
An Integrity Constraints Driven System for Updating Spatial
Databases

Alberto Belussi1(contact author), Mauro Negri2, Giuseppe Pelagatti2, Fabio Spinazza2

1 Dipartimento Scientifico e Tecnologico
Università degli Studi di Verona

Strada Le Grazie
37134 Verona, Italy

Fax.: +39-0458027929
belussi@sci.univr.it

2 Dipartimento di Elettronica e Informazione
Politecnico di Milano

Piazza Leonardo da Vinci
20133 - Milano, Italy

Research Session.

Abstract. This paper describes a prototypal system which has been implemented in order to
explore the possibility of using topological integrity constraints as interactive drivers to support
spatial database updates. The idea of using constraints to drive updates is applied also in traditional
(non-spatial) databases; for example, in order to preserve referential integrity, the user can be forced
to select a value in a given set, instead of permitting him to write an arbitrary value and then
checking that the value satisfies the constraint. This idea seems to be much more relevant in spatial
databases, both because spatial data possesses a much richer set of constraints, and because spatial
updates are more complex and error-prone than traditional, alphanumeric updates. The paper
first defines formally a rather general spatial database environment with integrity constraints, then
describes a prototypal system which has been built in order to explore the practical effectiveness
of the general idea (the feasibility includes performance, because the constraints are used during
the interaction with the user). The prototype which has been implemented is capable of driving
updates on a restricted set of spatial data types (polygons only) and uses a restricted class of
integrity constraints, with respect to the general definition; however, it is sufficiently powerful to
express a wide range of constraints and to demonstrate the feasibility of the approach.

1 Introduction

Geographical information systems (GIS) are nowadays a widely used tool in many application fields that
manipulate data describing phenomena or human activities that occur on the earth surface. The data
sources that feed the spatial database of a GIS at the beginning of its life are mainly surveys from aerial
photographs, topographic surveys, maps digitizing, etc. However, after the initial startup, other dataflows
guarantee the update of the spatial and non-spatial information of a GIS.

As in traditional information systems also in GIS a frequent update activity is strategic for system
availability and user confidence. Thus, it is important to design applications that support the user in this
important task.

In traditional databases the update operations have to guarantee that the user’s modifications/inputs
satisfy the integrity constraints. Integrity constraints define the consistent states of the database. Notice
that, some integrity constraints are not an obstacle for the update procedures, but, on the opposite, they
can help the user to modify correctly the database. For example, in order to preserve referential integrity,
the user can be forced to select a value in a given set, instead of permitting him to write an arbitrary value
and then checking that the value satisfies the constraint. Here, we can say that the integrity constraint
has somehow driven the update. This idea seems to be much more relevant in spatial databases, both
because spatial data possesses a much richer set of constraints, and because spatial updates are more
complex and error-prone than traditional, alphanumeric updates. In this paper we aim to investigate the
possibility of applying integrity driven updates to geographical databases.

Spatial integrity constraints have been classifed in [2]. In this taxonomy Cockcroft identifies also the
(sub)class of topological integrity constraints, emphasizing their role as basic constraints for the integrity
of geographical data. Topology is a branch of geometry concerned with geometrical properties that remain
invariant under topological transformations (rubber sheet transformation) [18]. In particular, relations
with this property of invariance are called topological relations. Topological relations have been formally
defined first in [3].

In this paper we focus on topological integrity constraints since they are able to express many mean-
ingful characteristics of geographic data. In particular, we refer to the set of topological relations proposed
in [1]. The following example shows the type of constraints we aim to deal with and the behaviour of the
system, which uses them to drive updates.

1e
 e 0

D

BA

C

(a)

P Q

R S

Road Segment
Traffic Island

A BP Q

R S D

(b)

E

C

F

A B

C DR S

X Y

P Q

(c)

E F

Fig. 1. (a) An example of geographical database containing a road segment (e0) and a traffic island (e1). (b) An
example of update without any integrity constraint checking during editing. (c) The same update in an integrity
constraint driven system (see Example 1).

Example 1 Consider a geographical database containing road segments and traffic islands, both with
polygonal representation. For each road segment the road name and the number of carriageways are
stored. Moreoever, the following integrity constraint is imposed: ”every road segment with 2 carriageways
must contain a traffic island, possibly sharing with it a part of boundary.” An admissible state of the
database is shown in Figure 1(a). In Figure 1(b) an example of update in a traditional system with no
support for integrity preservation is shown. The road segment e0 is shortened by the user moving the
segment CD to the position EF . The traffic island now violates the above described integrity constraint.
In Figure 1(c) the result of the same update in an integrity constraint driven environment is shown. In
this case the system has moved automatically, during the update, the points R and S of the traffic island
e1 to X and Y respectively, in order to preserve the constraint. Other, more complex, cases will be shown
in Section 3. 3

In the literature we find other works concerning spatial integrity constaints, in particular, in [10, 12]
an active database mechanism was applied to adjust topological integrity constraint violations. Our work
differs from these approaches since we try to drive user update in order to avoid constraint violation,

2

while active database rules react only when violations occur. Hadzilacos & Tryfona in [7] proposed the
Georelational Data Model language, that can be used also to express topological constraints. However,
they did not study the issues of integrity preservation. Also Pizano et al. in [13] proposed the use of
spatial integrity constraints to define consistent states of a spatial database, but their work referred to
pictorial databases and they focus on depiction of unacceptable states rather than on updates. Other
related works are [11, 9], which deal mainly with the design of interfaces to GIS for data retrieval.

The paper is organized as follows: in Section 2 we define formally a rather general spatial database
environment with topological integrity constraints; in Section 3 we describe the prototypal system which
has been built in order to explore the practical effectiveness of the general idea (this includes perfor-
mance, because the constraints are used during the interaction with the user); moreover some aspects of
implementation are described; in Section 4 we present conclusions and future works.

