
EnKF coupled with groundwater flow moment equations applied
to Lauswiesen aquifer, Germany
analysis step, in which system states (and more recently
parameters) are updated on the basis of new data. Gelb (199

odels r
hether or not these models are 

linear in hydraulic heads, the latter always depend in a nonlinear 

⇑ Corresponding author at: Department of Civil and Environmental Engineering, 
Politecnico di Milano, Milan, Italy. Tel.: +39 02 2399 6256; fax: +39 02 2399 6298.
E-mail address: marco.panzeri@polimi.it (M. Panzeri).
M. Panzeri a,⇑, M. Riva a,b, A. Guadagnini a,b, S.P. Neuman b
a Dipartimento di Ingegneria Civile e Ambientale, Politecnico di Milano, Piazza L. Da Vinci 32, 20133 Milano, Italy
b Department of Hydrology and Water Resources, University of Arizona, Tucson, AZ 85721, USA

Received 2 July 2014
 model 
Received in revised form 18 November 2014 
Accepted 21 November 2014
Available online 29 November 2014

1. Introduction

To render groundwater flow m
them firmly on data. Regardless of w
recursive computations of (a) a forecast step, in which the mean 
and the covariance matrix of a system state vector are propagated 
in time until new measurements become available, and (b) an eliable one must base 
4) pro-

posed an Extended Kalman Filter (EKF) to account for model non-
linearities. EKF does so by linearizing model dynamics in each 

fashion on hydraulic conductivities or transmissivities. One way to 
condition models on data is via batch inverse approaches such as 

those examined by Zimmerman et al. (1998) or reviewed more 
recently by Hendricks Franssen et al. (2009) and Zhou et al. (2014). 
The rapid expansion in recent decades of monitoring net-works 
delivering high-resolution head measurements in real time through 
remote connections has generated widespread interest in 
assimilation methods capable of updating models on the basis of 
real-time data sequentially rather than in batch mode. Sequential 
data assimilation tends to be computationally more efficient than 
traditional batch inverse approaches. Most if not all sequential data 
assimilation techniques are developments on a linear filter first 
proposed by Kalman (1960). The purpose of this original Kalman 
Filter (KF) was to estimate states of linear dynamical sys-tems on 
the basis of noisy temporal measurements. KF entails
forecast step. This renders EKF (e.g., Eigbe et al., 1998; Aanonsen 
et al., 2009; Liu et al., 2012; Zhou et al., 2014) (a) inaccurate in 
cases of highly non-linear models and highly variable parameters 
due to rapid increase in covariance linearization error with time; 
and (b) computationally demanding when applied to realistically 
large and complex models associated with large sensitivity and 
error covariance matrices.

One way to assimilate data sequentially into nonlinear models is 
through the use of Ensemble Kalman Filters (EnKF) introduced by Evensen 
(1994) and modified by Burgers et al. (1998). Traditional EnKF entails 
generating a random sample of system state realizations through Monte 
Carlo (MC) solution of nonlinear dynamics equations during each forecast 
step, and subsequent updating of system states (and, optionally, 
parameters) on the basis of their MC sample mean and covariance matrix. 
The approach is conceptually simple and relatively easy to implement, 
rendering it popular among climate and other environmental mod-
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elers. Of direct relevance to this paper are synthetic EnKF studies 
related to subsurface flow and transport. One of these is the work of 
Chen and Zhang (2006) who studied the impact of MC sample size, 
type of measurements and timing of data assimilation on the 
quality of estimated model parameters; another is that of 
Hendricks Franssen and Kinzelbach (2008) who explored the 
effects of uncertain recharge rate and transmissivity on EnKF per-
formance. The latter authors proposed empirical strategies to cir-
cumvent, or minimize, filter inbreeding which causes EnKF to 
increasingly underestimate parameter estimation variance as data 
assimilation progresses in time. Liu et al. (2012) and Zhou et al.
(2014) published detailed reviews of data assimilation and inverse 
modeling techniques in hydrogeology with special emphasis on 
EnKF. In the context of subsurface hydrology, Liu et al. (2008) used 
EnKF to estimate the spatial distribution of hydraulic conductivi-
ties and transport model parameters (i.e., longitudinal dispersivity 
and the parameters of a dual-domain mass transfer model) on the 
basis of hydraulic head and tracer concentration data collected at 
the MADE site in 1 year. EnKF hydraulic conductivity estimates 
were found to be consistent with kriged values based on flow meter 
measurements, which were not considered during data 
assimilation. Hendricks Franssen et al. (2011) used EnKF to model 
variably saturated subsurface flow with river–aquifer interaction in 
the Limmat Valley aquifer near Zurich, Switzerland, from Janu-ary 
2004 till December 2007. They then used the calibrated model to 
predict system dynamics from May 2009 till September 2010. Here 
too the ability of the model to predict hydraulic heads improved as 
assimilation progressed. The authors also found that overly 
frequent parameter updates caused model predictive capa-bility to 
deteriorate due to filter inbreeding and numerical instabil-ity. 
Kurtz et al. (2014) used EnKF to investigate the impact of 
assimilating hydraulic and thermal data jointly on the estimation of 
system states and parameters of the Limmat Valley aquifer. They 
were able to assimilate a large amount of groundwater level and 
temperature data from the year 2007 and verify their model against 
numerous such data from 2011.

