5/59.8 264/490 286120
II 6.5/344 6.5/59.8 26.5/264 1020377
III 6.5/59.8 6.5/59.8 26.5/106 1149840

Nozzle Refinement block 3.25/29.9 3.25/29.9 13.25/53 9005544
IV 7.5/443 7.5/443 27.8/58.3 5138880
V 54.6/531 54.6/531 58.3/85.1 2560000
VI 74.1/620 74.1/620 85.1/117 2016000

Domain ∼ 2.1 · 106

In Fig. 20, the spray domain includes twelve refinement regions, four in the radial direction and three in the
axial direction. Atmospheric pressure condition is applied on the lateral and bottom surfaces of the spray domain;
no-slip wall boundary conditions on velocity are set at the walls. Both the fluids are assumed to be incompressible
and isothermal; the numerical models and parameters are listed in Tab. 9.
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Table 9: Numerical setup and models parameter

Numerical setup
Bubble number density 1015 m−3

Bubble Nuclei Diameter 1.5 μm
Turbulence Model LES-WALE [108]

CFLmax 0.25
Outer corrector 7

void fraction corrector 2
Precursor part 1.5 ms
Averaging part 0.5 ms

The averaging procedure on the benchmarked quantities to be compared with LDV measurements and analysis of
spray pattern is calculated after 4 ms and it lasts 9 ms. The numerical setup is the same as discussed in Sec. 7 and Sec.
10. Non-dimensional parameters calculated from the simulation results are in line with the values reported in Tab. 7.
In Fig. 21, a comparison between simulation and experiments is shown; cavitation starts at the left corner, where a
recirculation zone makes pressure drops below Psat; this is classified as geometry induced cavitation.

Figure 21: Internal nozzle flow test case [52]. Left) interPhaseChangeMixingFoam; right) visualizations from experiments.

The cloud of vapor does not reach the outlet of the nozzle but condensates at about 5 mm from the nozzle inlet.
This developing cavitation regime is justified by the small inlet pressure of the experiment and by the high L/D ratio
(L/D ∼ 4); besides, it favors the detachment of fluid at the corner and the formation of a recirculation zone, where
a consistent amount of turbulence is produced. In-nozzle turbulence is responsible of the primary breakup of the
liquid jet at the nozzle tip, where the aerodynamic forces start triggering surface instabilities. In the specific operating
point studied, vapor bubbles are not acting as promoters for the primary breakup since they collapse before reaching
the spray domain; this usually happens at higher pressures at the inlet [32, 46, 52]. Comparisons with experimental
profiles of average and rms values of the stream-wise velocity at three different positions inside nozzle from [52] are
reported in Fig 22. Probes were located in the channel center plane (x = 0 mm, y = 0 mm) at different positions along
the nozzle axis: z = 1.5 mm, z = 3 mm and z = 6 mm downstream of the nozzle entrance. In Fig 22, black filled
circles are the experimental sampled points, while time-averaged CFD results are plotted as continuous black solid
lines.
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Figure 22: Mean streamwise in-nozzle flow velocity and RMS turbulent velocity at different positions: z = 1.55 mm (top), z = 3 mm (middle),
z = 6 mm (bottom); • experiments [52] — interPhaseChangeMixingFoam.

The agreement between experiments and predicted average velocity, also when both liquid and vapor are present,
looks satisfying. This situation corresponds to negative velocity values (z = 1.5 mm, z = 3 mm) in the recirculation
zone, where a certain amount of vapor is generated due to the pressure drop of the fluid at the nozzle entrance. At
z = 6 mm, the vapor cloud has already collapsed and the stream-wise velocity assumes only positive values. Also
rms values of the velocity are captured fairly well. The small over-prediction of the fluctuating velocity at the left-
hand corner of the channel, when vapor and liquid are present at the same time, shows that the amount of predicted
turbulent kinetic energy is too large in that region: this could be due to a slightly overestimation of vapor production
along the shear layer which causes enhancement of the velocity gradients and thus of the turbulence production, as it
has already been noticed in [46].
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13. Conclusions