2 A reference framework for the specification of topological integrity
constraints in a spatial database schema

In this section we define a framework for the specification of topological integrity constraints in the
schema of a spatial database. In the first subsection we present the basic characteristics that we expect to
find in a spatial database schema, and in its correspondent instance. In the second subsection we define a
predicate calculus for specifying formulas with spatial interpretation and we define a topological integrity
constraint as a closed formula of this calculus.

2.1 Spatial database schema and instance

A formal definition of spatial database schema and instance is necessary for the definition of spatial
constraints. The concepts presented in this section are not new and they are present in many models for
GIS proposed in the literature (see for instance [14, 6, 7, 16, 8]). We adopt the feature-based approach,
where features are the fundamental concept for the representation of geographical phenomena as described
in [16]. The National Committee for Digital Cartographic Data Standards defines a feature as a real world
entity representation [17]. Therefore, a feature can have an arbitrarily complex structure, however, three
components are always present: the spatial location of the feature, the alphanumeric attributes of the
feature and the relations of the feature with other features. A spatial database schema is modeled here as
a set of feature types, where each feature type has exactly one spatial attribute representing the feature
location and some alphanumeric attributes.

Definition 1. (Spatial Database Schema) The schema of a spatial database is a triple S = (E , n(),DomE()):

– E = {E1, ..., En} is a set of feature types.
– n : E → IN is a function which defines the number of attributes of each feature type Ei ∈ E. The

j-th attribute of Ei is denoted by Ei.aj , 1 ≤ j ≤ n(E). Each feature type Ei has a spatial attribute
denoted as Ei.geo and an identifier denoted as Ei.a0

– DomE : E × IN → {Dnumber, Dstring} is a partial function which defines the domain of each attribute
Ei.aj. The domain of Ei.a0 is IN. The domain of Ei.geo is the spatial domain Dspatial defined below.

2

In this paper we consider only spatial objects embedded in the Euclidean plane IR2 and we restrict
our attention to three domains of discretized spatial objects [18]: a) the set of simple polygons having
a simple looped polyline as boundary, b) the set of simple polylines and c) the Euclidean plane (IR2),
whose elements are single points. Formally, the spatial domain we consider is defined as follows.

Definition 2. (Spatial Domain) The spatial domain Dspatial is the union of the following three do-
mains:

– Dpoint: it is the set IR2.

3

– Dline: it is the set of the simple polylines of IR2:

Dline ={(P0, ..., Pn) : n ≥ 2 ∧ (∀i ∈ {0, ..., n} : Pi ∈ IR2) ∧
(∀i, j ∈ {0, .., (n− 1)} : i 6= j ⇒ ((Pi 6= Pj) ∧ (Seg(Pi, P(i+1)) ∩ Seg(Pj , P(j+1)) = ∅))) ∧
(∀i ∈ {1..n− 1)} : Pn 6= Pi)

where Seg : IR2 × IR2 → 2IR2
is a function that, given a pairs of points (P1, P2), returns the set of

points of IR2 that represents the line segment from P1 to P2 without endpoints. A polyline is looped if
P0 = Pn.

– Dpolygon: it is the set of simple polygons of IR2 defined by the looped polylines of Dline.

Therefore, Dspatial = Dpoint ∪Dline ∪Dpolygon. 2

Given the above definitions, we now define the instance of a spatial database schema.

Definition 3. (Instance of a Spatial Database Schema) Given a spatial database schema S =
(E , n(), DomE) an instance of S is a set IS containing sets of instances of the feature types of S. In IS

there is one set SEi for each feature type Ei ∈ E, where each element e ∈ SEi is a tuple belonging to
the domain IN×DomE(Ei, 1)× ...×DomE(Ei, n(Ei))×Dspatial. Each set SEi must satisfy the following
constraint: (∀e1, e2 ∈ SEi : e1 6= e2 ⇒ e1.a0 6= e2.a0). With e.aj , j ∈ {0, ..., n(Ei)} we indicate the j-th
value of e ∈ SEi . With e.geo we indicate the (n(Ei) + 1)-value of e ∈ SEi . 2

2.2 A calculus for topological constraints specification

Spatial integrity constraints express the topological relations that must exist among the spatial values
e.geo of a spatial database instance IS in order to represent a consistent state of the database.

The following definitions 4-7 are based on the topological relations introduced first in [3], and refined
in [1], which are valid also for the values belonging to Dspatial.

The concepts of boundary and interior of a spatial value are the basis for the definition of the topologi-
cal relations. For each spatial value A of Dspatial the boundary and the interior are defined as follows [18]:

Definition 4. (Boundary and Interior of a spatial value) Given A ∈ Dspatial, the boundary of A
(∂A) is:

– if A is a simple polygon, the simple looped polyline that defines it.
– if A is a simple polyline p = (P0, ..., Pn), the set {P0, Pn}.
– if A is a point, the empty set.

