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1. Introduction

The inclusion of the Purkinje system in the computational models of the electrical activity of the ventricles is fundamental 
to obtain accurate and realistic numerical results. Indeed, this system, composed by the Purkinje fibers (PF), provides the 
electrical signal (the depolarization wave) to the ventricular muscle. This allows, in normal conditions, the rapid and coordi-
nate activation of the ventricles [10], and then the correct pumping of the blood flow into the arteries. PF are electrically 
connected to the ventricular muscle only at certain insertion sites, called Purkinje muscle junctions (PMJ) [18]. From these 
sites the depolarization wave enters the heart muscle, allowing for the ventricular excitation and contraction [2].

Despite the essential function of PF in the coordinated activation of the ventricles, they have been usually neglected in 
the computational models. This was mainly due to the difficulty in obtaining in vivo images of PF from radiological analyses, 
since they are excessively thin for the current clinical imaging resolution. For this reason, the inclusion of the PF in the 
computational models has been often obtained by means of surrogate models such as the definition of space-dependent 
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conduction muscular properties [23]. There have been, however, some attempts to incorporate PF in the 
computational models. In particular, three alternatives have been proposed so far to generate a Purkinje network:

i) Segmentation from ex-vivo images [4,26];
ii) A manual procedure based on anatomical knowledge [28,3];
iii) Computational algorithms based on a fractal law [1,12,21].

Among the three alternatives described above, only strategy i) allows to recover patient-specific information on the net- 
work, provided that ex-vivo images are available, which is not a common situation. The second and the third strategies are 
driven only by general anatomical information and therefore do not give the possibility to generate patient-specific net-
works. Nevertheless, strategy iii) is very appealing from the computational point of view, since it can be easily incorporated 
in an available code for the simulation of the electrical activity of the heart.

In this work, we adapted strategy iii) to make it patient-specific by using clinical measurements of the electrical acti-
vation in the ventricle to locate accurately the PMJ. In particular, we considered the case of an electrical propagation in 
the muscle originated from sources located on the endocardium. This is a very common situation, occurring for example 
for a normal propagation or for an ischemic case, where the sources are all identified with the PMJ. The proposed method 
has been already considered in [29] for an application to three real cases characterized by a normal electrical activity and 
compared with other strategies proposed so far, obtaining very promising results in terms of accuracy, whereas its extension 
to pathological situations has been addressed in [17].

In this paper we aimed at describing in detail the proposed method and provide an exhaustive computational study 
of its accuracy and robustness. To this aim, we applied our method to ideal and real geometries with synthetic measures 
generated by solving a forward problem, and to a real case with patient-specific clinical measures.

A cross-validation test and the generation of noisy data show that our method is accurate and robust for both 
geometries. In particular, our method always features a better accuracy in terms of error with the measures with respect to 
the case of a non-patient-specific Purkinje network.

The outline of the work is as follows. In Section 2 we introduce the mathematical models considered for the computation 
of the activation times in the ventricle and in the Purkinje network. In Section 3 we detail our method for the generation of 
a patient-specific Purkinje network in the case of endocardial sources. In Section 4 we show several numerical results in 
an idealized geometry to highlight the accuracy and the robustness of our method. Finally, in Section 5 we show the 
application of our algorithm to a real case obtained by considering patient specific geometry and measures, and we 
simulate an ischemic case.

1.1. A summary of variables and unknowns

We want here to summarize all the variables and unknowns introduced in the text.

um(x), ue(x), up(x) Activation times in the myocardium, on the endocardium and in the Purkinje network, 
respectively;

Ωm,Ωe,Ωp Computational domains representing the myocardium, the endocardium and the Purkinje 
network, respectively;

Γm,Γe,Γp Part of the domain where the boundary conditions representing the source terms are applied in 
the myocardium, endocardium and Purkinje network, respectively;

Vm, V e, V p Conduction velocity along the muscular fibers in the myocardium, on the endocardium and in 
the Purkinje network, respectively;

D Anisotropic tensor accounting for the muscular fibers;
N Number of measurements;
M Number of PMJ;
x1, . . . , xN Coordinates of the points where the measures were acquired;
T1, . . . , T N Measured activation times;
w1, . . . , w M Coordinates of the bases of the leaves;
y1, . . . , yM Coordinates of the PMJ;
τ1, . . . , τM Activation times computed at the PMJ by solving the 1D Eikonal problem in the network;
t1, . . . , tN Activation times computed at the measurement points xi by solving the Eikonal problem on the 

endocardium or in the myocardium.

2. Modeling the electrical activity

2.1. The electrical activation in the ventricular muscle

2.1.1. The anisotropic 3D Eikonal problem
The algorithm for the generation of a patient-specific Purkinje network we are going to describe in Section 3 is based on the 
computation of the discrepancy between the measured and the computed activation times, defined as the instant at 



Fig. 1. Characteristic waveform representing the action potential of a heart cell.

which the potential W reaches the value (W r + W p )/2, where W r is the minimum value and W p the value reached at the 
plateau (see Fig. 1). The activation times could be obtained computationally by solving suitable mathematical models. Classi-
cal models for the mathematical description of the electrical activity in the ventricles are the Bidomain and the Monodomain 
models [9,14,30,6], which consist in modeling the ventricular tissue as a functional syncytium of electrically coupled cells 
and in deriving continuous models of reaction–diffusion equations. Such models describe the electrical potential in each 
point of the ventricle and at each time. As a byproduct, activation times can be computed.

In this work, we decided to consider a simplified model derived from the Bidomain one, suitable when one needs to 
know only the activation times, that is the anisotropic Eikonal equation [13,7]. It describes the activation time in any point of 
the computational domain, and it has been proved to be a good approximation of the more complex Bidomain one [7]. Such 
a model is far less expensive in term of computational time than the Bidomain or the Monodomain ones, since it is a steady 
problem and it does not exhibit an internal or boundary layer as happens when considering such models [7]. Recently, the 
Eikonal model has been considered also for clinical applications [27].

Let Ωm be the three-dimensional computational domain related to the muscular propagation and um = um(x) the un-
known activation time. Then, the anisotropic Eikonal model reads{

Vm

√
(∇um)T D∇um = 1 x ∈ Ωm,

um(x) = um,0(x) x ∈ Γm,
(1)

where Vm = Vm(x) is the conduction velocity along the muscular fibers in the myocardium (possibly depending on space), 
D ∈ R

3×3 is the anisotropic tensor which accounts for the orientation of the muscular fibers, Γm is the set of source points 
generating the front and um,0(x) is the value of the activation time on Γm . For the anisotropic tensor in this work we used 
the following expression

D(x) = k2 I + (
1 − k2)a(x)a(x)T , (2)

where k is the ratio between the conduction velocity orthogonal to the fibers direction and that along the fibers, and a gives 
for each point x the unit vector tangential to the fibers [7].

