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defined by the distribution of U and the first two (one- and two-
point) moments of G. The model, however, did not allow us to 
reconcile two seemingly contradictory observations, namely that 
whereas sample frequency distributions of Y (or its logarithm) 
exhibit relatively mild non-Gaussian peaks and tails, those of DY 

ll as other) variables, Y, 
Y, exhibit non-Gaussian 
s this to be specifically 
ier with 

decreasing separation distance or lag. Variables reported to exhibit 
one or both of these behaviors include (but are not limited to) per-

as soil textural composition, log permeability, porosity and 
unsaturated flow parameters. Previously we (Siena et al., 2012, 
lic con-

2015) were able to capture some key aspects of such scaling by 
treating Y or DY as standard sub-Gaussian random func-tions 
Y(x) =  UG(x) (e.g., Samorodnitsky and Taqqu, 1994) in which x is a 
(spatial or temporal) coordinate, G(x) is a scalable zero-mean 
stationary Gaussian random function and U is a non-negative ran-
dom variable independent of G(x). A major attraction of this model 
is that all multivariate moments of Y and DY (that exist) are fully
ductivity (Liu and Molz, 1997; Meerschaert et al., 2004; Guadagnini 
et al., 2013), porosity (Painter, 1996; Guadagnini et al., 2014, 2015), 
electrical resistivity (Painter, 2001; Yang et al., 2009), soil and 
sediment texture (Guadagnini et al., 2014), sediment transport rate 
(Ganti et al., 2009), rainfall (Kumar and Foufoula-Georgiou, 1993), 
measured and simulated turbulent fluid velocity (Castaing, 1990; 
Boffetta et al., 2008), and magnetic fluctuation (von Papen et al., 
2014). Our analysis is thus potentially relevant to subsurface as 
well as surface hydrology, geophysics, soil physics and a range of 
other disciplines.

The standard sub-Gaussian model fails to capture these behav-
iors consistently because (a) multiplying any one realization of
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G(x) by a random number U renders all realizations of Y and DY 
Gaussian, and (b) setting DY = UDG fails to ensure that both 
ensemble and sample distributions of DY scale with lag in the 
aforementioned manner. To overcome this Neuman et al. (2013) 
and Nan et al. (2015) considered a synthetic sample of Y(x) = UG(x), 
or of its increments, to consist of many Gaussian real-izations 
having random standard deviations U, also known as a Gaussian 
scale mixture. Such synthetic samples are, however, difficult to 
reconcile with real data.

Recently Riva et al. (2015) was able to overcome the above dif-
ficulty by developing a new generalized sub-Gaussian model that 
reconciles the statistical behaviors of a random function and its 
increments. These authors (a) derived analytical expressions for 
bivariate and marginal distributions of Y and marginal distribu-
tions of DY, (b) explored their results on synthetically generated 
one-dimensional realizations of Y, and (c) proposed new 
approaches to infer key parameters characterizing the probability 
density functions (pdfs) of Y and DY based on samples of one or 
(more importantly and reliably) both of these variables.

Here we extend the generalized sub-Gaussian model of Riva 
et al. (2015) to multiple dimensions, present an algorithm to gen-
erate corresponding random realizations of statistically isotropic or 
anisotropic sub-Gaussian functions and illustrate it in two dimen-
sions. We demonstrate the accuracy of our algorithm by comparing 
ensemble statistics of Y and DY (such as, mean, variance, variogram 
and probability density function) with those of Monte Carlo gener-
ated realizations. We end by exploring the feasibility of estimating 
all relevant parameters of our model by analyzing jointly spatial 
moments of Y and DY obtained from a single realization of Y.