The interior (λ◦) is defined as the difference: λ◦ = λ− ∂λ. 2

Definition 5. (Basic topological relations [1]) Given two spatial values A and B of Dspatial, the
set RelT of topological relations is the set of the following five relations:

(A Touch B) ⇔ (A◦ ∩B◦ = ∅) ∧ (A ∩B 6= ∅) ∧ (dim(A) 6= 0 ∨ dim(B) 6= 0)
(A In B) ⇔ (A ∩B = A) ∧ (A◦ ∩B◦ 6= ∅)
(A Cross B) ⇔ (dim(A◦ ∩B◦) = max(dim(A◦), dim(B◦))− 1) ∧ (A ∩B 6= A)

∧ (A ∩B 6= B) ∧ ((dim(A) = 1 ∧ dim(B) ≥ 1) ∨ (dim(B) = 1 ∧ dim(A) ≥ 1))
(A Overlap B) ⇔ (dim(A◦) = dim(B◦) = dim(A◦ ∩B◦)) ∧ (A ∩B 6= A) ∧ (A ∩B 6= B)

∧ ((dim(A) = 1 ∧ dim(B) = 1) ∨ (dim(A) = 2 ∧ dim(B) = 2))
(A Disjoint B) ⇔ (A ∩B = ∅)

where ∩ denotes the intersection and the function dim() computes the dimension of the intersection result
and returns: 0: one or more points, 1: one or more polylines, 2: one or more polygons. 2

In order to permit the application of the above defined relations also to the boundary of a spatial value,
Clementini et al. [1] defined also the following functions:

4

Definition 6. (Boundary of a polygon) The function b : Dspatial → Dspatial returns, given a spatial
value p, the polyline that defines p if p is a polygon, the empty set otherwise. 2

Definition 7. (End-points of a polyline) The functions f : Dspatial → Dspatial and t : Dspatial →
Dspatial return, given the polyline p = (P0, ..., Pn), the point P0 and the point Pn respectively. If p is not
a polyline both functions return the empty set. 2

We can now define a predicate calculus for specifing topological integrity constraints.

Definition 8. (Topological Calculus (TC(S)) - syntax) Given a spatial database schema S =
(E , n(), DomE) the syntax of the topological calculus is defined as follows:

– a set V = {e, e0, e1, ...} of feature variables: they represent instances of a feature type; the i-th com-
ponent of e is denoted by e.ai; moreover each variable e has a component e.geo.

– given a feature variable e, a simple term is any component e.ai;
– given a feature variable e, the component e.geo and b(e.geo), f(e.geo), t(e.geo) are spatial terms;
– an atomic formula can be:

• a ground formula: t1 θ t2 or t1 θ c, where t1 and t2 are simple terms, c is a constant and
θ ∈ {=, 6=, <,>,≤,≥};

• a spatial formula: s1 % s2, where s1 and s2 are spatial terms and % ∈ RelT ;
• range formula: Ei(e) where Ei ∈ E and e is a feature variable;

– if A and B are a formulas, then A ∧ B, A ∨ B, (∀e)A and (∃e)A are formulas, where e is an entity
variable;

– every formula of TC(S) has to satisfy the following constraints (safeness conditions)
• for each variable e there must exist a range formula Ei(e).
• for each subformula (∀e)A or (∃e)A, a range formula Ei(e) must be contained in A;

2

Definition 9. (Topological Calculus (TC(S)) - semantics) Given a spatial database instance IS of
a schema S, an interpretation of the TC(S) formulas in IS is obtained by assigning:

– a mapping between the constants and the elements of the basic domains: Dnumber, Dstring and
Dspatial;

– a mapping between the symbols Ei ∈ E and the sets SEi ∈ IS;
– the range formula Ei(e) is to be interpreted as the membership relation to the set SEi where this set

is obtained by the previously described mapping.
– the simple (spatial) term e.aj (e.geo) is to be interpreted as the component e.aj (e.geo) of the feature

assigned to the variable e;
– the spatial terms b(e.geo), f(e.geo) and t(e.geo) are to be interpreted applying the functions b(), f()

and t() to the component e.geo of the feature assigned to the variable e;
– the predicate symbols of ground formulas are to be interpreted as the usual equality and order relations

on numbers and strings;
– the predicate symbols of spatial formulas are to be interpreted as the topological relations RelT defined

in Dspatial.

2

Given the schema S = (E , n(), DomE) any closed formula C of TC(S) represents a topological integrity
constraint. The constraint C is satisfied by the instance IS if it is true when it is interpreted in the instance
IS .

Definition 10. (Spatial Database Schema with Integrity Constraints) The schema of a spatial
database with integrity constraints SC = (S, CS) is composed of:

– a spatial database schema S = (E , n(), DomE());
– a set of topological integrity constraints CS = {C1, ..., Cn} where each Ci (1 ≤ i ≤ n) is a closed

formula of the TC(S) calculus. Moreover, we suppose that the conjuction of the formulas C1, ..., Cn

is satisfiable, i.e. there exists an instance of S where all the formulas C1, ..., Cn are true.

2

5

3 Update Environment for Spatial Data

The introduction of spatial integrity constraints in a spatial database permits the system to check the
database content for consistency, but it could also require a considerable computational overhead in order
to perform such control. Since our aim is to use spatial integrity constraints as a driver for the user in
spatial update operations, we had to limit the complexity of the constraints in order to:

– obtain a performance which is acceptable in interactive editing, and
– keep the number of entities which are involved in a single update sufficiently small.

Therefore, we define the Simple Topological Integrity Constraint. A Simple Topological Integrity Con-
straint is a topological integrity constraint with the following limitations:

– each constraint involves at most two feature types;
– a feature type can be involved in zero, one or more constraints; the constraints of a feature type can

also be grouped to represent a disjunction of constraints;
– each constraint may contain filters that select the set of features of the two feature types that are

involved in the constraint. These filters are limited to be selection on alphanumeric feature type
attributes.

In the update environment we use only simple topological integrity constraints for driving the user in
the update operations. Moreover, in this first version of the update environment we focus only on spatial
objects of the domain Dpolygon and consequently also the spatial formula of TC(S) have been redefined to
work only on polygons. In particular, the functional symbols b(s), f(s) and t(s) (with s spatial term) have
been removed and the topological relations used in the spatial formulas s1 % s2 have been substituted by
the topological relations for areal objects defined in [1] with the Dimension Extended Method. We call
this new set of relations Relpoly

T .