A more complex version of Eq. (1) includes also a diffusion term which accounts for the diffusion process characterizing 
the front (anisotropic Eikonal-diffusion equation [7]). Such a term  describes the relationship between the velocity of prop-
agation and the curvature of the wave-front. However, as a first step in the direction of building patient-specific Purkinje 
networks, in this work we neglected such a contribution. The validity of such an approximation is supported by the results 
obtained in [29], where an excellent accuracy has been found when testing our method with real clinical data.

2.1.2. An approximation of the 3D problem: the isotropic Eikonal problem on the endocardium
As described later on, when the sources for the muscular activation are all located on the endocardium, then in our 

method for the generation of a patient-specific network it will be enough to solve a muscular problem only on the endo-
cardium (see hypothesis H1 in Section 3). Moreover, to simplify the proposed algorithm, for the description of the electrical 
activity on such a surface, we considered the isotropic Eikonal problem. This is of course an approximation, justified by 
the observation that it is nowadays very hard to have information about the muscular fibers. However, as shown by the 
numerical experiments reported in Sections 4 and 5, this choice leads to an excellent accuracy. In particular, let Ωe be 
the computational domain related to the endocardium and ue = ue (x) the unknown activation time. Then, the isotropic 2D 
Eikonal model reads{

V e|∇ue| = 1 x ∈ Ωe,

ue(x) = ue,0(x) x ∈ Γe,
(3)

where V e = V e(x) is the muscular conduction velocity on the endocardium, Γe is the set of source points generating the 
front and ue,0(x) is the value of the activation time on Γe .



We observe that the velocity V e in problem (3) should be thought of as a surrogate uniform value of the anisotropic 
non-uniform endocardial velocity derived from Vm. In our numerical experiments V e has been determined as the value that 
best agrees with the measures.

We point out that in accordance with the observations done for the 3D problem, we neglected also in this case the 
diffusion term.

2.2. The electrical activation in the Purkinje network

To solve problems (1) and (3) we need to provide the boundary conditions (1)2 and (3)2 on Γm and Γe , respectively, 
which represent the points where the electrical activation starts. In a normal propagation, Γm and Γe coincide with the PMJ 
since the signal traveling along the Purkinje network enters the muscle through these junctions. In particular, we observe 
that once the electrical signal has reached the PMJ, it enters the ventricle with a delay do of about 5–10 ms [11] (anterograde 
or orthodromic delay).

We then need a mathematical model also to describe the propagation in the Purkinje network. In this respect, it is 
possible to consider one-dimensional Monodomain [31,22,19] and Bidomain [4] models. In particular, in [19] the effect of the 
Purkinje network on the cardiac resynchronization therapy has been investigated, whereas in [22] the authors extracted 
from images information about the morphology of the fibers. However, since we were interested in computing only the 
activation times in the network (in particular at the PMJ) and not the whole action potential, we considered again the 
Eikonal equation.

Let Ωp be the one-dimensional computational domain given by the Purkinje network and up = up (x) the unknown 
activation time in the network. Then, the Eikonal model reads⎧⎨⎩ V p

∣∣∣∣∂up

∂s

∣∣∣∣ = 1 x ∈ Ωp,

up(x) = up,0(x) x ∈ Γp,

(4)

where V p = V p (x) is the conduction velocity (5–10 times greater than the muscular one [15]), s is the curvilinear coordi-
nate, Γp is the set of points generating the front (in a normal propagation Γp is the atrio-ventricular node) and up,0(x) is the 
value of the activation time on Γp .

We point out that for the modelization of the network, we have considered again the isotropic Eikonal problem. This 
approximation is perfectly justified due to the absence of muscular fibers (and then of anisotropy) in a 1D network. Again, 
we neglected the diffusion term since the high advection term V p dominates any diffusion process.

2.3. Numerical solution of the Eikonal problem

For the solution of the Eikonal problems (1), (3) and (4) we used algorithms belonging to the class of the Fast Marching 
Methods (FMM) [24]. Such methods are based on the observation that the information propagates only from smaller 
to larger values of the unknown. Based on this, FMM try to follow the front of propagation and at each step three regions 
are recognized:

1. The Accepted region, formed by the points of the domain where the solution has been already determined;
2. The Trial region, formed by the points of the domain “close” to the accepted ones and which are potentially new

accepted points;
3. The Far region, formed by the points of the domain which are far from the accepted ones.

In the classical FMM, at each step of the algorithm the solution is evaluated in the trial points and a new accepted
point is created. In particular, in the isotropic case, the Trial region is formed only by the points which are neighbors of 
the accepted ones and just a single evaluation for each trial point using an upwind scheme is enough to create a new 
accepted point (single-pass method, see [24]). In such a case, the FMM is very efficient, since it follows gradient directions, 
which coincide with those of propagation (characteristic directions). However, in the anisotropic case, the gradient and the 
characteristic directions do not necessarily coincide and this scheme fails to produce an accurate solution. A possible way to 
overcome this problem consists in enlarging the Trial region including not only the neighbors but few layers of neighbors, 
thus allowing the characteristic direction to remain within the neighborhood [25]. This strategy is accurate and single-pass 
but, in our implementations, it featured a quite high computational time. For this reason, we decided to consider in this 
work an alternative procedure proposed in [16], where the Trial region is formed by the neighbors solely and a recursive 
correction is introduced. Such a new step consists in re-computing the value of the unknown in the neighbors of each 
newly accepted point X , which are inside the Accepted region. This is done since when the values of the unknown have 
been computed in such neighbors, the value in X had not been used since it was not known. If the new evaluation in a 
neighbor of X returns a lower value of the unknown with respect to the previous one, then the solution in such a point is 
updated. This method is not anymore single-pass. However, it uses only the neighbors to compute the value of the unknown 
in a point,  allowing for good performance from the computational point of view (see [16] for further details).



Fig. 2. Structure of the Purkinje network. The grey points are the bases wk of the leaves Sk , whereas the white points represent the PMJ Pk . In the picture
we have Mlev = 2 and the number of PMJ M is equal to 3.