A review of EnKF in the context of petroleum reservoir engi-
neering was published by Aanonsen et al. (2009). Haugen et al.
(2006) used EnKF to update permeability and porosity values of a 
North Sea reservoir model based on a 5 year production record. 
Sequential estimates of parameters were compared with batch 
estimates over the entire 5-year period, showing that the former 
reproduces observed state variables better and better as time pro-
gresses, improving upon earlier hand calibration. Bianco et al.
(2007) used EnKF to estimate spatially varying model permeabili-
ties and porosities based on 3 years of production data at the Zagor 
oil field off the West African shore. Sequential estimates of param-
eters based on 50, 100 and 135 MC realizations were compared 
with values available prior to data assimilation, once again 
reproducing observed state variables increasingly better as time 
progressed. Predictions of reservoir behavior over a subsequent 23-
year time horizon, obtained with parameter estimates based on 50 
Monte Carlo realizations, were better than those obtained upon 
relying on information available prior to data assimilation. Other 
examples of EnKF data assimilation in reservoir models, coupled 
with parameter estimation, are found in Zhang and Oliver (2011) 
and Emerick and Reynolds (2011).

In our view the term ensemble is a misnomer in the context of 
MC-based EnKF. We say so because in statistical mechanics and 
mathematical physics an ensemble, or statistical ensemble, is typ-
ically defined as a very large (theoretically infinite) number of cop-
ies of a system. Each of these copies represents a system state so 
that the ensemble coincides effectively with the probability distri-
bution for the system state under consideration (e.g., Gibbs, 1902). 
A new assimilation method we developed recently (Panzeri et al., 
2013) is in our view validly termed EnKF precisely for this reason.
Our method differs from MC-based EnKF in that it replaces MC 
sampling with direct computation of statistical ensemble moments. 
It does so by solving, in an approximate manner, exact (nonlocal, 
integrodifferential) equations that govern the space–time evolution 
of ensemble means and covariances of hydraulic heads and fluxes 
(Guadagnini and Neuman, 1999; Ye et al., 2004). Coupling such 
(ensemble) moment equations (MEs) with EnKF obviates the need 
for computationally intensive batch geo-statistical inverse analyses 
of the kind described, in the context of ME, by Riva et al. (2009). In 
our synthetic studies (Panzeri et al., 2014) ME-based EnKF proved 
to be free of inbreeding issues, accurate and computationally 
efficient. In this paper we use our new ME-based approach to 
assimilate drawdown data recorded during cross-hole pumping 
tests in the heterogeneous alluvial Lauswiesen aquifer near 
Tübingen, Germany. Our results include an estimate of log 
transmissivity distribution throughout the aqui-fer and 
corresponding measures of estimation error. We compare our 
results with those obtained using standard EnKF based on var-ious 
numbers of Monte Carlo realizations and validate our cali-brated 
model against drawdowns recorded during another pumping test 
at the site.
2. Experimental site and available data