The use of simple topological integrity constraints and polygons is sufficient for describing many
real/world situations and to demonstrate the effectiveness of the approach proposed in this paper. Of
course, the general constraints of TC(S) could be checked in a traditional way, but this is out of the scope
of this paper.

Definition 11. (Topological relations for polygons [1]) Considering the boundary and the interior
of the polygons A and B, the intersections between them are computed and the dimension of the not empty
result sets are considered using function dim()1. The possible cases are represented by the following vector:

(dim(∂A ∩ ∂B), dim(∂A ∩B◦), dim(A◦ ∩ ∂B), dim(A◦ ∩B◦)) ∈ {−, 0, 1} × {−, 1} × {−, 1} × {−, 2}

The simbol ”−” indicates that the result of the intersection is empty. Due to the general properties of
the boundary and interior of areal objects of IR2, the number of the admissible cases are reduced to the
following ones:

Relpoly
T = {Disjoint(−,−,−,−),Meets0(0,−,−,−),Meets1(1,−,−,−),

Overlaps0(0, 1, 1, 2), Overlaps1(1, 1, 1, 2), In(−, 1,−, 2), Contains(−,−, 1, 2),

CoveredBy0(0, 1,−, 2), CoveredBy1(1, 1,−, 2), Covers0(0,−, 1, 2), Covers1(1,−, 1, 2)}

2

Notice that all these relations are mutually exclusive. Using a result of [1], it can be proved that the
topological relations of Relpoly

T between two polygons ei.geo, ej .geo of an instance IS can be expressed in
the predicate calculus TC(S).

We call the above described refined calculus TCpoly(S). A simple topological integrity constraint is a
closed formula of TCpoly.
1 See definition 5

6

Definition 12. (Simple Topological Integrity Constraint (STIC) - syntax) Given a spatial
database schema S = (E , n(), DomE()), a simple topological integrity constraint TEi,Ej between two
feature types Ei, Ej ∈ E is composed of:

– a selection formula σ0: it is a quantifier-free formula of TCpoly(S) with only a free variable e0 and
containing only atomic ground formulas;

– a selection formula σ1: it is a quantifier-free formula of TCpoly(S) with one free variable e1 or two
free variables e0, e1; it contains only ground formulas involving e1 and/or possibly ground formulas
of the form e0.akθe1.ah.

– a symbol Q ∈ {∀, ∃};
– a constraint formula φ: it is a quantifier-free conjuction containing a disjunction of atomic spatial

formulas. φ has only two free variables e0, e1.

2

The fact that φ can only contain a disjunction of atomic spatial formulas is not a limitation. Indeed,
since all the topological relations of Relpoly

T are mutually exclusive, any conjunction of spatial formulas
is contraddictory. Notice that for safeness conditions (see Def. 8) σ0 and σ1 always contain the range
formulas Ei(e0) and Ej(e1) (possibly Ei(e0)) respectively.

Definition 13. (Simple Topological Integrity Constraint (STIC) - semantics) The semantics
of the STIC TEi,Ej = (σ0, σ1, Q, φ), denoted as Sem(TEi,Ej), is illustrated by the following two formulas
of TCpoly(S), the first one shows the semantics of TEi,Ej when Q = ∀, the second one when Q = ∃:

(∀e0)(∀e1)(σ0 ⇒ (σ1 ⇒ φ)) (1)

(∀e0)(∃e1)(σ0 ⇒ (σ1 ∧ φ)) (2)

2

Given an instance IS of a spatial database schema S, a STIC TEi,Ej :

– is satisfied by IS if the formula Sem(TEi,Ej) is true when TCpoly(S) is interpreted in IS ;
– is satisfied by a given feature e0 ∈ SEi , SEi ∈ IS , if, considering the formula Sem(TEi,Ej) without

the first quantifier, this formula is true when TCpoly(S) is interpreted in IS and the variable e0 is
assigned the feature e0.

– is active for e0, if the formula σ0 is true when the variable e0 is assigned the feature e0.

Notice that, when Q = ∀, the STIC TEi,Ej constrains also all e1 ∈ Ej , i.e. the STIC is somehow
symmetrical. We extend the definition of spatial database schema including also a set TS containing sets
of simple topological integrity constraints. We denote the extended schema as SCT = (S,CS , TS). Each
set of STIC represents a disjuction of constraints. The STICs of a set have all the same Ei, i.e. they
represent alternative constraints for the same feature type Ei. An instance IS satisfies the set TS , if it
satisfies each set of STICs it contains. A set of STICs {TEi,Ej1

, ..., TEi,Ejn
} is satisfied by an instance IS ,

only if it satisfies at least one STIC TEi,Ejk
of the set.

Example 2 Consider the database schema of the example 1:

S =({RoadSegment, TrafficIsland}, n(), DomE()).

n() ={(RoadSegment, 2), (TrafficIsland, 0)}
DomE() ={(RoadSegment, 1, Dstring), (RoadSegment, 2, Dnumber)}

We suppose that the first attribute of RoadSegment represents the name of the road and the second
one represents the number of carriageways.