The aim of the presented study was to illustrate the recently developed three-phase VOF pressure based solver, with
the ability to capture the air/vapor interface and model phase-change phenomena as well. Two numerical tests cases
and an injector geometry have been used for validation. The first case, the modified rising bubble problem, proved the
ability of the implemented three-phase solver to capture the interface with very limited diffusion, providing similar
results of high-order solvers. The second numerical problem, proposed for the first time by the authors, was thought to
verify mass conservation properties of the VOF solver with phase-change. Both with cavitation and condensation, the
solver proved to be able to limit the mass relative error to a very small value with some minor, almost negligible, error
peaks of the order of 0.001% when bubbles collapse. Finally, a simulation of an injector geometry has been performed
at one operating pressure condition for which LDV measurements inside the injector nozzle were available from the
literature; the aim of the simulation was to prove the predictive capability on real internal nozzle-flow conditions.
Comparisons with high-speed camera visualization have shown that the cavitation developing regime has been well-
captured.
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Appendix A. Derivation of the source terms in a three-phase VOF solver with phase change

In this section, the derivation of the formulation of the term S α of Eq. (6) is shown. From the definition of total
derivative:

Dαi

Dt
=
∂αi

∂t
+ U · ∇αi (A.1)

it follows:

∂αi

∂t
+ ∇ · (Uαi) =

Dαi

Dt
+ αi∇ · U (A.2)

so that system of equations (5) can be written in the equivalent form:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dαl

Dt
= −αl∇ · U − S α

ρl

Dαv

Dt
= −αv∇ · U + S α

ρv

Dαnc

Dt
= −αnc∇ · U

(A.3)

where the subscripts l, v and nc are used for liquid, vapor and non-condensable gases respectively. To ensure the
boundedness of the solution of (A.3), the derived form of the compatibility condition αl + αv + αnc = 1 is used for
closure:

Dαl

Dt
+

Dαv

Dt
+

Dαnc

Dt
= 0 (A.4)

Substituting the expressions for Dαl

Dt
and Dαnc

Dt
from (A.3) into Eq. (A.4), the cavitation source term S α is written

as a function of Dαv

Dt
:

S α = ρl(αl + αnc) ∇ · U − ρl

Dαv

Dt
(A.5)

Similarly, starting from Eq. (13) and considering each phase as incompressible, it holds:

∇ · U = −1
ρ

Dρ

Dt

= −1
ρ

[
D(ρlαl)

Dt
+

D(ρncαnc)
Dt

+
D(ρvαv)

Dt

]
= −1

ρ

(
ρl

Dαl

Dt
+ ρnc

Dαnc

Dt
+ ρv

Dαv

Dt

)
= −1
ρ

(
−ρlαl∇ · U − S α − ρncαnc∇ · U + ρv

Dαv

Dt

)
(A.6)

so
S α = ρv

Dαv

Dt
− (ρlαl + ρncαnc − ρ) ∇ · U (A.7)

From the combination of Eq. (A.5) and Eq. (A.7), the final form of the mass conservation for an incompressible
flow, Eq. (13), takes the form:

∇ · U = ρl − ρv

ρ + αnc(ρl − ρnc)
Dαv

Dt
(A.8)

The formulation of the term S α is obtained from the transport equation of αv of (A.3):
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Dαv

Dt
= −αv∇ · U + S α

ρv

(A.9)

which is rewritten as:

S α = ρv

Dαv

Dt
+ ρvαv∇ · U (A.10)

and:

S α = ρv

Dαv

Dt
+ ρvαv

ρl − ρv

ρ + αnc(ρl − ρnc)
Dαv

Dt

= ρv

Dαv

Dt

[
1 +

αv(ρl − ρv)
ρ + αnc(ρl − ρnc)