The Lauswiesen experimental site is located in the Neckar river
valley near Tübingen, Germany. System characterization is based
on information recorded at a set of monitoring and pumping wells.
Local investigations reveal a relatively regular upper clay, having a
thickness of 1–2 m, overlying conductive Quaternary sand and
gravel deposits which in turn rest on a layer of Keuper marl. The
latter is usually taken to define an impervious bedrock boundary
of the Quaternary sand and gravel aquifer. The aquifer has a satu-
rated thickness of about 5 m and is characterized by a relatively
stable free surface which is mainly controlled by the Neckar river
water level. All boreholes penetrate the aquifer down to bedrock.
Details of site hydrogeology are given by Riva et al. (2006) and
references therein.

Our study focuses on the north-eastern part of this site, which
covers an area of approximately 25 � 25 m2. We consider
transient drawdown data collected during three out of five cross-
hole pump-ing tests conducted in fully penetrating wells B1–B5.
These and the site are depicted in Fig. 1. Each test entailed
pumping one of the five wells at a constant rate and observing
drawdowns in the remaining four wells. Water levels, measured
with transducers and recorded with data loggers (Martac and Ptak,
2003; Riva et al., 2006 and references therein), were allowed to
recover fully before the start of each test. Following Neuman et al.
(2007),we treat flow during each test as being horizontal and
account for variation of saturated thickness by correcting the
drawdown, s, according to (Jacob, 1944)

sc ¼ s� s2

2b
ð1Þ

where sc is the corrected drawdown and b is the average initial sat-
urated thickness.

Pumping test results reveal reciprocity gaps (see Bruggeman, 
1972; Delay et al., 2011 and references therein) between normal-
ized drawdown curves observed when pumping from well B5 but 
not the other wells. Delay et al. (2011, 2012) suggest that reciproc-
ity gaps between vertically-averaged heads monitored during two 
consecutive tests can be caused by various factors including (a) 
non-linear dependencies of local hydraulic parameters, (b) occur-
rence of internal boundaries within the domain, (c) inertial effects 
that develop through open conduits within the host rock matrix,
(d) changes in aquifer properties between subsequent pumping



Fig. 1. (a and b) Satellite images of Lauswiesen site (from Google Earth); and (c) spatial location of wells, piezometric surface (isolines) and average groundwater flow
direction (black arrow) in study area. Boreholes marked as R- P- and G- have been employed in prior experimental campaigns and are not part of the cross-hole pumping test
sequence here analyzed.
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Fig. 2. Corrected drawdowns recorded while pumping from wells B2, B3 or B4 versus time. Vertical dashed lines show when assimilation took place during tests T2 and T3.

Table 1
Pumping well, rate, duration and average initial saturated thickness in tests T2, T3
and T4.

Test name Pumping
well

Pumping
flow
rate (m3/s)

Duration
(h)

Average initial
saturated
thickness (m)

T2 B2 5.27 � 10�3 3.46 4.81
T3 B3 3.00 � 10�3 3.34 5.04
T4 B4 5.48 � 10�3 3.93 5.64
tests, (e) contribution of the matrix pressure in monitored wells 
when the behavior of the aquifer is conceptualized as a dual-
continuum, (f) vertical trends in aquifer properties, and/or (g) 
drainage from the unsaturated zone during pumping. According 
to these authors, identifying the precise reasons for lack of reci-
procity at a given site remains an open challenge. As drawdowns 
created when pumping well B5 are not reciprocal with those mea-
sured in B5 during other tests, we exclude drawdowns created by 
pumping well B5 from consideration in this paper. We do the same 
with drawdowns created by B1 some of which appear to be in error 
(Riva et al., 2006; Neuman et al., 2007). Our analysis is thus limited 
to data created by pumping in B2, B3 and B4 while monitoring all 
remaining wells. Corrected drawdowns corresponding to cross-
hole tests in these three wells are plotted versus time on semi-log-
arithmic scale in Fig. 2. Pumping rate, pumping duration and initial 
saturated thickness associated with each test are listed in Table 1. 
Vertical dashed lines in Fig. 2 denote points in time at which data 
assimilation took place. Note that we limit our consideration to 
transient drawdowns during periods delimited by these lines, 
including pseudo-steady state regimes. This is to ensure that 
boundary effects have negligible impact on drawdowns assimi-
lated into our model. Aquifer storativity inferred by Martac and
Ptak (2003) from drawdowns recorded in pumping tests across the 
area range from 0.02 to 0.22, with average 0.05, all but one esti-
mate being of order O(10�2) m. This mild spatial variability is the 
reason why we, like others (e.g., Dagan, 1982; Hendricks Franssen 
et al., 2011), feel justified disregarding fluctuations in storativity in 
comparison to those of transmissivity and consider-ing in our 
analyses below aquifer storativity as a deterministic con-stant 
which we set equal to the estimated average of 0.05.