If we want to specify the integrity constraint: ”every road segment with two carriageways must contain
a traffic island, possibly sharing with it a part of the boundary.” we can write the following STIC for
the RoadSegment feature type:

TRoadSegment,TrafficIsland =(RoadSegment(e0) ∧ (e0.a2 = 2), T rafficIsland(e1), ∃,
(e0.geo Covers0 e1.geo) ∨ (e0.geo Covers1 e1.geo) ∨ (e0.geo Contains e1.geo))

7

The semantics of TRoadSegment,TrafficIsland is the following one:

Sem(TRoadSegment,TrafficIsland) = (∀e0)(∃e1)((RoadSegment(e0) ∧ e0.a2 = 2) ⇒ (TrafficIsland(e1)

∧ ((e0.geo Covers0 e1.geo) ∨ (e0.geo Covers1 e1.geo)

∨ (e0.geo Contains e1.geo)))

3

3.1 Representing polygons and simple topological constraint instances

Let IS be an instance of a spatial database schema with integrity constraints SCT = (S, CS , TS). In order
to be able to manage the update of the spatial attribute e.geo of all features e ∈ SEi with SEi ∈ IS , and
to drive the user to preserve the STIC ∈ TS , a possible solution is to store explicitly in a common data
structure:

– the spatial database schema S together with the STICs of TS ;
– the spatial values e.geo of the spatial database instance IS together with a subset of the topological

relation instances among e.geo values of IS that must be preserved to satisfy the STICs of TS . A
topological relation instance e0 % e1 represents the fact that e0.geo is in the topological relation %
with e1.geo.

The satisfaction of a STIC by a feature e is materialized in a set of topological relation instances among
e and the other features ej of IS . Notice that, the calculation on the fly of such relation instances is
not computationally feasible. We call these topological relation instances Simple Topological Integrity
Constraint Instances or simply STIC Instances. Our approach is based on the manipulation of this set of
topological relation instances.

The following definition presents an abstract data structure for storing a set of STIC instances. It is
used to describe our approach at high level; many different implementations are possible.

Definition 14. (Simple Topological Integrity Constraint Instances) Given an instance IS of a
spatial database schema with integrity constraints SCT = (S,CS , TS), the data structure ISTIC(IS , TS)
contains sets of 4-tuples (e0, e1, r, TEi,Ej). Each 4-tuple indicates that the feature e0 is in the topological
relation r with the feature e1 and the preservation of this relation is sufficient (Q = ∃) or is necessary (Q =
∀) to guarantee the satisfaction of a STIC TEi,Ej belonging to a set of TS. We consider sets of 4-tuples
instead of single 4-tuples, for two reasons: a) for a STIC with existential quantifier (∀e0)(∃e1)(P (e0, e1))
there could be more than one feature e1 that makes P (e0, e1) true; b) a set of STICs in TS represents a
disjuction of constraints, thus more than one 4-tuple could exist in ISTIC when more that one constraint
of the set is satisfied. Thus, ISTIC can be defined as follows:

ISTIC(IS , TS) ⊆ 2UE×UE×Relpoly
T ×UTS

where UTS is the union of all sets of STICs of TS. 2

Example 3 Considering the STIC of the previous example 2 and the spatial database instance shown in
Figure 1(a), the content of the ISTIC substructure is:

ISTIC = {{(e0, e1, Covers1, TRoadSegment,TrafficIsland)}}

A more complex situation is shown in appendix A. 3

The structure ISTIC(IS , TS) stores a set of topological relation instances whose preservation guaran-
tees the satisfaction of the STICs defined at schema level. By defining update operations that preserves
such relations, we preserve also the satisfaction of the STICs defined in the schema. Notice that:

– not all topological relations among the ei.geo values of the spatial database instance IS are stored in
ISTIC , but only a subset that guarantees to preserve database integrity. This subset is not unique.

– Given a STIC TEi,Ej and an feature e0 belonging to Ei that satisfies TEi,Ej , there always exists a set of
4-tuples {(e0, ej1 , r1, TEi,Ej), ..., (e0, ejn , rn, TEi,Ej)} (ej1 , ..., ejn ∈ Ej) whose preservation guarantees
that TEi,Ej is always satisfied by e0. Indeed, this set in the worst case coincides with the set of all
topological relation instances that e0 has with the other features of the database.

8

Primitive Description Available in
Signature Operations

Create Poly(P , ei) It creates a polygon for the at-
tribute ei.geo containing a single
vertex P .

{I}

Insert Segm(s, ei) It adds the segment s to the poly-
gon ei.geo.

{I}

Split Segm(P , s, ei) It splits at the point P the segment
s of the polygon ei.geo.

{I,C,WC}

Merge Segm(s1, s2, ei) It merges the segments s1 and s2 of
the polygon ei.geo.

{I,C,WC}

Move Vert(V , P , ei) It moves the vertex V of the poly-
gon ei.geo to the new position P .

{I,C,WC,SC}

Delete Poly(ei) It removes the polygon of the at-
tribute ei.geo

{D}

Table 1. Available primitives during the update session. In the 3rd column the set indicates the operations in
which the primitive can be invoked (I: insert, C: conservative update, WC: weak conservative update and SC:
strong conservative update)

3.2 A framework for simple topological integrity constraints driven update

In this subsection we present an update environment that allows the user to modify an instance IS of a
spatial database schema with integrity constraints SCT (S, CS , TS). In particular, given a feature e ∈ SEi

with SEi ∈ IS , we consider the modification of the attribute e.geo, the deletion of e, the update of the
alphanumeric attributes e.aj , and the insertion of a new feature e belonging to a feature type Ei ∈ E .

The update environment requires the user to specify the feature e that he/she wants to update or
delete, or the feature type Ei in case of insertion. Chosen the feature (or the feature type) to work with,
the user has four update operations at disposal (for each operation Table 1 shows the available primitives):

– INSERT: It allows the addition of a new feature eins of the chosen feature type Ei. It requires the
input values for the alphanumeric attributes eins.aj (1 ≤ j ≤ N(Ei))), and the specification of
a polygon for the attribute eins.geo that satisfies all the STICs of TS . Before opening the update
session, the system generates some temporary data structures:
• The set Temprelations: it contains the topological relation instances that the new feature eins

must satisfy with the other features of the database according to the STICs of the schema;
the system interacts with the user to define: a) the STICs to satisfy if ,for Ei, there exist sets
{TEi,Ej1

, ..., TEi,Ejn
} representing a disjuction of STICs; at least one STIC must be chosen; b)

the features e1 ∈ Ejk to be considered for the satisfaction of the chosen STICs with existential
quantifier; c) the spatial formula to satisfy for the STICs that have a disjunction of spatial formulas
as constraint formula φ.
If in a set the choosen STICs are all with existential quantifier and for all of them there does not
exist any e1 ∈ Ejk that makes true σ1, then the insert operation is aborted.
During the insert operation, when a topological relation instance is satified, it is deleted from
Temprelations and added to the data structure ISTIC .