]
= ρv

Dαv

Dt

[
ρ + αncρl − αncρnc + αvρl − αvρv

ρ + αnc(ρl − ρnc)

]
= ρv

Dαv

Dt

[ (ρ − αncρnc − αvρv) + αncρl + αvρl

ρ + αnc(ρl − ρnc)

]
= ρv

Dαv

Dt

[
αlρl + αncρl + αvρl

ρ + αnc(ρl − ρnc)

]
= ρv

Dαv

Dt

[
ρl (αl + αv + αnc)
ρ + αnc(ρl − ρnc)

]

(A.11)

leading to:

S α = ρv

Dαv

Dt

[
ρl

ρ + αnc(ρl − ρnc)

]
(A.12)

and to the final form of the system (5)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂αl

∂t
+ ∇ · (Uαl) = − ρv

ρ + αnc(ρl − ρnc)
Dαv

Dt

∂αv

∂t
+ ∇ · (Uαv) =

ρl

ρ + αnc(ρl − ρnc)
Dαv

Dt

∂αnc

∂t
+ ∇ · (Uαnc) = 0

(A.13)

Appendix B. Derivation of the cavitation term for a three-phase VOF solver

The rates of fuel vaporization and condensation are determined by a simplification of the Rayleigh-Plesset equation
which assumes spherical bubbles of radius R subject to uniform pressure variations. Spherical bubbles are then
represented by a fraction of the vapor phase in the computational cell; from [81] and considering that a in a cell liquid,
vapor and air may coexist, it follows:

Vv = Nb

4
3
πR3 = n0Vl

4
3
πR3 (B.1)

where Vv and Vl are respectively the volume of the vapor and the liquid in the computational cell of volume V, Nb

is the number of spherical bubbles of radius R in the computational cell and n0 is defined as the bubble concentration
per unit volume of pure liquid. From Eq. (B.1), it follows:

Vv

Vl + Vv

=
n0Vl

4
3πR

3

Vl + n0Vl
4
3πR

3
=

n0
4
3πR

3

1 + n0
4
3πR

3
(B.2)
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From the definition of volume fraction, being Vl + Vv + Vnc = V and dividing the LHS of the previous equation by
V , it follows:

Vv

Vl + Vv

=
Vv/V

(Vl + Vv)/V
=
αv

αv + αl

(B.3)

so:

αv

αv + αl

=
n0

4
3πR

3

1 + n0
4
3πR

3
(B.4)

Rearranging Eq. (B.4), the vapor volume fraction reads:

αv = αl n0
4
3
πR3 (B.5)

From Eq. (B.5) the rate of fuel vaporization is calculated as:

Dαv

Dt
=

D
(
αln0

4
3πR

3
)

Dt
= n0

4
3
πR3 Dαl

Dt
+ αl n04πR2 DR

Dt
(B.6)

From system (A.3) and Eq. (6):

Dαl

Dt
= −αl∇ · U − ρv

ρ + αnc(ρl − ρnc)
Dαv

Dt
(B.7)

The substitution of Eq. (B.7) in Eq. (B.6) leads to:

Dαv

Dt
=

αln04πR2 DR
Dt

1 + n0
4
3πR

3

(
ρ+αnc(ρv−ρnc)
ρ+αnc(ρl−ρnc)

) (B.8)

The formulation of the bubble growth rate DR
Dt

, has been the main topic of several studies in the past [27, 25, 26];
in this work, the formulation from Rayleigh [27] is used:

DR

Dt
= sign

(
p(R) − p∞

)√2
3

p(R) − p∞
ρl

(B.9)

where p(R) is the pressure in the liquid at the bubble boundary and p∞ is the pressure at a large distance from the
bubble. To model either the bubble growth and its collapse in a single equation, p(R) is set in Eq. (B.9) to the vapor
saturation pressure psat and p∞ to the pressure inside the computational cell, so it follows:

DR

Dt
= −(p − psat)

√
2
3

1
ρl|p − psat | =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−min(p − psat, 0)