3. Computational generation of a patient-specific Purkinje network: the case of endocardial sources

In this section we describe the method for the generation of a patient-specific network. In particular, in this work we
consider the case of sources for the muscular propagation located only on the endocardium. This is the case for example of 
a normal electrical propagation or of an ischemic case, where the sources are all located in the PMJ. This means that Γm in 
the 3D Eikonal problem and Γe in the 2D one coincide with the PMJ. In such conditions, we can consider the following two 
simplifying hypotheses:

H1. For the computation of the activation times on the endocardium it is enough to solve an Eikonal problem only on the 
endocardium. Indeed, if the sources are all located on such a surface, the propagation in the myocardium does not have 
enough influence on the endocardium. Since for the generation of a patient-specific Purkinje network we only need the 
endocardial propagation, in our algorithm we solve only problem (3);

H2. The propagation in the PF is not influenced by the muscular propagation, and we can assume that the information 
propagates uniquely from the Purkinje network towards the muscle cells and that no feedbacks from the muscle are 
allowed. Therefore, an explicit algorithm could be considered for the numerical solution of the coupled problems (1)–(4) 
and (3)–(4). In other words, we firstly solved the network solely, and then we used this solution evaluated at the PMJ as 
sources for the computation of the muscular activation.

We are now ready to describe the method for the generation of the patient-specific Purkinje network. This is composed 
of two steps: in the first one we generate a tentative network by using a fractal law (Section 3.1). In the second step, 
we update such a network in order to reduce the discrepancy with the clinical measures (Section 3.2).

We give here a description of the structure of a Purkinje network. This is formed by several levels of generation, at each 
of them we can identify the active branches and the leaves S j . An active branch can generate other branches, whereas leaves, 
starting from the points w j , terminate at their end points y j which are identified with the PMJ P j , see Fig. 2.

3.1. Generation of the tentative network

The first tract of the Purkinje network is composed by the bundle of His, which starts from the atrio-ventricular node, 
and by the main bundle branches, which are three branches generating from the bundle of His. The starting point of our 
algorithm consists in manually design the bundle of His and the main bundle branches, accordingly to anatomical a priori 
knowledge [1,21]. Then, the tentative Purkinje network is generated as a fractal tree. The growing process follows the ‘Y’ 
production rule, similar to the one proposed in [1,12,21]. We allow the leaves to be generated after a different number of 
levels. However, we fix a maximum number of levels of the tree, Mlev , tuned in order to have a good covering of all the 
reachable areas of the endocardium (see Fig. 2).

To ensure a correct distribution of the PMJ on the endocardium, the process of generation of a leaf is governed by a 
Bernoullian probability law, where the probability to generate a leaf p is a function of the tree level. In particular, we set 
p = √

j/Mlev , where j is the current level, so that p is small for the first levels and grows in the successive levels. To obtain 
a more realistic pattern of PF, the lengths of the left branch Ll and of the right branch Lr , and the branching angle α of the 
new fibers are described by Gaussian variables.

This procedure allows us to generate a tentative Purkinje network N (t) , characterized by M(t) leaves Sk whose bases are 
located in wk , k = 1, . . . , M(t) , and by the PMJ Pk , k = 1, . . . , M(t) , located at the points with coordinates {y(t)

1 , . . . , y(t)
M(t) } =:

P(t), see Fig. 2.
Observe that we have not yet used the clinical data, so that this is not a patient-specific network.



Fig. 3. Regions of influence. Representation of the contour lines of a possible solution of (7) with N = 3. The lines represent the points of collision among 
two or more fronts, and they divide the domain in 3 regions R i , called regions of influence.

3.2. Generation of the patient-specific network

We describe here the steps to generate a patient-specific network starting from the tentative one N (t) , using clinical 
measures related to a propagation characterized by endocardial sources solely. Such data are measured on the endocardium, 
for example before an ablation procedure to burn anomalous propagation sites. This is possible thanks to suitable systems 
(such as Ensite NavX system, see, e.g., [29]), commonly used nowadays in the clinical practice, which are capable of accu-
rately locating some electrode catheters in the ventricle, allowing for the reconstruction of a map of the activation times 
[23,27].

In what follows, let xi , i = 1, . . . ,  N , be the points where the measures have been acquired and T i the related measured 
activation times. We summarize the steps related to the generation of the patient-specific network as follows.

Computation of the activation times at the PMJ of N (t). We solve the 1D Eikonal problem (4) in the tentative network N (t), 
by choosing properly the set Γp and the boundary condition up,0 . For example, for a normal propagation, Γp is identified 
with the atrio-ventricular node. This allows to compute the activation times for all the points of N (t) , and in particular to 

store the activation times τ (t)
k := up(y(t)

k ), k = 1, . . . , M(t) , computed at the PMJ.

Construction of the regions of influence. Ideally, the PMJ should be able to describe exactly the observed activation times. 
In this respect, we say that a set of M sources (zk, ζk) is compatible with the measurements if the following holds:

ue(xi) = Ti ∀i = 1, . . . , N, (5)

with {
V e

∣∣∇ue(x)
∣∣ = 1 x ∈ Ωe,

ue(zk) = ζk k = 1, . . . , M.
(6)

Notice that, in view of hypothesis H1, we considered the fronts propagating only on the endocardium, thus satisfying the 
2D Eikonal problem (3).

To identify such compatible sources, we consider the following backward Eikonal problem in the unknown ũe :{
V e

∣∣∇ũe(x)
∣∣ = 1 x ∈ Ωe,

ũe(xi) = −Ti i = 1, . . . , N.
(7)

The solution of such a problem divides the domain Ωe in N regions R i , called regions of influence, which associate to 
any point xi the points of the endocardium which could activate xi at time T i if used as source points for the muscular 
propagation. In particular, the boundaries of the regions Ri are identified by the points of collision of two or more fronts 
propagating from the measurement points x (see Fig. 3 for the case N = 3).
i 



Exploiting the function ũe , we are now able to build a set of M sources that are compatible with the measures. Indeed, 
let Z = {ẑ1, . . . , ̂zM} be a set of M points such that at least one point falls in each region Ri , i = 1, . . . , N , or its boundary, 
and Zi := {ẑi

1, . . . , ̂z
i
Mi

} be the subset of points falling in Ri . Moreover, set

ζ̂k := −ũe(ẑk), k = 1, . . . , M, ζ̂ i
j := −ũe

(
ẑi

j

)
, j = 1, . . . , Mi, i = 1, . . . , N. (8)

 ζ̂k), k = 1, . . . ,  M, defined by (7)–(8) and by Z , are compatible with the measures (xi , T i ), 

We have the following result.

Proposition 1. The M sources  (ẑk, 
i = 1, . . . ,  N, i.e. they satisfy (5)–(6).

Proof. Given some couples (zk, ζk), k = 1, . . . ,  M, the solution in a point x of problem (6) is given by

ue(x) = min
l=1,...,M

(
ζl + d(x, zl)

V e

)
, (9)

where with d(·, y) we have indicated the geodesic distance from y. Then, constraints (5) could be written as follows

min
l=1,...,M

(
ζl + d(xi, zl)

V e

)
= Ti i = 1, . . . , N. (10)

Analogously, the solution of problem (7) in a point x is given by

ũe(x) = min
m=1,...,N

(
−Tm + d(x, xm)

V e

)
, (11)

and then (8) becomes

ζ̂k = − min
m=1,...,N

(
−Tm + d(ẑk, xm)

V e

)
, k = 1, . . . , M.