• The set Tempscene: it contains the topological relation instances of the database involving the
features that appear in Temprelations together with the requested topological relation instances
of Temprelations. An analysis of satisfyability is performed on the set of topological relations
Tempscene using the approach defined in [5]. If the test is negative, then the insert operation is
aborted. Otherwise, the update session can be opened.

• the set Tempsegments: it contains the topological relation instances that exist among each segment
of eins and the other features that appear in Temprelations.

Considering the topological relation instances of Temprelations (they will have to be satisfied by eins),
each new segment of eins is accepted only if it satisfies the conditions shown in the second column
of Table 2. These conditions are necessary conditions to obtain, between eins.geo and ej .geo, the

9

relation shown in the first column. At the end the polygon eins.geo is accepted only if it satisfies
the conditions show in the third column of Table 2. The conjunction of the conditions shown in the
second and third columns of Table 2 represents a sufficient condition to obtain between eins.geo and
ej .geo, the relation shown in the first column. The sufficiency and the necessity of these conditions
follow trivially from the properties of simple polygons.

– UPDATE OPERATIONS: These operations permit the modification of the attribute e.geo of the
chosen feature e. When necessary these operations use the previously described temporary data
structures. Three different versions of update are available: strong conservative update, conservative
update and weak conservative update. In the first two versions, the modification of a segment is
accepted only if it satifies the conditions of the second and third columns of Tables 2. In the third
version, the same conditions are checked only at the end of the operation.
1. STRONG CONSERVATIVE UPDATE: This version does not allow any geometric change that

modifies the content of the temporary structure Tempsegments, containing the relations among the
segments of e and the other features of the database, which are involved with e in any topological
relation instance of ISTIC .
The primitive Move V ert(V, P, e) (see Table 1), if the vertex V is shared by e with another
feature ej , moves also the vertex of ej only if this is necessary to preserve a relation between the
segments of e, which has V as end-point, and ej .
Figure 2(a) shows an example of strong conservative update.

2. CONSERVATIVE UPDATE: This version does not allow any geometric change that produces
the loss (even if temporary) of the satisfaction of a disjunction of STICs beloging to TS .
The primitive Move V ert(V, P, e), if the vertex V is shared by e with another feature ej , moves
also the vertex of ej only if this is necessary to preserve a disjunction of STICs of TS .
Figure 2(b) shows an example of conservative update.

3. WEAK CONSERVATIVE UPDATE: This version allows temporary violations of the STICs of
TS . However, the final state of the polygon e.geo must satisfy the STICs of TS .
During a weak conservative update the user can also modify the choices he/she did concerning
the topological relation instances that e has to satisfy (see INSERT); in this case an analysis of
satisfyability is performed as for the insert operation.
The primitive Move V ert(V, P, e), if the vertex V is shared with another feature ej , never moves
also the vertex of ej .
Figure 2(c) shows an example of weak conservative update.

– DELETE: It allows the elimination of the chosen feature e. Moreover, it checks the data structure
ISTIC to identify the elements to be removed. If the deletion of a 4-tuple (e, ej , r, TEi,Ej

) in a set of
ISTIC makes one STIC of TS false the elimination of e is rejected. In this case the deletion can be
performed only after a weak conservative update of the feature ej that has blocked the deletion.

– ALPHANUMERIC UPDATE: It allows the update of the attributes a1, ..., an(Ei) of e. Moreover, it
checks if one of the following situations occurs:
• The modification of the alphanumeric attribute e.ak activates a STIC TEi,Ej

of a set and this is
the first STIC of that set to be activated by e. In this case, interacting with the user, new sets of
topological relation instances are added to the Temprelations structure, and a weak conservative
update is performed.

• The modification of the alphanumeric attribute e.ak makes the σ1(e) of a STIC TEj ,Ei
with

existential quantifier false. In this case, the 4-tuple (ej , e, r, TEj ,Ei
), if present in a set of ISTIC ,

should be removed from the set. However, if this set becomes empty, the update of e.ak is rejected.
The update can be performed only after a weak conservative update of the feature ej that has
blocked the operation.

• The modification of the alphanumeric attribute e.ak, disactivates a STIC TEi,Ej
. In this case, all

the 4-tuples of ISTIC involving e are removed.

A system that adops this update environment should supply also a transactional update in order to
allow the user to modify more istances e1, ..., en and performing the check of the STICs preservation at
the end of the transaction.

10

R S R S R S D

BA P Q

C D

FYXE

P Q BA A P Q B
G H

CC

E X Y F

D

FYXE

(b) (c)(a)

Fig. 2. Examples of strong conservative (a), conservative (b), and weak conservative (c) update. Notice that, the
conservative update (b) allows the segment CD to be moved to the new position EF without moving also the traffic
island, since the satisfaction of the STICs instances of ISTIC (see example 3) is preserved by the segment PQ. In
the weak conservative update (c), the user before closing the operation must substitute in ISTIC the STIC instance
representing the Covers1 relation with a STIC instance representing a Contains relation as admitted by the STIC
of the schema shown in example 2.