Previously Neuman et al. (2007) used type curves of Neuman 
et al. (2004) to estimate geometric mean transmissivity (TG) as well 
as the sill (rY

2 ) and integral scale (IY) of log transmissivity variogram 
at the site on the basis of late-time drawdown measurements. The
first and last of their estimates TG = 2.18 � 10�2 m2/s, IY = 2.5 m and 
rY

2 ¼ 1:5 agreed closely with estimates TG = 2.38 � 10�2 m2/s and rY
2 

¼ 1:4 obtained independently through vertical averaging of 312 
flow meter test results from 12 boreholes comprising all B wells in 
Fig. 1c and additional seven wells shown in Fig. 1b. These values 
are consistent with geostatistical log hydraulic conductivity 
estimates obtained by Lessoff et al. (2010) on the basis of 
aquifer direct-push slug tests (DPST) and direct-push injection 
logs (DPIL) across the site.

3. Numerical flow model

Our groundwater flow model uses finite elements to solve sec-
ond-order (in conditional standard deviation of natural log trans-
missivity) approximations of otherwise exact conditional 
stochastic moment equations (e.g., Tartakovsky and Neuman, 1998; 
Ye et al., 2004; Panzeri et al., 2013). The latter nonlocal (inte-
grodifferential) equations govern the space–time evolution of con-
ditional ensemble means (statistical expectations) and covariances 
of hydraulic heads and fluxes. Our two-dimensional finite element 
grid, depicted in Fig. 3, contains 79 � 79 rectangular elements that
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Fig. 3. Flow domain, details of numerical grid (+), boundary conditions and spatial locations of wells B1–B5.
decrease in size toward the center of the 356.2 � 356.2 m2 study 
area. The finer inner part of the grid, including wells B1–B5, con-
tains 39 � 39 square elements of size 0.6 � 0.6 m2. Log transmis-
sivities within this inner area are uniform in each element and 
treated as an autocorrelated random field, Y. Rectangular elements 
in the outer area are assigned a single deterministic transmissivity 
equal to the geometric mean, TG = 2.18 � 10�2 m2/s, estimated for 
this site by Neuman et al. (2007). As noted earlier, we limit our 
analysis to drawdowns in the fine inner region of the grid, occur-
ring prior to the onset of boundary effects in this region. Similar to 
Riva et al. (2009), we performed tests about the suitability of
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Fig. 4. Comparison between numerical results and Theis model (Theis, 1935) in a 
homogeneous setting. Temporal evolution of absolute difference, Eh, between 
analytical and numerical heads evaluated at observation wells.
the grid size upon comparing numerical results against the Theis 
model (Theis, 1935) in a homogeneous setting. Comparison 
between analytical and numerical solutions shows negligible dif-
ferences for the grid size we employ. This is documented in 
Fig. 4, which depicts the temporal evolution of the absolute differ-
ence, Eh, between analytical and numerical heads evaluated at the 
locations of the observation wells for the tests we analyze. These 
plots demonstrate that numerical errors associated with grid dis-
cretization are always well below 10�3 m, this being the value 
we employed for standard deviation of head measurement errors.