2. Generalized sub-Gaussian model

Let the variable of interest be a stationary random function 
Y(x) = hYi + Y0(x) defined on a continuum of points, x, in multi-
dimensional Euclidean space where hYi is a constant ensemble 
mean (expectation) and Y0(x) a zero-mean random fluctuation 
about hYi. We represent Y0(x) in the generalized sub-Gaussian form 
introduced by Riva et al. (2015) as

Y 0ðxÞ ¼ UðxÞGðxÞ ð1Þ

where G(x) is a zero-mean stationary, isotropic or anisotropic ran-
dom Gaussian function and U(x) a random function of mutually 
independent, identically distributed (iid) non-negative random val-
ues independent of G(x). Admissible probability distributions of 
U(x) include (but are not limited to) a-stable, log-normal, exponen-
tial, Weibull and gamma. Riva et al. (2015) derived the statistical 
properties of Y0(x) considering U(x) to be log-normally distributed

according to U � ln Nð0; ð2 � aÞ2Þ where a < 2. In this case, the 
marginal probability density function (pdf) of Y0(x) coincides with 
the Normal Log-Normal distribution, NLN, (e.g., Guadagnini et al., 
2015 and references therein)
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where rG is the standard deviation of G. As  (2) is 
symmetric, odd-order moments of Y0 vanish while the variance 
and kurtosis of Y0 become, respectively,

r2
Y ¼ hY

02i ¼ e2ð2�aÞ2r2
G ð3Þ

hY 04i ¼ 3e8ð2�aÞ2r4
G ð4Þ

The pdf of increments, DYðs ¼ jxA � xBjÞ ¼ YðxAÞ � YðxBÞ ¼
UðxAÞGðxAÞ � UðxBÞGðxBÞ in which s is separation distance (lag)
between locations xA and xB in multidimensional space, is
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where qG is the coefficient of correlation between G(xA) and G(xB).
As (5) differs from the NLN distribution (2), the distributions of
increments DY corresponding to various lags differ from the
distribution of their parent variable, Y. From (5) one derives lead
statistical moments of DY. Once again moments of odd order vanish
due to symmetry while the variance and kurtosis of DY become,
respectively,

hDY2i ¼ 2r2
Geð2�aÞ2 ½eð2�aÞ2 � qG� ð6Þ

hDY4i ¼ 6r4
Ge4ð2�aÞ2 ½e4ð2�aÞ2 þ 1� 4eð2�aÞ2qG þ 2q2

G� ð7Þ

The distributions of Y0 and DY tend toward the Gaussian as 
a ? 2. Otherwise f Y0 is leptokurtic and fDY scales with lag because 
so does its parameter qG, the correlation function of G. Riva et al.
(2015) have shown that fDY has sharper peaks and heavier tails
at small lags than does f Y 0 when a > 2�

ffiffiffiffiffiffiffiffi
ln 3
p

� 0:95, the opposite
being true at large lags. In particular, when a P 1:8 the asymptotic
value of excess kurtosis of increments (hDY4i/hDY2i2 � 3) at large
lags becomes much smaller than 1, rendering fDY virtually
Gaussian.

The variogram and covariance of Y are given, respectively, by

cY ¼
hDY2i

2
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CY ¼ r2
Y � cY ¼ eð2�aÞ2 CG ð9Þ

where cG and CG ¼ r2
GqG are the variogram and covariance of G, 

respectively. The variogram cY is seen to include a nugget effect 
(constant value independent of lag) that vanishes in the Gaussian 
limit as a ? 2. Based on (9) one finds the (directional) integral scale

of Y to be IY ¼ e�ð2�aÞ2 
IG where IG is the corresponding integral scale 

of G. The latter shows that a lognormal subordinator dampens, but 
does not destroy, the effect that G has on the covariance structure of 
Y; the more does a deviate from its Gaussian limit of 2 the shorter is 
the (integral) correlation scale of Y.