In particular, for x ∈ Ri , the expression of (11) is simplified as follows

ũe(x) = −Ti + d(x, xi)

V e
. (12)

Now, observing that ẑi
j ∈ Ri , we have from (12) and (8)

ζ̂ i
j = −

(
−Ti + d(ẑi

j, xi)

V e

)
, j = 1, . . . , Mi . (13)

Then, conditions (10) could be written as follows

min
m=1,...,N

(
min

p=1,...,Mm

(
ζm

p + d(xi, zm
p )

V e

))
= Ti i = 1, . . . , N,

jwhere ζm and z j
m refer to the reordering of ζk and zk following the regions of influence. Then, substituting (13) in the left 

hand side of the previous expression, we obtain

min
m=1,...,N

(
min

p=1,...,Mm

(
ζ̂m

p + d(xi, ẑm
p )

V e

))
= min

m=1,...,N

(
min

p=1,...,Mm

(
Tm − d(ẑm

p , xm)

V e
+ d(xi, ẑm

p )

V e

))
= min

m=1,...,N

(
min

p=1,...,Mm

(
Tm − d(ẑm

p , xm)

V e
+ d(xi, ẑm

p )

V e
− Ti + Ti

))
= min

m=1,...,N

(
min

p=1,...,Mm

(
−Ti + d(xi, ẑm

p )

V e
−

(
−Tm + d(ẑm

p , xm)

V e

)))
+ Ti = Ti i = 1, . . . , N,

where the latter equality holds by noticing that the external minimum is attained for m = i, since −Tm + d(ẑm
p ,xm)

Ve
< −Ti +

d(xi ,ẑm
p )

Ve
for m �= i thanks to the analytical solution (12) of the backward problem and to the definition of regions of influence. 

Therefore, constraints (5) are satisfied and the thesis holds. 



Fig. 4. Examples of possible PMJ configurations. (a) Single PMJ located at the common point of the three regions of influence; (b) two PMJ, one on the 
boundary between R2 and R3 , the other one in R1; (c) three PMJ each one located in a different region; (d) four PMJ, three of them, y1, y2, y3 , which 
activate a measure point (x1, x2, x3 , respectively), and the fourth one, y4 , which does not activate any measure point.

Improving the accuracy of the tentative network. Once we have defined the regions of influence Ri , we can iden-
tify those of the tentative PMJ belonging to Ri , see Fig. 4. In particular, we introduce for all i = 1, . . . ,  N the subsets 
P(t)

i := {y(t)i
1 , . . . , y(t)i

M(t)
i

} ⊂P(t) containing the PMJ P i
j , j = 1, . . . , M(t)

i , belonging to the i-th region of influence Ri . The idea 

is now to adapt the location of the PMJ of the tentative network so as to improve the accordance with the measures, or pos-
sibly make them compatible with the measures. The regions of influence could provide useful indications on how to adapt 
the PMJ location to the measurements. In particular, an optimal choice would be provided by moving the PMJ in points that 
satisfy the hypotheses of Proposition 1, that is identifying the coordinates of the PMJ yk with ẑk , and the related activation 
times τk with ζ̂k . Indeed, thanks to Proposition 1 this would lead to a set of compatible sources.

Observe however, that the activation time of the PMJ cannot be chosen arbitrarily as it has to be a solution of the 1D 
Eikonal problem (4). Moreover, we constrained the movement of the PMJ to stay within its region of influence and to be 
relatively small so that the length of the modified branch is still in the physiological range. Under these constraints there is 
no guarantee to satisfy exactly the measures. We therefore aim at developing a strategy that improves the tentative network, 
still fulfilling the above constraints, reducing the discrepancy with the measures. In particular, we look for new positions yk 

of the PMJ and for the related activation times τk = up ( yk) in an iterative framework, by generating a sequence of networks.

To this aim, we quantify the accuracy of a network by computing the percentage of satisfied points. A datum  located at xi 
is said to be satisfied if

|ηi| ≤ ε, (14)



where ηi is given by

ηi := ti − Ti

|Ti | , i = 1, . . . , N, (15)

ti := ue (xi ), i = 1, . . . ,  N , being the activation times computed at the measure point xi by solving the 2D Eikonal problem (3) 
on the endocardium with the PMJ as boundary points (i.e. Γe = {y1, . . . ,  yM }) and by using the activation times τk as 
boundary condition ue,0. Here, we have exploited hypothesis H2 which allows us to use an explicit method to solve the 
coupled problem given by the interaction between the propagation in the network and in the muscle.

We observe, however, that to check conditions (14) one needs to solve a forward 2D Eikonal problem for each new 
network generated by the algorithm. To limit the number of 2D problem to solve, we decided instead to use the discrepancy 
between the backward 2D Eikonal solution evaluated in a PMJ and the related activation time computed by the 1D Eikonal 
problem on the tentative network. This has the advantage to use the solution of the backward 2D Eikonal problem, which 
has been already solved to identify the regions of influence.

To this aim, given a measure xi , we introduce the quantities

χ i
j := τ i

j − (−ũe(yi
j))

|Ti| , j = 1, . . . , Mi, i = 1, . . . , N, (16)

where, accordingly to the definition of the τk ’s, we have set τ i
j = up(yi

j), with yi
j the coordinates of the j-th PMJ belonging 

to the i-th region of influence Ri . Then, χ i
j is the discrepancy between the activation time in the PMJ P i

j ∈ Pi obtained by 
solving the 1D Eikonal problem in the tentative network and the solution of the backward Eikonal problem (7) evaluated 
in P ij , normalized by the measure |T i |, and we check that conditions∣∣χ i

j

∣∣ ≤ ε (17)

hold for all i and j. Now, the question is whether the satisfaction of conditions (17) imply the one of conditions (14). With 
this respect, we have the following result, which links the behavior of the ηi with the one of the χ i

j .

Proposition 2. Let the following conditions hold for all the PMJ in P :

(i) Pi �= ∅, i = 1, . . . , N;
(ii) |χ i

j | ≤ ε j = 1, . . . , Mi , and i = 1, . . . , N;

(iii) mini=1,...,N(min j=1,...,Mi χ
i
j |Ti |) ≥ −εTmin, where Tmin := mini=1,...,N |Ti |.

Then conditions (14) are all satisfied, that is |ηi | ≤ ε, i = 1, . . . ,  N.