Initial heads across the domain are zero, as is head on all four 
domain boundaries. Pumping in each test is represented by a point 
sink, QPd(x � xw), in which QP is withdrawal rate, d is the Dirac 
delta function and xw is position vector of the pumping well, all 
wells being located at grid nodes. Disregarding pumping well 
radius and storage in this manner is likely to introduce inaccura-
cies in the reproduction of pumping well drawdowns, which we 
therefore do not assimilate.
4. Data assimilation strategy

We employ our ME-based EnKF algorithm to assimilate draw-
downs recorded during tests T2 and T3 at points in time indicated 
by vertical dashed lines in Fig. 2. The mean and covariance of Y 
estimated on the basis of T2 are used to initiate the assimilation 
of T3 data. Results are validated against drawdowns recorded dur-
ing test T4.

Drawdowns in Fig. 2 are recorded at more than 100 time steps 
during each test of duration close to 10,000 s. Previous studies (e.g., 
Chen and Zhang, 2006; Panzeri et al., 2013) have shown that (a) 
hydraulic heads measured during the early transient regime are 
associated with higher information content than those registered 
during the later pseudo-steady state regime and (b) switching from 
low to high temporal assimilation frequency yields only marginal 
improvement in parameter estimates. For these reasons, and to 
lower computational cost, we assimilate drawdowns only at 15 
points in time during each test such that about 80% of the assimi-
lated data correspond to early transient flow.

As detailed by Ye et al. (2004), we solve our MEs at a fixed num-
ber of discretization points in Laplace space and back-transform 
their solution into the time domain using a quotient-difference 
algorithm developed by De Hoog et al. (1982). The computational 
time required for any forward solution step is thus constant, inde-
pendent of temporal time step size. This allows us to restart the 
flow simulation from time zero after each update, thereby conserv-
ing mass prior to any such update. Additionally, since the Kalman
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Fig. 5. Spatial distributions of estimated log transmissivity mean and variance at assimilation steps k of drawdowns measured during test T2 while pumping well B2. Circles
indicate spatial locations of wells B1–B5.
gain matrix requires only cross-covariances between heads at
observation well nodes and log transmissivities at grid elements,
our approach avoids the need to compute entire head covariance
matrices. It thus results in significant speed-up of the ME-based
assimilation algorithm.

5. Theoretical background and data assimilation algorithm

We define the state vector
y ¼
Y
s

� �
ð2Þ

where Y and s are vectors containing log transmissivities at the NY

grid elements and drawdowns at the Ns grid nodes, respectively, so
that y has dimension Ny = NY + Ns. We denote by T0 = 0 the starting
time of each pumping test and by Tk (k = 1,2, . . .,15) the points in
time at which drawdown measurements are assimilated during
each pumping test. Due to incomplete knowledge of transmissivity



k , ku TY ,2 ku T
Yσ

0 

1 

5 

10 

15 

-7 -4 -1 2 0 0.5 1 1.5

Fig. 6. Spatial distributions of estimated log transmissivity mean and variance at assimilation steps k of drawdowns measured during test T3 while pumping well B3 and
following assimilation from test T2. Circles indicate spatial locations of wells B1–B5.
the vector y is modeled as a random field. We link head observa-
tions to unknown values of y at time Tk, yTk , through

dTk ¼ HTk yTk þ eTk ð3Þ

where the vector dTk contains Nd measurements at time Tk which, in
our case, consist of Nd = 4 heads at observation wells; HTk is a trans-
formation matrix of size Nd � Ny; and eTk is a random vector repre-
senting zero-mean Gaussian measurement errors with covariance
matrix Ree. In our application, entries HTk

ij of HTk are equal to 1 when
element j of vector yTk corresponds to observed drawdown consti-
tuting entry i of dTk and 0 otherwise. We further assume that
measurement errors are mutually uncorrelated with standard devi-
ation re = 0.001 m (rendering Ree diagonal and homoscedastic), 
independent of measurement location. As assimilated drawdowns,
sc, range between 0.01 m and 0.10 m, the ratios re/sc range from 
10�1 to 10�2. We collect all measurement vectors up to time Tk 

(i.e., dT i , i = 1, . . ., k) in a matrix DTk and denote the state vector y 
at time Tk, conditioned on DTk�1 and DTk respectively, by yf ;Tk and 
yu;Tk .