3. Generation and analysis of synthetic functions

To illustrate the manner in which one generates synthetic real-
izations of random functions corresponding to our generalized sub-
Gaussian model we consider a two-dimensional square grid of Ne = 300 
� 300 = 90,000 squares measuring 10�2 � 10�2 in arbitrary consistent 
length units. We generate NMC = 50,000 synthetic realizations of Y0(x), x 
� {x1, x2}, on this grid according to (1) in two steps. In the first step we 
use a version of SGSIM (Deutsch and Journel, 1998) modified by us to 
generate a two-dimensional zero-mean stationary and anisotropic 
Gaussian random function, G(x), constituting truncated fractional 
Brownian motion (tfBm; Di Federico et al., 1999). The latter is an infinite 
hierarchy of mutually uncorrelated, stationary and anisotropic random 
functions or modes each of which is characterized by a (in our example 
expo-nential) variogram having anisotropy ratio a ¼ kx2 =kx1 where kx1 and 
kx2 are principal integral scales parallel, respectively, to the x1 and x2 

coordinates. The hierarchy is characterized by a truncated power 
variogram (TPV)
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A is a coefficient; H is a Hurst scaling exponent; kl and ku are lower
and upper cutoff scales proportional, respectively, to the resolution

and sampling domain scales of given data; and ~s ¼
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lag in an equivalent isotropic domain of G(x) where sx1 and sx2 are
principal lags in the original anisotropic domain. In the limits as
kl ! 0 (corresponding to point data) and ku !1 (infinite sampling
domain) G(x) becomes (nonstationary) fBm. The covariance and
correlation coefficient of G(x) are given respectively by

CGð~sÞ ¼ Cð~s; kuÞ � Cð~s; klÞ; qGð~sÞ ¼ CGð~sÞ=r2
G ð12Þ

where

r2
G ¼

A
2H
ðk2H

u � k2H
l Þ ð13Þ

C2ð~s; kmÞ ¼
Ak2H

m

2H
e�

~s
km �

~s
km

� �2H

C 1� 2H;
~s
km

� �" #
ð14Þ
Table 1
Input variables, ensemble variance hY 02i, minima/maxima of sample mean hY 0iNMC ;j

and vari
mean MY

1i and variance MY
2i across realizations i, in each test case.

Input/Ensemble values Sample moments

Test case a; a hY 02i Eq. (3) hY 0iNMC ;j� 10�2 min; max hY 02iNMC

TC1 1.0; 1.8 1.55 �2.17; 1.79 1.49; 1
TC2 1.0; 1.5 2.36 �2.55; 2.34 2.22; 2
TC3 0.5; 1.8 1.55 �2.23; 2.20 1.49; 1
TC4 0.5; 1.5 2.36 �2.81; 2.80 2.23; 2

(a)

(c)

Fig. 1. Sample variograms cY;x1 
and cY;x2 

of Y0 (symbols) along principal directions x1 an
(solid curve) in (8) for (a) TC1, (b) TC2, (c) TC3, (d) TC4.
Based on (12) one finds the principal integral scales of GðxÞ to be
IGx1 ¼
2H

1þ 2H
k1þ2H

u � k1þ2H
l

k2H
u � k2H

l

; IGx2 ¼ IGx1 a ð15Þ

Neuman (2003) provided a hydrogeologic rationale for (10)–
(15) by demonstrating mathematically that they follow directly 
from a representation of the subsurface as a juxtaposition of dis-
crete materials the attributes of which constitute random fields. As 
shown by Neuman, (10)–(15) are obtained in the limit as these 
materials overlap to form a multiple continuum (analogous to the 
widely employed but much simpler dual porosity and dual perme-
ability continua). Our realizations below are performed with A = 1,
H = 0.33, kl = 10�2 and ku = 1 which render rG ¼ 1:20. Two sets of 
realizations are generated, one isotropic with a = 1 and
IG x1 ¼ IG x2 ¼ 0:42, the other anisotropic with a = 0.5, IG x1 ¼ 0:42 
and IG x2 ¼ 0:21.