3.3 Implementation

The system has been implemented using the development tools of Geomedia ProfessionalTM of Intergraph.
The implementation details are described in [15].

The following two issues which have been encountered during system implementation are worth men-
tioning.

1. In order to reduce the cardinality of the set ISTIC the 4-tuples of the form (e0, e1, Disjoint,REi,Ej)
are not stored in the data structure implementing ISTIC . During the update operations this structure
is completed with the subset of 4-tuples representing the disjoint relations that are necessary to check
the satisfaction of the integrity rules for the modifing feature e. The choice of the disjoint relation is
not casual, since, considering a geographical database, the only topological relation that can produce
sets of topological relation instances of high cardinality is the disjoint one as it does not require that
the spatial objects have common points.

2. Before opening an update session, the user is requested to define a working area, which is a rectangle
embedded in the reference space that contains the chosen feature ei to be updated (deleted) or that
will contains the new feature ei in case of insertion. In this way, the size of the temporary structure
Tempsegments can be reduced.

4 Conclusion and future works

In this paper we have presented a framework for the specification of topological integrity constraints and
have shown that a subset of these constraints (Simple Topological Integrity Constraint) can be used to
drive the update activity of the user, thus maintaining database integrity. Moreover, the implemented
system has demonstrated that the approach is feasible.

11

Spatial formula e0.segment Accept Conditions e0.geo Accept Conditions
e0 Disjoint e1 e0.segment Disjoint e1.geo ¬(e1.geo In e0.geo)
e0 Meets0 e1 e0.segment Disjoint e1.geo ∨ (∃segmenti ∈ e0.geo)(segmenti Touch e1.geo ∧

(e0.segment Touch e1.geo ∧ dim(e0.segmenti ∩ ∂(e1.geo)) = 0)
dim(e0.segment ∩ ∂(e1.geo)) = 0)

e0 Meets1 e1 e0.segment Disjoint e1.geo ∨ (∃segmenti ∈ e0.geo)(segmenti Touch e1.geo ∧
e0.segment Touch e1.geo dim(e0.segment ∩ ∂(e1.geo)) = 1))

e0 Overlaps0 e1 ¬(dim(e0.segment ∩ ∂(e1.geo)) = 1) (∃segmenti ∈ e0.geo)(segmenti Cross e1.geo) ∨
(∃segmenti, segmentj ∈ e0.geo)
(segmenti In e1.geo ∧ segmentj Touch e1.geo
∧ dim(e0.segment ∩ ∂(e1.geo)) = 0)

e0 Overlaps1 e1 no conditions (∃segmenti ∈ e0.geo)
(dim(e0.segment ∩ ∂(e1.geo)) = 1) ∧
((∃segmenti ∈ e0.geo)(segmenti Cross e1.geo) ∨
(∃segmenti, segmentj ∈ e0.geo)
(segmenti In e1.geo ∧ segmentj Touch e1.geo))

e0 In e1 e0.segment In e1.geo ∧ no conditions
(e0.segment ∩ ∂(e1.geo)) = ∅

e0 Contains e1 e0.segment Disjoint e1.geo e0.geo Contains e1.geo
e0 CoveredBy0 e1 e0.segment In e1.geo ∧ (∃segmenti ∈ e0.geo)

(dim(e0.segment ∩ ∂(e1.geo)) = 0 ∨ (dim(segmenti ∩ ∂(ei.geo)) = 0)
(e0.segment ∩ ∂(e1.geo)) = ∅

e0 CoveredBy1 e1 e0.segment In e1.geo (∃segmenti ∈ e0.geo)(segmenti Meet1 e1.geo))
e0 Covers0 e1 e0.segment Disjoint e1.geo ∨ (∃segmenti ∈ e0.geo)(segmenti Meet0 e1.geo))

e0.segment Meets0 e1.geo
e0 Covers1 e1 e0.segment Disjoint e1.geo ∨ (∃segmenti ∈ e0.geo)(segmenti Meet1 e1.geo))

e0.segment Meets0 e1.geo ∨
e0.segment Meets1 e1.geo

Table 2. Conditions to be checked during update sessions. e0.segment represents the segment that has been
inserted or modified during the update session.

Future works includes: the removal of some of the limitations to STICs discussed in Section 3; the
extension of the update environment to include also polylines and points. Moreover, the development
and experimentation with the system has shown that the approach could be useful in preserving also
topological relations, which are not defined as constraints at schema level, but which exist in the database
instance and have been explicitely recognized during the update activity.

References

1. E. Clementini, P. Di Felice, and P. van Oosterom. A Small Set of Formal Topological Relationships Suitable
for End-User Interaction. In Proc. 3nd Symposium on Spatial Databases, pages 277-295, 1993.

2. S. Cockcroft. A Taxonomy of Spatial Data Integrity Constraints Geoinformatica , 1(4):327-343, 1997.
3. M. J. Egenhofer, and R. D. Franzosa. Point-set Topological Spatial Relations. International Journal of

Geographical Information Systems, 5(2):161-174, 1991.
4. M. J. Egenhofer. Reasoning about Binary Topological Relations. In Proc. 2nd Symposium on Spatial

Databases, pages 143-160, 1991.
5. M. J. Egenhofer, and J. R. Herring. Categorizing Binary Topological Relationships between Regions, Lines,

and Points in Geographic Databases. Technical report, Department of Surveying Engineering, University of
Orono, ME, 1992.

6. R.H. Güting and M. Schneider. Realm-Based Spatial Data Types: The ROSE Algebra. VLDB Journal,
4:243-286, 1995.

7. T. Hadzilacos, and N. Tryfona. Logical Data Modelling for Geographical Applications. International Journal
of Geographical Information Systems, 10(2):179-203, 1996.