Our data assimilation strategy, based on the methodology of 
Panzeri et al. (2013), requires assigning initial mean and covariance 
values to yu;T0 during each pumping test. To initiate the assimilation



of test T2 data we condition the first two statistical moments of Y on
those provided by type curve analysis of Neuman et al. (2007). Cor-
respondingly, all elements of the mean vector hYu;T0 i are set equal to
the mean log transmissivity estimate, ln (2.18 � 10�2) = �3.826
(where transmissivity is measured in m2/s), while those of the cor-
responding covariance matrix, Cu;T0

Y , are evaluated on the basis of an
exponential isotropic variogram with sill r2

Y ¼ 1:5 and integral scale
IY = 2.5 m. To initiate the assimilation of test T3 data we adopt mean
and covariance values from the end of T2 assimilation. We set initial
drawdowns at time T0 equal to steady-state mean drawdowns in the
absence of pumping. In our case this yields zero values for all ele-
ments of the initial mean drawdown vector, hsu;T0 i, covariance
matrix, Cu;T0

s , and cross-covariance matrix between drawdowns
and log transmissivities, Cu;T0

sY .
At assimilation steps Tk>0 we evaluate the first two moments of

yf ;Tk , i.e., hyf ;Tk i and Rf ;Tk
yy , by solving the stochastic MEs of transient
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) during assimilation of drawdowns while pumping well B2 (0 < t⁄ < 1)
and subsequently well B3 (1.0 < t⁄ < 2.0).
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groundwater flow for the time interval ð T0 Tk � subject to zero ini-
tial drawdown while setting the mean and covariance of Y equal to

their estimates, hYu;Tk�1 i and Cu;Tk�1
Y , at assimilation step Tk�1.

Moments of the updated vector yu;Tk are then computed with the

aid of dTk , representing measurements at time Tk, according to

hyu;Tk i ¼ hyf ;Tk i þ KTk dTk �HTk hyf ;Tki
h i

¼ hYu;Tk i
hsu;Tk i

" #
ð4Þ

Ru;Tk
yy ¼ INy � KTk HTk

� �
Rf ;Tk

yy ¼
Cu;Tk

Y Cu;Tk
Ys

Cu;Tk
sY Cu;Tk

s

" #
ð5Þ

in which

KTk ¼ Rf ;Tk
yy HTk

� �þ
RTk

ee þHTk Rf ;Tk
yy HTk

� �þ� ��1

ð6Þ

is the Kalman gain matrix, the superscript + denoting transpose.

6. Results and discussion

Figs. 5 and 6 depict spatial distributions of estimated log trans-
missivity mean and variance at selected assimilation time steps 
during tests T2 and T2 + T3, respectively. The mean Y field in Fig. 5 
starts displaying significant heterogeneity after the first 
assimilation step. As expected, results vary faster during early 
updating steps than during later steps. Estimation variance is 
smallest near wells B1, B2 and B3 and larger near wells B4 and B5 
that are located farthest from pumping well B2. As expected, the 
variance increases toward its unconditional value (equal to the 
variogram sill) with distance from these wells. The assimilation of 
additional data in Fig. 6 is seen to yield only minor changes to the 
mean and variance of Y in Fig. 5. Though based on diverse data and 
methods, these results as well as those shown in Figs. A.1 and
1000 10000
0.00
0.02
0.04
0.06
0.08
0.10
0.12

10 100 1000 10000
[ ]st [ ]st

ilation of T2 After assimilation of T2 and T3

(c)

mated mean (solid curve) with ±2 standard deviations confidence intervals (dashed
lation of T2 data, and (c) after joint assimilation of T2 and T3 data.

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14

10 100 1000 100001000 10000
[ ]s [ ]st

ilation of T2 After assimilation of T2 and T3

(c)

mated mean (solid curve) with ±2 standard deviations confidence intervals (dashed
lation of T2 data, and (c) after joint assimilation of T2 and T3 data.