In the second step we generate a realization of Y0ðxÞ by multi-
plying each discrete value of GðxÞ at grid nodes by a random log-
normal draw of U(x). We do so twice, once by setting a = 1.8 to 
yield rY ¼ 1:25 and IY xj =IG xj ¼ 0:96 (j = 1, 2), IY xj being principal 
integral scales of Y and once by setting a = 1.5 to result in 
rY ¼ 1:54 and IY xj =IG xj ¼ 0:78. We thus obtain four test cases, 
labeled TC1–TC4, the input parameters of which are summarized 
in Table 1.
ance hY 02iNMC ;j
at grid nodes j, minima/maxima as well as mean and variance of spatial

Single realization spatial moments

;jmin; max MY
1i min; max; mean; var MY

2i min, max, mean, var

.59 �1.63; 1.68; �0.17 � 10�2; 0.13 0.83; 3.31; 1.40; 0.06

.47 �1.81; 1.87; �0.19 � 10�2; 0.17 1.27; 5.07; 2.16; 0.14

.58 �1.17; 1.15; 5.02 � 10�4; 0.08 0.93; 3.21; 1.46; 0.04

.50 �1.30; 1.29; 5.41 � 10�4; 0.10 1.43; 5.03; 2.24; 0.09

(b)

(d)

d x2, respectively, at reference point x = (1, 1) compared with theoretical variogram 



3.1. Sample versus ensemble statistics

We test the accuracy of our generation algorithm by comparing 
sample statistics of all NMC = 50,000 realizations in each test case 
with their ensemble (theoretical) counterparts. The sample mean,
hY0iNMC;j

, and variance, hY02iNMC;j
, of Y 0 vary little from one grid node 

to another in each test case. As shown in Table 1, minimum and
maximum values of hY 0iNMC;j are on the order of 10�2, close to the
ensemble value of hY 0i ¼  0, and those of hY02iNMC;j differ from hY 02i 
in (3) by less than 6% in all test cases.

Fig. 1 compares sample variograms cY;x1 
and cY;x2 

of Y 0 (symbols) 
in principal directions x1 and x2, respectively, at reference point 
x = (1, 1) compared with theoretical variogram (solid curve) in (8)
(a)

(c)

Fig. 2. Comparison of sample frequency distributions (symbols) of Y0 at reference point x
with corresponding theoretical pdfs for (a) TC1, (b) TC2, (c) TC3, (d) TC4.

(a)

(c)

Fig. 3. Comparison of 500 selected spatial frequency distributions (gray curves) of (a) Y0 a
curves) for TC1. (For interpretation of the references to colour in this figure legend, the
for the four test cases. Fig. 2 compares sample frequency distribu-
tions (symbols) of Y 0 at reference point x = (1.5,1.5), and of DY at 
three lags parallel to x2, starting from the same reference point, 
with corresponding theoretical pdfs (2) and (5), respectively, for all 
test cases. Fig. 2 clearly illustrates the way in which frequency 
distributions and pdfs of DY scale with lag. In both figures, the cor-
respondence between sample and ensemble results is excellent. 
Results of similarly high quality were obtained for other choices of 
reference point and lag (not shown).

3.2. Single realization spatial statistics and parameter estimation

Next we compare lead spatial statistics of Y 0 and DY values, 
sampled across grid nodes within each individual realization
(b)

(d)

= (1.5,1.5), and of DY at three lags parallel to x2 starting from same reference point,

(b)

(d)

nd of (b, c, d) DY at three lags parallel to x2 with corresponding theoretical pdfs (red
reader is referred to the web version of this article.)



i = 1  . . .  NMC, with their ensemble counterparts and investigate the 
feasibility of estimating pdf parameters a, rG and qG of the random 
functions Y0 and DY based on such spatial samples. We start by 
computing the spatial mean MY

1i and variance MY
2i of Y0 across each i-

th realization and comparing it with hY0i ¼ 0 and hY02i. Table 1 lists 
minima, maxima, mean values and variances (var) of MY

1i and MY
2i

across all realizations in each test case. The mean value of MY
1i is 

close to zero (on the order of 10�4 – 10�2) and that of MY
2i close to 

hY02i as given by (3) in all test cases. Though the minima and 
maxima of MY

2i differ measurably, its coefficients of variation (not 
listed) do not exceed 14%. Fig. 3 illustrates the
(a)

(c)

Fig. 4. Histograms of estimates ~ai with corresponding mean, variance and coefficient of
values a. (For interpretation of the references to colour in this figure legend, the reader

(a)

(c)

Fig. 5. Histograms of estimates ~rGi with corresponding mean, variance and coefficient of
values rG . (For interpretation of the references to colour in this figure legend, the reade
correspondence between 500 selected spatial frequency distribu-
tions of Y 0 and of DY at three lags parallel to x2, and their respective 
theoretical (ensemble) pdfs (2) and (5), for TC1. Results of similar 
quality were obtained for all other test cases (not shown).