Proof. From the definition of χ i
j (16), we can write

τ i
j = −ũe

(
yi

j

) + χ i
j|Ti|. (18)

(19)

From (15), we have also that conditions (14) could be written as

T i − ε|T i | ≤ ti ≤ T i + ε|T i | i = 1, . . . ,  N. Analogously to (11), we 

can write the solution of{
V e

∣∣∇ue(x)
∣∣ = 1 x ∈ Ωe,

ue
(

yi
j

) = τ i
j i = 1, . . . , N, j = 1, . . . , Mi,

as follows

ue(x) = min
m=1,...,N

(
min

j=1,...,Mm

(
τm

j + d(x, ym
j )

V e

))
.

Then the activation time ti at the measurement point xi , can be written as

ti = ue(xi) = min
m=1,...,N

(
min

j=1,...,Mm

(
τm

j + d(xi, ym
j )

V e

))
. (20)

We fix i and we define the following quantities

tk
j := τ k

j + d(xi, yk
j)

, k = 1, . . . , N, j = 1, . . . , Mk. (21)

V e



We now observe that a measure located in xi could be activated by a PMJ belonging to Pi or by a PMJ not belonging to Pi , 
so that the external minimum in (20) is fulfilled for m = i in the first case and for m �= i in the second case. Then, from (20), 
in the first case we have ti = ti

j for some j = 1, . . . ,  Mi , so that conditions (19) become

Ti − ε|Ti | ≤ τ i
j + d(xi, yi

j) ≤ Ti + ε|Ti|, (22)
V e

which, thanks to (18) and (11), could be written as

Ti − ε|Ti | ≤ − min
m=1,...,N

(
−Tm + d(yi

j, xm)

V e

)
+ χ i

j|Ti | +
d(xi, yi

j)

V e
≤ Ti + ε|Ti|.

Since yi
j ∈ Ri , then the minimum in the above inequalities is attained again for m = i, so that conditions (19) (and then 

conditions (14)) become

−ε|Ti | ≤ −d(yi
j, xi)

V e
+ χ i

j|Ti| +
d(xi, yi

j)

V e
≤ ε|Ti |,

which are guaranteed if hypothesis (ii) holds.
Regarding the second case, the measure located in xi is activated by a PMJ not belonging to Pi , let say yk

j , k �= i. 
Therefore, by observing that inequalities (22) still hold (even if in this case they are not equivalent to conditions (14)), 
we have

ti = tk
j < min

l=1,...,Mi

ti
l ≤ Ti + ε|Ti|. (23)

Moreover, since yk
j ∈ Rk , we have from (11)

−ũe
(

yk
j

) = Tk − d(xk, yk
j)

V e
≥ Ti − d(xi, yk

j)

V e
,

so that, owing to (21) and (18) we obtain

ti = tk
j = −ũe

(
yk

j

) + χk
j |Tk| +

d(xi, yk
j)

V e
≥ Ti − d(xi, yk

j)

V e
+ χk

j |Tk| +
d(xi, yk

j)

V e
= Ti + χk

j |Tk|.
Then, using hypothesis (iii), we obtain

ti ≥ T i − εTmin ≥ T i − ε|T i |,
which, together with (23), guarantees again that conditions (19) (and then (14)) hold true. �
Remark 1. The satisfaction of hypotheses (i) and (ii) in the previous proposition provides a necessary but not sufficient 
condition for the fulfillment of conditions (14). Observe, however, that if we considered the absolute quantities ηi := ti − T i

and χ i
j := τ i

j + ũ
e ( yi

j ) instead of (15) and (16), then Proposition 2 holds true even if only hypotheses (i) and (ii) were
satisfied. In this case, one needs only to check that the Ri are not empty and that conditions (17) are satisfied to guarantee 
that all conditions (14) hold true. However, the numerical results performed with this modification, lead to less accurate 
patient-specific Purkinje network, so that we do not consider this case here.

We are now ready to describe our strategy, which is based on three steps:

1. Move the PMJ;
2. Delete some PMJ;
3. Create new PMJ,

which are described in what follows.

Move the PMJ. This step allows us to obtain a new Purkinje network N (0) obtained as a correction of the tentative one N (t)

by moving some PMJ according to the measures, so as to improve the percentage of satisfied measurements. In particular, 
for all j = 1, . . . , M(t)

i such that |χ(t)i
j | ≤ ε, we do nothing, that is we do not move the corresponding PMJ P i

j . On the 

contrary, for all j such that |χ(t)i
j | > ε, we move the corresponding PMJ P i

j in order to improve the accordance with the 
clinical measure, guaranteeing however that new locations are compatible with the Purkinje network, i.e. the new couples 
(y(

j
0)i 

, τ j
(0)i 

) satisfy the 1D Eikonal problem (4). The solution of this problem is not unique, so in order to fix a possible
solution we considered the following criterion.



Fig. 5. Moving procedure. The signal propagating in the network activates the PMJ located in y at time τ (a). The PMJ is then moved in the point Y , 
belonging to the straight line joining the base of the leaf w and the measurement point x1 , in order to satisfy the measure in xi according to (26) (b).

Criterion 1. Given a non-satisfied measure xi , the PMJ P ij is located on the geodesic line joining the measure xi and the base of the 
leaf related to P ij (see Fig. 5).

In particular, given a point Y = Y (l) on the leaf S i
j (that is the leaf corresponding to the PMJ P ij ), with l ∈ [lmin, lmax] the 

local (curvilinear) coordinate related to the geodesic distance and with origin in the base of the leaf, and lmin and lmax so 
that the length of the branch is in the physiological range, the solution of the 1D Eikonal problem (4) in Y could be written 
as follows

up(Y ) = uij
p (l) := up

(
w i

j

) + l

V p
, (24)

where w i
j are the coordinates of the root of the leaf Si

j . On the other side, the solution of the backward 2D Eikonal problem 
in Y could be written as follows

ũe(Y ) = ũi j
e (l) := −Ti + Li

j − l

V e
, (25)

where Li
j := d(w i

j, xi) is the geodesic distance between the measure located in xi and the base of the leaf Si
j . Therefore, 

by imposing

uij
p (l) = −ũi j

e (l),

we find the distance from the base of the leaf Si
j which guarantees that the PMJ P i

j activates the measure located in xi and 
at the same time belongs to the Purkinje network. This leads to the following optimal value

li
j = V p V e

V p − V e

(
up

(
w i

j

) −
(

Ti − Li
j

V e

))
. (26)

/∈We then move accordingly the related PMJ, that is we set Y = Y (lij ), guaranteeing χ j
(0)i = 0 if  lij ∈ [lmin, lmax]. If lij [lmin, 

lmax], we look for a new lij ∈ [lmin, lmax] which minimizes χ i
j . Owing to (16), (24) and (25), the expression of χ i

j could be 
written as follows

χ i
j(l) = uij

p (l) + ũi j
e (l)

|Ti | =
up(wi

j) − Ti + Li
j

Ve
+ l(Ve−V p)

Ve V p

|Ti| , j = 1, . . . , Mi .