 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.00

0.02

0.04

0.06

0.08

0.10

0.00

0.02

0.04

0.06

0.08

0.10

0.00

0.02

0.04

0.06

0.08

0.10

10 100 1000 1000010 100 1000 1000010 100 1000 10000

[
]

B
3

m
s

[ ]st [ ]st [ ]st

After assimilation of T2 and T3After assimilation of T2Prior

(c)(b)(a)

Fig. 10. Drawdown measured at well B3 while pumping well B4 (symbols) in test T4, estimated mean (solid curve) with ±2 standard deviations confidence intervals (dashed
curves) obtained with log transmissivities (a) prior to data assimilation, (b) after assimilation of T2 data, and (c) after joint assimilation of T2 and T3 data.
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Fig. 12. Percentage v of drawdowns during pumping test T4 within uncertainty 
bounds of ±2 standard deviation about mean based on prior Y estimates, estimates 
obtained after assimilating T2 data and after subsequent assimilation of T3 data.
A.2 (Appendix A) are consistent with a relatively low variance 
obtained by Lessoff et al. (2010) for hydraulic conductivities close 
to well B2. Fig. 7 depicts the temporal behavior of spatially aver-
aged Y estimation variance, VY,

VY ¼
1

N�Y

XNY

i¼1

r2 u;t�

Y ðxiÞ ð7Þ

in which r2 u;t�

Y ðxiÞ is log transmissivity estimation variance in grid
element i, N�Y is number of elements in the dense inner portion of
the grid (Fig. 3), and t� ¼ t=TNk is normalized time. As already noted, VY

decreases fastest during early steps of test T2 assimilation, more
slowly during early steps of T3 assimilation, and slower yet at later
steps of each assimilation sequence. Total decrease in VY is 14% dur-
ing the first assimilation and 5% during the second.

Figs. 8–11 compare drawdowns recorded in wells B1, B2, B3 and
B5, respectively, while pumping well B4 during test T4 with corre-
sponding estimates of mean drawdown and ±2 standard deviations
about the mean while relying on prior Y values, estimates based on
assimilation of T2 data, and estimates based on joint assimilation of
T2 and T3 data. Figs. 8–10 confirm that (a) relying on prior
parameter estimates results in poor drawdown fits and wide
uncertainty ranges, (b) assimilating T2 data improves fits and
reduces uncertainty significantly, while (c) further assimilation of
T3 data bring only marginal improvements in fit and uncertainty
reduction. Poor fits in Fig. 11 confirm that drawdowns in well B5 are
not represented accurately by our model. As discussed by Delay et
al. (2011, 2012), these can be ascribed to the inability of typical
mathematical formulations of fully saturated groundwater flow to
reproduce reciprocity gaps. This element does not invali-date the
quality of our calibration. Fig. 12 indicates percent v of drawdown
data recorded in B1, B2, and B3 during test T4 that fall inside the
corresponding uncertainty bounds in Figs. 8–10. On
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Fig. 11. Drawdown measured at well B5 while pumping well B4 (symbols) in test T4, est
curves) obtained with log transmissivities (a) prior to data assimilation, (b) after assimi
average, v increases from 12% prior to assimilation to about 40%
after joint assimilation of T2 and T3 data.

Next we examine the effect of adding T4 drawdown data to our 
assimilation sequence using the same approach as earlier. Fig. 13 
depicts spatial distributions of estimated log transmissivity mean 
and variance at selected assimilation time steps during this test. 
Results differ slightly from those following joint assimilation of 
T2 and T3 data in Fig. 6 by an increase in mean Y values at the 
top-right of the grid and a slight decrease in variance throughout 
the domain.

Finally we compare our estimates based on T2 data to those 
obtained for this case using traditional MC-based EnKF. Implemen-
tation and results of this analysis are described in Appendix A. 
Results of MC-based EnKF approach those of ME-based EnKF as 
the number of realizations increases from 5000 to 50,000. With 
such a large number of realizations MC-based EnKF becomes com-
putationally more demanding than our ME-based approach.
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Fig. 13. Spatial distributions of estimated log transmissivity mean and variance at assimilation steps k of drawdowns measured during test T4 while pumping well B4. Circles
indicate spatial locations of wells B1–B5.
7. Conclusions

Our work leads to the following major conclusions.