We continue by computing i =1 .. . NMC estimates ~ai of a and ~rGi

of rG upon replacing the ensemble variance hY02i and kurtosis hY04i of 
Y0 in (3) and (4) by their respective spatial counterparts, MY

2i and MY
4i. 

Figs. 4 and 5 depict histograms of these two sets of estimates, 
respectively, listing their mean, variance and coefficient of varia-tion 
for each test case. Mean values of these estimates are seen to 
represent the input parameters a and rG quite accurately with 
coefficients of variation on the order of 10�2 in all test cases. As
(b)

(d)

variation (C.V.) for (a) TC1, (b) TC2, (c) TC3, (d) TC4. Vertical red lines indicate input
is referred to the web version of this article.)

(b)

(d)

variation (C.V.) for (a) TC1, (b) TC2, (c) TC3, (d) TC4. Vertical red lines indicate input
r is referred to the web version of this article.)



noted, however, by Riva et al. (2015) sampling Y 0 data without 
sampling their increments does not allow estimating the parame-
ter qG required to fully characterize the pdf of DY . Estimating all 
three parameters a, rG and qG requires sampling both Y0 and DY for a 
sufficiently wide range of lags. Doing so allows replacing

hY02i, hDY2i and hDY4i in (3), (6) and (7) by their sample counter-
and MDY

4iparts MY
2i, M2

D
i
Y , respectively, to yield estimates âi, r̂Gi

and q̂Gi for each realization i = 1 . . .  NMC. In contrast to a, rG and 
~ai, ~rGi which are constant, âi and r̂Gi depend on DY and thus on 
lag as do qG in (6) and (7) and its estimates q̂Gi. Fig. 6 compares 
mean of estimates âi and associated error bounds corresponding
(a)

(c)

1x
s

Fig. 6. Input parameters a (solid red), mean of estimates âi (solid black) and ~ai (solid gray
(dashed gray) versus sx1 for (a) TC1, (b) TC2, (c) TC3, (d) TC4. (For interpretation of the refe
article.)

(a)

(c)

1x
s

Fig. 7. Input parameter rG (solid red), mean of estimates r̂Gi (solid black) and ~rGi (solid
and ~rGi (dashed gray) versus sx1 for (a) TC1, (b) TC2, (c) TC3, (d) TC4. (For interpretation
version of this article.)
to their 10th and 90th percentile with mean of ~ai and its error 
bounds as well as input values of a as functions of sx1 for all test 
cases; Fig. 7 does the same for estimates of rG. Fig. 6 indicates that 
mean âi and ~ai are generally close to each other and to a, the first 
having narrower error bounds at small and intermediate lags in
two out of the four test cases. In Fig. 7 mean r̂Gi and ~rGi are gener-
ally closer to each other than to rG, having near identical error 
bounds at all lags in all four test cases. Results of comparable qual-
ity were obtained for increments parallel to x2 (not shown).
   Fig. 8 compares the input isotropic correlation function qG with 
its mean estimates q̂Gi and associated 10th as well as 90th
(b)

(d)

1x
s

), error bounds corresponding to 10th and 90th percentile of âi (dashed black) and ~ai

rences to colour in this figure legend, the reader is referred to the web version of this

(b)

(d)

1x
s

gray), error bounds corresponding to 10th and 90th percentile of r̂Gi (dashed black)
of the references to colour in this figure legend, the reader is referred to the web



(a) (b)