Since V e < V p , it is easy to check that (χ i
j(l))

′ < 0, so that the minimum of χ i
j belongs to one of the two extrema lmin

or lmax . Then, we conclude that if li
j < lmin , then we set li

j = lmin , otherwise if li
j > lmax , then we set li

j = lmax . In both cases, 

we observe that we have χ(0)i �= 0.
j



At the end of the moving procedure, we have obtained a new Purkinje network N (0) characterized by M(0) PMJ. Observe 
that M(0) = M(t) .

Delete damaging PMJ. After the moving procedure, we have the following cases:

1. χ
(0)i
j

2. χ
(0)i
j

= 0 for  all j and i; this means that all lij given by (26) lie in the interval [lmin, lmax].
�= 0 for  some j and i; this means that lij given by (26) does not lie in the interval [lmin, lmax].

In the first case, all the hypotheses of Proposition 2 are satisfied. This implies that all conditions (14) hold true, in par-
ticular it is possible to prove that η(0)

i = 0 for all i. Then, the algorithm ends and N (0) is the final patient-specific network.

Otherwise, in the second case Proposition 2 tells us that it could happen that |ηs
(0) | ≥ ε for some s (in general we do not 

have necessarily s = i), even if 0 < |χ(0)i
j | ≤ ε, either because some region of influence Rs could be empty (hypothesis (i) in 

Proposition 2 not satisfied), or because hypothesis (iii) in Proposition 2 is not satisfied. Then, we are not still guaranteeing 
that all conditions (14) are satisfied and we have to modify the network N (0) .

To this aim, we allow the algorithm to delete some PMJ and to create new ones. We firstly delete the so-called “dam-
aging” PMJ, that is those which avoid the satisfaction of the measures. In particular, we notice that |ηi | ≥ ε could be given 
either because ηi ≤ −ε or because ηi ≥ ε. In the first case (ηi ≤ −ε) we do not have any chance to create a new PMJ 
producing a smaller error, without deleting the PMJ P̃  responsible of the activation in xi . Indeed, the signal produced by 
the new PMJ would be i) either in late with respect to the signal generated by P̃ , and thus without the possibility of acti-
vating xi , ii) or early with respect to the signal generated by P̃ , thus activating xi but, precisely for this reason, producing a 
bigger error.

In what follows we explain in the detail the delete procedure. Let Pq for some q = 1, . . . ,  M(0), be the PMJ which 
activates xi . We have to distinguish three situations:

1. ηi ≤ −ε, Pq ∈ Pi . In this case, the datum in xi is activated by a PMJ belonging to Ri and the signal arrives early with 
respect to the measure. Then, we have not any chance to satisfy this datum since whatever movement of Pq would 
produce a bigger error (remember that Pq is in the optimal site with respect to Criterion 1). Moreover, we do not have any 
hope to satisfy the datum in xi by moving another PMJ or by creating new leaves since to produce a smaller error, the 
signal should be in late with respect to that produced by Pq and therefore it could not activate the point xi . Then, it is 
impossible to satisfy the datum in xi so that we delete PMJ Pq . This makes it possible to create a new PMJ which could 
satisfy the datum (see below);

2. ηi ≤ −ε, Pq ∈/ Pi . In this case, the datum in xi is activated by Pq lying in another region of influence and the signal arrives 
early with respect to the measure. We can in principle move Pq to reduce the error with respect to the measure in xi since 
the location of Pq is not optimal with respect to xi . However, we observe that Pq could be optimal with respect to another 
datum xs for some s �= i. Then, any movement of Pq lead to the loss of optimality with respect to xs , so that again we do 
not consider any movement of Pq . Moreover, as in the previous case, the movement of another PMJ or the generation of 
a new PMJ are useless to satisfy the datum xi , which is then impossible to be satisfied. Therefore, we need to delete Pq , 
even if with this choice the datum xs will be not in principle satisfied. However, this makes possible to create new PMJ 
which satisfy the two data xi and xs (see below);

3. ηi ≥ ε. In this case, the signal is in late with respect to the measure. Then, independently of the fact that Pq belongs or 
not to Pi , any movement of Pq , according to Criterion 1, is useless, since Pq has been located in the optimal site. However, 
in this case we do not need to delete Pq anymore, since this does not avoid to create new PMJ activating xi . Indeed, 
a new  PMJ, if suitably located, could be able to produce a signal which is early with respect to the one propa-gating 
from Pq . Then, in this case we would be able to decrease the error. Therefore, since the presence of Pq does not avoid the 
generation of a new PMJ satisfying the datum, we decide to leave Pq in its original position.
Thanks to this classification, we can now describe the delete procedure. In particular, we introduce iterations until the 

following criterion is satisfied

η
(l)
i ≥ −ε ∀i = 1, . . . , N. (27)

At each iteration l, we first compute the activation times τ (l)
k in all the Pk . These values could be obtained owing to (24), 

thus avoiding the solution of the 1D Eikonal problem (4). We then solve the 2D Eikonal problem (3) on the endocardium 
by using the PMJ of N (l) as boundary points (i.e. Γe = {y(l)

1 , . . . , y(l)
M(l) }) and by using the new activation times τ (l)

k as

boundary condition u(l)
e,0. This allows to obtain the new computed activation times t(l)

i , i = 1, . . . , N , at the measurement 
points, to compute the new values of the discrepancies η(l)

i owing to (15), and then to identify the points xi such that (27)
is not satisfied. For each of such points, we delete accordingly the PMJ responsible for its activation, so that a new network 
N (l+1) is obtained.



We observe that this procedure terminates in a finite number of iterations, let say K , allowing to produce the network 
N (K ) with a positive number of PMJ.

Remark 2. Notice that in the delete procedure we have to solve a 2D Eikonal problem at each iteration. Observe, however, 
that the number of iterations in such a step is very small with respect to the one we would have in the moving procedure if 
we checked conditions (14) instead of (17).

Create new PMJ. At the end of the delete procedure we are not guaranteeing that all conditions (14) are satisfied. Indeed, 
for some xi we could have η(K )

i ≥ ε. In this case, we consider the part of N (K ) belonging to Ri . We select a point w i
M(K )

i +1

on such a portion of the network and we create a new leaf Si
M(K )

i +1
lying on the geodesic line joining this point and xi . 

i +1 M
We then compute the optimal location li

M(K ) given by (26). If li (K )
i +1

∈ [lmin, lmax], then we leave the new PMJ in such 

a position which guarantees χ(K+1)i

M(K+1)
i

= 0. We observe that in this case we can infer that η(K+1)
i = 0, since the other PMJ, 

thanks to the delete procedure, generate fronts which arrive in any case in late, so that they cannot influence the activation 
in xi . If li

M(K )
i +1

/∈ [lmin, lmax], we then delete such a leaf and we repeat this procedure by considering another point w i
M(K )

i +1
. 