√
2
3

1
ρl |p−psat | i f p < psat

−max(p − psat, 0)
√

2
3

1
ρl |p−psat | i f p > psat

(B.10)

which describes both the bubble grow and its collapse; as a consequence:

Dαv

Dt
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3αv
DR
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3 πn0

[
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√
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R+R4 4
3 πn0
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ρ+αnc (ρl−ρnc )
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(
Dαv
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αl4πn0R2 DR
Dt

1+R3 4
3 πn0

[
ρ+αnc (ρv−ρnc )
ρ+αnc (ρl−ρnc )

] = −αl4πn0R2min(p−psat ,0)
√

2
3

1
ρl |p−psat |

1+R3 4
3 πn0
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(
Dαv

Dt
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i f p < psat

(B.11)
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Appendix C. Two-dimensional simulation of the evolution of the free-surface in a partially cavitating/condensating
liquid column

The same numerical problem presented in Sec. 11 and described in Fig. 8 is simulated here in two dimensions.
The aspect ratio of the two-dimensional domain was width/height=0.5: the height of the domain is Δy and the width
along the transverse direction is Δy/2. Similarly to Sec. 11, simulations on two different grids have been performed,
namely grid A (now 320x640 cells) and grid B (now 640x1280 cells); the two grids have the same cell aspect ratio
equal to unity. The same benchmark quantities reported for the one-dimensional simulations has been selected to
monitor the numerical properties of the solver: the position, sharpness and modeled velocity of the interface, the
overall mass conservation and the instantaneous mass balance between the liquid fuel and the fuel vapor. The same
boundary and initial conditions of the one-dimensional tests has been applied; for a fair comparison, also the results
of this section are presented as in Sec. 11.

Appendix C.1. Cavitation test: results

Starting from an hydrostatic distribution of the pressure in the domain, the liquid starts cavitating. Being the vapor
lighter than the liquid, it moves upwards and pushes the non-condensable gas (air) out of the domain. Results of Fig.
C.23 and Fig. C.24 show similar trends to those reported in Fig. 9; for the two-dimensional case, absolute values of
the mass are larger if compared to the one-dimensional case, because now the domain is extended over the x-direction
and the amount of mass in the domain is larger.
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Figure C.23: Two-dimensional cavitation problem, validation test case. Evolution in time of: (a) air mass (b) liquid mass; (c) vapor mass for two
different grids: .... grid A (320X640 cells); — grid B (640x1280 cells).
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Figure C.24: Two-dimensional cavitation problem. Evolution in time of the surface heights: (a) liquid/vapor (b) air/vapor for two different grids:
.... grid A (320x640 cells); — grid B (640x1280 cells).
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The evolution of the two surface fronts is shown in Fig. C.25. The black solid line is the contour line of αv=0.5,
that bounds the region of the vapor: the upper line in Fig. C.25 is then the vapor-air interface, while the lower line is
the vapor-liquid interface.
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Figure C.25: Two-dimensional cavitation problem. Evolution in time of the void fraction profiles of the fuel-vapor, that bound the vapor region,
from 0.025 to 0.1 s. Top) grid A, 320x640 cells; bottom) grid B, 640X1280 cells. Legend: αv —.

The liquid/vapor and the air/vapor interface velocities, calculated by Eq. (53), are reported in Fig. C.26 for the
two-dimensional simulations. Again, they are very similar to the values achieved in Fig. 12; this is not surprising,
because the free-surface in this specific test-case evolves mostly over a main direction.
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Figure C.26: Two-dimensional cavitation problem, validation test case. Evolution in time of the mean interface velocity: (a) liquid/vapor; (b)
air/vapor on two different grids: .... grid A (320x640 cells); — grid B (640x1280 cells)