1x
s

1x
s

Fig. 8. Input isotropic correlation function qG (solid red), mean of estimates q̂Gi (solid black) and error bounds corresponding to 10th and 90th percentile of q̂Gi (dashed black)
versus sx1 for (a) TC1, (b) TC2. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

(a) (b)

(c) (d)

2x
s

2x
s

1x
s

1x
s

Fig. 9. Input anisotropic correlation functions qG (solid red), mean of estimates q̂Gi (solid black) and error bounds corresponding to 10th and 90th percentile of q̂Gi (dashed
black) versus sx1 and sx2 for (a–c) TC3 (b–d) TC4. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

(a) (b)

(c) (d)

Fig. 10. Histograms of estimates âi of ai with corresponding mean, variance and coefficient of variation (C.V.) for (a) TC1, (b) TC2, (c) TC3, (d) TC4. Vertical red lines indicate
input values a. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)



percentile error bounds, plotted versus sx1 , for TC1 and TC2; Fig. 9 
presents similar plots versus sx1 and sx2 for test cases TC3 and TC4 
in which qG is anisotropic. In all four cases the accuracy of q̂Gi

improves and its error bounds narrow down with decreasing lag. 
Most important to note is that, in all cases, both isotropic and prin-
cipal anisotropic qG functions lie well within the error bounds of 
their estimates.

We end our analysis by computing estimates of directional inte-

gral scales ÎGi x1 and ÎGi x2 , and of the anisotropy ratio âi ¼ ÎGi x2 =ÎGi x1 , for 
each realization i = 1 . . .  NMC by integrating each estimate q̂Gi along 
sx1 and sx2 , respectively. Fig. 10 plots histograms of âi for all four test 
cases, lists their mean, variance and coefficient of variation, and 
indicates the corresponding input values of a. The estimates are 
seen to be accurate with coefficients of variation on order of 10�1.
4. Conclusions

We presented and explored in two spatial dimensions a new 
multidimensional model of variables, Y, and increments, DY, that 
exhibit non-Gaussian statistical scaling. Our model, an extension of 
one proposed earlier by Riva et al. (2015), captures key aspects of 
such scaling, including statistical anisotropy, by treating Y as a 
generalized sub-Gaussian random function. The function is subor-
dinated to truncated fractional Brownian motion (tfBm) defined by 
two cutoff scales, one proportional to a resolution measure of given 
data and the other to a measure of their sampling domain. Its sub-
ordinator is a non-negative random function (of space or time) all 
values of which are iid, that renders Y a scale mixture of Gaussian 
tfBm with random variances. Among various possible subordina-
tors we selected in this paper one that is log-normally distributed. 
This renders Y Normal Log-Normal (NLN) with increments having a 
distribution that scales with separation distance or lag. This scal-
ing, controlled by the correlation function of the underlying tfBm, 
causes the probability density function of DY to exhibit sharp peaks 
and heavy tails at small lags, both of which decay with increasing 
lag. Our new generalized sub-Gaussian model makes it easy to 
generate multidimensional, anisotropic random realiza-tions of Y 
and corresponding increments. Having done so 50,000 times on a 
square grid of 90,000 nodes using four separate sets of input 
parameters allowed us to demonstrate close correspon-dence (a) 
between key one- and two-point sample statistics of Y and DY at 
selected nodes and their theoretical (ensemble) counter-parts as 
well as (b) between these and corresponding spatial statis-tics 
across all nodes in individual realizations. This correspondence 
made it possible for us to demonstrate, with good results, a 
methodology to estimate all parameters characterizing the proba-
bility distributions of Y and DY on the basis of their values in indi-
vidual realizations. Our ability to do so stems from the fact that, for 
given values of A and H in (11), the ratio IY/L between the integral 
scale of Y and the characteristic length scale L of the sampling 
domain is independent of L and tends to be a fraction of 1 (in other 
words, IY scales with L). The road is now open to consider subordi-
nators other than log-normal, condition Y on measured values, 
interpolate and extrapolate its statistics between and outside of 
measurement points, and model flow as well as transport stochas-
tically in randomly heterogeneous non-Gaussian environments.
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