8. T. Hadzilacos, and N. Tryfona. An Extended Entity-Relationship Model for Geographic Applications. SIG-
MOD Record, 26(3):24-29, 1997.

12

9. G. Koesters, B. U. Pagel, and H. W. Six, GIS-Application Development with GeoOOA. International Journal
of Geographical Information Science, 11(4):307-335, 1997.

10. R. Laurini, and F. Milleret-Raffort. Topological Reorganization of Inconsistent Geographical Databases: A
Step Towards their Certification. Computers and Graphics, 18(6):803-813, 1994.

11. J. Lopes de Oliveira, C. B. Mendeiros, and M. Cilia. Active Customization of GIS User Interfaces. In Proc.
ICDE’97, pages 487-496, 1997.

12. C. B. Medeiros, and M. Cilia. Maintenance of Binary Topological Constraints through Active Database. In
Proc. 3rd ACM Workshop on Advances in GIS, pages 127-134, 1995.

13. A. Pizano, A. Klinger, and A. Cardenas. Specification of Spatial Integrity Constraints in Pictorial Databases.
IEEE Computer, pages 56-71, December 1989.

14. M. Scholl and A. Voisard. Thematic Map Modeling. In LNCS 409: Proc. of the Int. Symp. on the Design
and Implementation of Large Spatial Databases, pages 167–190, 1989.

15. F. Spinazza. Il controllo di vincoli topologici in fase di editing di dati spaziali. thesis, Politencnico di
Milano, 1999.

16. A. Y. Tang, T. M. Adams, and E. L. Usery. A Spatial Data Model Design for Feature-based Geographical
Information Systems. International Journal of Geographical Information Systems, 10(5):643-659, 1996.

17. USGS. Spatial data transfer standard. Department of the Interior, U.S. Geographical Survey, National
Mapping Division, 1990.

18. M. F. Worboys. GIS: A Computing Perspective. Tailor & Francis, London, 1995.

A Another example of spatial database with STICs

In this appendix we show another example of spatial database with simple topological integrity con-
straints. We present the spatial database schema S, the set of STICs TS , the spatial database instance
IS and the content of the structure ISTIC .

The schema S is defined as follows:

S =({River, Canal, UrbanArea,Waterworks}, n(), DomE())

n() ={(River, 1), (Canal, 1), (UrbanArea, 2), (Waterworks, 2)}
DomE() ={(River, 1, Dstring), (Canal, 1, Dstring), (UrbanArea, 1, Dstring),

(UrbanArea, 2, Dnumber), (Waterworks, 1, Dstring), (Waterworks, 2, Dnumber)} (3)

The first alphanumeric attribute of all feature types represents the name of the feature. The second
attribute of UrbanArea stores the population of each urban area and the second attribute of Waterworks
stores the type of each plant (0: dam, 1: lock, etc.).

TS contains the following STICs:

TS = {{TUrbanArea,River}, {TUrbanArea,Canal}{TCanal,UrbanArea},
{TWaterworks,River, TWaterworks,Canal}}

where:

TUrbanArea,River = (UrbanArea(e0), River(e1),∀, (e0.geo Disjoint e1.geo) ∨
(e0.geo Meet1 e1.geo) ∨ (e0.geo Meet0 e1.geo))

TUrbanArea,Canal = ((UrbanArea(e0), Canal(e1), ∀, (e0.geo Disjoint e1.geo) ∨
(e0.geo Meet1 e1.geo) ∨ (e0.geo Meet0 e1.geo))

TCanal,UrbanArea = (Canal(e0), (UrbanArea(e1), ∃, (e0.geo Meet1 e1.geo)

TWaterworks,River = (Waterworks(e0), River(e1), ∃, (e0.geo CoveredBy1 e1.geo) ∨
(e0.geo CoveredBy0 e1.geo) ∨ (e0.geo Meet1 e1.geo))

(e0.geo Overlap0 e1.geo) ∨ (e0.geo Overlap1 e1.geo))

13

TWaterworks,Canal = (Waterworks(e0), Canal(e1), ∃, (e0.geo CoveredBy1 e1.geo) ∨
(e0.geo CoveredBy0 e1.geo) ∨ (e0.geo Meet1 e1.geo))

(e0.geo Overlap0 e1.geo) ∨ (e0.geo Overlap1 e1.geo))

The instance IS is shown in Figure 3 and the content of the ISTIC structure for the instance IS is the
following one:

ISTIC = {{(e0, e1,Meet1, TUrbanArea,Canal), (e0, e6, Disjoint, TUrbanArea,Canal)},
{(e0, e4, Disjoint, TUrbanArea,River)},
{(e1, e0,Meet1, TCanal,UrbanArea), (e1, e2, Meet1, TCanal,UrbanArea)}
{(e2, e1, Meet1, TUrbanArea,Canal), (e2, e6,Meet1, TUrbanArea,Canal)},
{(e2, e4, Disjoint, TUrbanArea,River)},
{(e3, e6, CoveredBy1, TWaterworks,Canal)},
{(e5, e4,Meet1, TWaterworks,River)}}

Notice that the first and the fourth set of ISTIC contains two 4-tuples, representing a STIC with
universal quantifier; also the third set contains two 4-tuples, but in this case a STIC with existential
quantifier is represented. This implies that the topological relation instances of the first and fourth set
are necessary conditions, while the topological relation instances of the third set are sufficient conditions.

e

e

e

e

e

e6

2

0

1

4

5

3
e

Fig. 3. Example of spatial database instance on the schema (3). The features of the scene belong to the following
types: e0, e2 ∈ SUrbanArea, e1, e6 ∈ SCanal, e3, e5 ∈ SWaterworks, e4 ∈ SRiver

14