1. The moment-equations (MEs) based Ensemble Kalman Filter
(EnKF) approach to data assimilation proposed by Panzeri 
et al. (2013) works well when applied to three sets of pumping 
test data from the Lauswiesen alluvial aquifer near Tübingen, 
Germany. The approach provides sequential estimates of log 
transmissivity and its variance–covariance distributions in 
space.
2. Estimates obtained through assimilation of data from two 
pumping tests were validated successfully against a third such 
test at the site. Consistent with observations by Chen and 
Zhang (2006) and Panzeri et al. (2013) on synthetic scenarios, 
our parameter estimates improved faster when based on the 
assimilation of transient drawdown data than when based on 
near-steady state data.

3. We found that to reduce parameter estimation error by as much as 
was possible using our ME-based EnKF approach, the traditional 
Monte Carlo-based approach would require so many simulations as 
to render it computationally less efficient. 
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Appendix A. Comparison of ME- and MC-based EnKF

We compare results obtained through our ME-based EnKF
assimilation of T2 drawdown data against those obtained with
traditional EnKF based on MC simulation. The assimilation is
k ME NMC = 500 N
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Fig. A.1. Spatial distributions of estimated log transmissivity mean at assimilation steps
the MC-based EnKF with diverse values of NMC. Circles indicate spatial locations of wel
initialized by generating a collection of log transmissivity
realizations, Yu;T0

i , i = 1, . . .,NMC, where NMC is the size of the
MC sample. This is done by means of a Sequential Gaussian 
Simulator SGSIM (Deutsch and Journel, 1997) employing the 
same variogram parameters as those used for our ME-based

analysis. Forward state vectors at time steps Tk, yf ;Tk
i , i = 1, . . .,NMC,

are obtained through deterministic flow simulations over time

intervals ð T0; Tk � using estimates Yu;Tk�1
i and uniform zero initial

drawdown. As in the ME-based case, we solve the flow equations
in Laplace space and back transform the results numerically into
the time domain.

The collection of forward state vectors are then updated accord-
ing to

yu;Tk
i ¼ yf ;Tk

i þ K̂Tk dTk
i �HTk yf ;Tk

i

� �
i ¼ 1; . . . ;NMC ðA:1Þ
MC = 5,000 NMC = 50,000
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where dTk
i is obtained by perturbing the observation vector avail-

able at time step Tk, dTk , with a realization eTk
i of the random vector

eTk

dTk
i ¼ dTk þ eTk

i ðA:2Þ

and K̂Tk is the approximated Kalman gain matrix evaluated through

K̂Tk ¼ R̂f ;Tk
yy ðH

Tk Þþ R̂Tk
ee þHTk R̂f ;Tk

yy ðH
Tk Þþ

h i�1
ðA:3Þ

in which R̂f ;Tk
yy and R̂Tk

ee are the sample covariance matrices of the vec-
tors yf ;Tk

i and eTk
i , i = 1, . . .,NMC, respectively.

We assimilate the observations registered during test T2 adopt-
ing the same strategy described in Section 4 and investigate the 
effect of adopting diverse sizes of the MC sample (i.e., we employ 
NMC = 500; 5000 and 50,000). Figs. A.1 and A.2 compare spatial
k ME NMC = 500 N
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Fig. A.2. Spatial distributions of estimated log transmissivity variance at assimilation ste
and the MC-based EnKF with diverse values of NMC. Circles indicate spatial locations of
distributions of corresponding log transmissivity mean and vari-
ance, respectively, at selected time steps with ME- and MC-based 
EnKF methodologies. Fig. A.1 shows that employing NMC = 500 MC 
realizations does not yield stable mean log transmissivities, 
requiring at least NMC = 5000 realizations to identify the site het-
erogeneity pattern clearly. Mean and variance values obtained with 
a sufficiently large number of MC realizations are similar to those 
obtained with the ME-based approach.

Both approaches were implemented in parallel using a similar 
number and type (Intel i7-3930K) of processors. Whereas running 
one assimilation step of ME-based EnKF required approximately 
3 h, running 500, 5000 and 50,000 MC realizations required about 
1, 6 and 60 h, respectively. We thus see that embedding MEs in 
EnKF yields results of similar quality to those obtained with a large 
number of MC realizations, which however requires more compu-
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tational time. An additional disadvantage of the MC-based
approach is that it requires assessing the rates at which sample sta-
tistics converge to their unknown ensemble values.
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