Finally, the mass of each phase fraction has been monitored to compute the time step continuity error and the mass
conservation error in the domain (Fig. C.27 and Tab. C.10). They are still very limited, in accordance to what it has
been shown for the one-dimensional test case. This proves that the numerical accuracy of the solver is maintained
also in presence of cavitation and multi-dimensional domains.
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Figure C.27: Two-dimensional cavitation test case, evolution in time of: left) mass relative error; right) sum of the volume-weighted void fractions
(see Eq. 57). Grid A: 320x640 cells. Grid B: 640x1280 cells.
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Table C.10: Relative error in the global mass conservation for the cavitation test case.
No. cells 320x640 640x1280
Eglobal% 0.106 0.026

Appendix C.2. Condensation test: results

Similarly to what has been done in Sec. 11, the distribution of the phase-fractions derived from the calculation of
the two-dimensional liquid column problem with cavitation is set as initial condition. Vapor condensation is artificially
triggered by changing the threshold value of the liquid saturation pressure; as a result, the vapor changes direction of
its motion and a suction of non-condensable gas (air) from the upper boundary is observed. Fig. C.28b shows the
evolution of the global mass of the separate phases in the domain in time.
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Figure C.28: Two-dimensional condensation problem, validation test case. Evolution in time of: (a) air mass (b) liquid mass; (c) vapor mass for
two different grids: .... grid A (320x640 cells); — grid B (640x1280 cells).
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Figure C.29: Two-dimensional condensation problem, validation test case. Evolution in time of the surface heights: (a) liquid/vapor (b) air/vapor
for two different grids: .... grid A (320x640 cells); — grid B (640x1280 cells).

The evolution of the two surfaces fronts (liquid/vapor and air/vapor) is shown in Fig. C.30 for a duration of 0.5
s. The black solid line is the iso-contour line of the phase fraction of the vapor at 0.5. The upper-line locates the
vapor-air interface, while the lower line is the vapor-liquid interface; the region of the fuel-vapor is therefore bounded
by these two lines. Approximately at t=0.6 s, the fuel-vapor is fully condensed and the visualization of two interfaces
is not possible anymore; for clarity, a black dotted line for the liquid-air interface is used at 0.75 s and 0.1 s.
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Figure C.30: Two-dimensional condensation problem. Evolution in time of the iso-contour line of the fuel-vapor αv = 0.5, that bounds the vapor
region, from 0.025 to 0.1 s. Top) grid A, 320x640 cells; bottom) grid B, 640X1280 cells. Legend: αv —.

The liquid/vapor and the air/vapor interface velocities, calculated by Eq. (53), are plotted in Fig. C.31. Again,
they are very similar to the values achieved in Fig. 17 for the one-dimensional case; this is not surprising, because the
free-surface in this specific test-case evolves mostly in one-direction and also the one-dimensional domain is sufficient
to describe the evolution of the experiment.
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Figure C.31: Two-dimensional condensation problem, validation test case. Evolution in time of the mean interface velocity: (a) liquid/vapor surface
velocity and (b) air/vapor surface velocity. interPhaseChangeMixingFoam behavior using two different discretizations: .... 320X640 cells; —
640X1280 cells
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Figure C.32: Two-dimensional condensation test case, evolution in time of: left) mass relative error; right) sum of the volume-weighted void
fractions (see Eq. 57). Grid A: 320x640 cells. Grid B: 640x1280 cells.
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Table C.11: Relative (percentage) error on global mass conservation for condensation test case
No. cells 320x640 640x1280
Eglobal% 0.1496 0.1385

Finally, Fig. C.32 shows that also for the two-dimensional simulations, the global errors for the two grid res-
olutions tested are still very limited and that the solver is very accurate in the handling of the phase change with
multi-dimensional domains. It is important to remark that the error peak presents at 0.075 s is smaller than the one
observed in the one-dimensional case (Fig. 18): in multi-dimensional problems, the influence of the boundary con-
ditions on the solution is smaller, so the errors in the solution of the linear systems can be spread over the multiple
directions. This is not possible in a one-dimensional test case.
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