At the end of such a procedure we will have obtained our final network N (K+1) which allowed us to obtain a better 
accuracy with respect to the tentative network.

The overall sequence of steps is presented in Algorithm 1.

Algorithm 1 Generation of patient-specific Purkinje network – endocardial sources.
Given the vector of the measures T in the points defined by the vector X, the conduction velocities V_p and V_e, the extrema L_min and L_max, the
tolerance EPS, the tentative network NET and in particular the position of the PMJ Y, perform the following steps

Solve the 1D Eikonal problem (4) in NET;
Solve the backward Eikonal problem (7);
Define the regions of influence R_i;
FOR i=1:N

FOR j=1:M_i
Compute the optimal location L with (26);
IF (L < L_min) THEN L = L_min;
ELSEIF (L > L_max) THEN L = L_max;
END IF
Move the PMJ: Y[i,j] -> Y[i,j] according to (26);
NET -> NET;

END FOR
END FOR
Solve the Eikonal problem (3) with NET as sources;
Compute the errors ETA with (15);
Build the vector Z containing the PMJ activating X;
WHILE (MIN(ETA) < -EPS) DO

FOR i=1:N
IF (ETA[i] < -EPS) THEN Delete Z[i];

NET -> NET;
END IF

END FOR
Solve the Eikonal problem (3) with NET as sources;
Compute the errors ETA with (15);
Build the vector Z containing the PMJ activating X;

END WHILE
FOR i=1:N

IF (ETA[i] > EPS) THEN Create a new leaf owing to (26);
END FOR

Remark 3. We observe that in principle our algorithm is not able to produce a network such that |ηi | ≤ ε, ∀i. Indeed, in the 
create procedure the part of N (K ) belonging to Ri could be empty for some i. In this case we do not have any chance to 
satisfy the datum xi .

Remark 4. We observe that the network obtained by our method depends on the starting tentative network, which is 
randomly generated with Gaussian and Bernoullian variables, and on some parameters, i.e. the mean value of the length 
and angles of the branches, the tolerance to identify the satisfied points, and the conduction velocities. Once the tentative 
network and these parameters have been chosen, the solution generated by our algorithm after the moving and delete 
procedures is unique, that is the method generates always the same network. Instead, we notice that the “create” procedure 
produces different networks depending on the order followed to sweep the non-satisfied points.



Fig. 6. Procedure for the generation of the synthetic data. Up-left: reconstructed geometry and muscular fibers; up-right: mesh discretization. Bottom-left: 
reference Purkinje network used in the generation of the synthetic data; bottom-right: activation maps obtained by solving the 3D Eikonal problem (1) 
with the reference network. The sample S is represented by grey dots.

4. Numerical results in an idealized geometry

4.1. Physical and numerical specifications

In this section we present several numerical results performed to test the reliability and the robustness of the proposed 
method for the generation of a patient-specific Purkinje network. To this aim we consider an idealized ventricular geometry 
given by the ellipsoidal model described in [8], characterized by a set of packed ellipsoidal surfaces, where the length of 
the semi-principal axes of the inner and outer ellipsoid are ax = ay = 1.5 cm,  az = 4.4 cm and bx = by = 2.7 cm,  bz = 5 cm, 
respectively (see Fig. 6(up-left). To define the anisotropic tensor D by (2), we used the unit vectors tangent to the fibers 
proposed in [8], and we set k = 0.46 [15]. The resulting mesh is composed of about 4 · 106 tetrahedra and 6.4 · 105 vertices, 
see Fig. 6(up-right). The corresponding endocardial triangular mesh is composed of about 1.45 · 105 elements and 7.3 · 104 

vertices.
Since the proposed method is valid only for endocardial sources (see hypotheses H1 and H2) we considered here only 

normal propagations where the unique source for the network was the atrio-ventricular node and the unique sources for 
the muscle were the PMJ. In all the numerical tests of this section and of Section 5, unless explicitly stated otherwise, 
we set Mlev = 30 determined so as to guarantee that the leaves generation has reached all the regions of interest; ε = 10%, do 
= 10 ms [11]; lmin = h, with h the space discretization parameter, lmax = lij,max = min{0.525; Li

j } so as to guarantee that the 
lengths of the leaves are into the physiological range; Lr Ll ∼ G(0.35 cm, 0.01 cm) [21]; α ∼ G(60◦, 1.8◦) [21], where G(μ, 
ξ)  is a Gaussian distribution with mean μ and standard deviation ξ . Moreover, in this section we set V p = 3.4 m/s,  Vm = 
0.65 m/s [15], whereas regarding the conduction velocity on the endocardium V e in problem (3), we have chosen every 
time its value with a trial-and-error strategy so as to maximize the accordance with the measures, and guaranteeing 



i

that it falls in the physiological range [15]. Other, more sophisticated strategies could be considered as well, see for example 
[5] where an optimization procedure has been proposed.

4.2. Validation protocol

In order to validate our algorithm, we need a set of data of activation times on the endocardium. To generate this 
set of data, we considered a reference Purkinje network. This has been built by considering a different realization of the 
procedure used to generate the fractal tentative network. Of course, due to the randomness of the parameters involved, the 
reference network is in principle different from the tentative one. Then, we generated a reference map of activation times by 
solving the forward 3D problem (1) with the reference Purkinje network, see Fig. 6(bottom left and right). Finally, the data 
have been created by sampling N points of the reference map on the endocardium (see Fig. 6(bottom-right)). Due to the 
procedure used for their generation, we refer to these data as synthetic. This allows us to obtain the set of synthetic data 
S := {(x1, T1), . . . ,  (xN , T N )}, where T i corresponds to the solution of the Eikonal problem (1), with the reference Purkinje 
network as source term, evaluated in the point xi .

We assessed then the accuracy of the tentative and of the patient-specific networks by comparing the corresponding 
results with the synthetic data. In particular, let ti

T , i = 1, . . . ,  N , be the activation times in the measurement points xi , 
i = 1, . . . ,  N , obtained by solving the 3D problem (1) with the tentative network. Analogously, let t P , i = 1, . . . ,  N , be the 
activation times in the measurement points xi , i = 1, . . . ,  N , obtained by solving the 3D problem (1) with the patient-
specific network. Then, we computed the mean absolute errors

E
(
tβ

) := 1

N

N∑
i=1

∣∣tβ

i − Ti
∣∣, β = T , P , (28)

and the related standard deviations

σ
(
tβ

) :=
√√√√ 1

N

N∑
i=1

∣∣tβ

i − Ti
∣∣2 − E2, β = T , P . (29)

4.3. Consistency test

This test has been proposed to prove the ability of our method to generate an accurate Purkinje network. In particular, 
we considered a sample S composed by N = 150 measurements well-distributed on the endocardium. We notice that the 
starting point of our algorithm is the tentative network, which is generated randomly according to the Gaussian variables 
describing the length and the angle of the branches and to the Bernoullian variable describing the probability to generate a 
PMJ, see Section 3.1. Therefore, a consistency test should prove also the robustness of the method with respect to the 
tentative network and asses the variability of the results due to the randomness in the generation of the tentative network. 
To do this, we ran 20 times our algorithm using the same synthetic data but different (randomly generated) tentative 
networks. Accordingly, to assess the accuracy of the method, we have reported the average over the 20 simulations of the 
mean absolute errors E j namely

Ê := 1

20

20∑
j=1

E j, E j := 1

N

N∑
i=1

∣∣t j
i − Ti

∣∣, j = 1, . . . ,20, (30)

where t j
i is the computed activation time at point xi for the j-th numerical experiment. Regarding the standard deviation, 

we have to separate the spatial variability from that produced by the repetition of the experiment. In particular, the mean 
spatial standard deviation is defined by

σsp := 1

20

20∑
j=1

σ j, σ j =
√√√√ 1

N

N∑
i=1

∣∣t j
i − Ti

∣∣2 − (
E j

)2
(31)

where σ j is the spatial standard deviation related to the j-th experiment, whereas the mean standard deviation over the 
experiments is given by

Σ := 1

N

N∑
i=1

Σi, (32)

where Σi is the standard deviation in the point xi over the 20 numerical experiments, and is defined by

Σi :=

√√√√√ 1

20

20∑
j=1

∣∣t j
i − Ti

∣∣2 − (Ei)
2, Ei := 1

20

20∑
j=1

∣∣t j
i − Ti

∣∣.



Fig. 7. Left: Purkinje networks (a selected case over the 20). The PMJ are represented by the yellow spheres. Right: absolute errors at the measurement
points. Up: tentative network. Bottom: related patient-specific network generated by our method. Consistency test, idealized geometry. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

To quantify the total standard deviation, we also introduced the quantity

σ̂ :=

√√√√√ 1

20

20∑
j=1

1

N

N∑
i=1

∣∣t j
i − Ti

∣∣2 − Ê2. (33)

For the experiments reported in this section we also reported the maximum absolute error averaged over the 20 simulations

Emax := 1

20

20∑
j=1

(
max

i=1,...,N

∣∣t j
i − Ti

∣∣) (34)

and the corresponding standard deviation

σmax :=

√√√√√ 1

20

20∑
j=1

(
max

i=1,...,N

∣∣t j
i − Ti

∣∣)2 − E2
max. (35)

The best value of the conduction velocity has been found to be V e = 0.36 m/s. The mean number of PMJ were M(t) = 
134.4 ± 7.4 for  the tentative networks, and M(K+1) = 193.0 ± 11.0 for  the patient-specific networks.

In Fig. 7 we depicted a selected tentative network among the 20 we have generated, and the corresponding patient-
specific Purkinje network obtained with our method (left) and the absolute errors at the sample S (right). We observed a 
qualitative good improvement in the accuracy obtained by using the patient-specific network with respect to that obtained 
with the tentative one.



Table 1
Mean absolute error Ê  given by (30) and standard deviations σsp , Σ , 
and σ̂ given by (31), (32), and (33), respectively (in ms), obtained by 
using the tentative and the patient-specific Purkinje networks. The 
results have to be intended as the average over the 20 simulations. 
Consistency test, idealized geometry.

Network Ê σsp Σ σ̂

Tentative 3.92 3.10 2.30 3.18
Patient-specific 1.76 2.26 1.47 2.30

Table 2
Maximum absolute error Emax given by (34) and standard deviation σmax 
given by (35) (in ms) obtained by using the tentative and the patient-
specific Purkinje networks. The results have to be intended as the average 
over the 20 simulations. Consistency test, idealized geometry.

Network Emax σmax

Tentative 17.33 4.09
Patient-specific 12.67 3.15

Table 3
Percentage of satisfied measures obtained by using the tentative and
the patient-specific Purkinje networks. The results have to be intended
as the average over the 20 simulations. Consistency test, idealized ge-
ometry.

Network Satisfied measures (%)

Tentative 31.1 ± 4.1
Patient-specific 70.2 ± 2.7

Table 4
Mean absolute error E given by (28) and standard deviation σ given by (29) 
(in ms) obtained with respect to different testing sets with variable size N 
(the training set being in all the cases formed by 300 points). Cross-
validation test, idealized geometry.

N Tentative Patient specific

300 3.74 ± 2.83 1.92 ± 2.00
600 3.38 ± 2.76 2.75 ± 2.64

3000 3.52 ± 2.74 2.89 ± 2.79
10 000 3.63 ± 2.84 2.94 ± 2.82

In Table 1 we compared quantitatively the accuracy of the results obtained by using the patient-specific networks gener-
ated by our method with that obtained by considering the tentative networks. In both cases, we reported the mean absolute 
error Ê  and the standard deviations. For the sake of completeness, in Table 2 we reported the spatial maximum absolute 
error Emax and the related standard deviation σmax.

From these results, we noticed a significant improvement of the accuracy obtained by using the patient-specific network 
with respect to the tentative one. We also observed the small standard deviations for the case of the patient-specific net-
work, even smaller than those related to the tentative network. Moreover, both for the tentative and for the patient-specific 
networks we obtained that the mean spatial standard deviation σsp is greater than the mean standard deviation over the 
experiments Σ . From the last two observations, we then conclude that the proposed algorithm is robust with respect to 
the choice of the starting network. For this reason, from now on we consider only one run of our algorithm to generate the 
patient-specific network, so that we report only the usual standard deviation σ given by (29).

Remark 5. As observed in Remark 3, our algorithm in principle does not guarantee that all the measures are satisfied in the 
sense of (14)–(15). However, we expected that the number of satisfied points should increase with respect to the tentative 
network. This is the case of all the numerical experiments reported in this paper. Just to provide an example, we reported in 
Table 3 the percentage of satisfied measures for the consistency test, showing a great improvement when passing from the 
tentative to the patient-specific network.

4.4. Cross-validation test

In this section we considered a cross-validation test. In particular, we divided the measures in two sets, one used to 
generate the patient-specific Purkinje network (the training set), and another one to validate the network (the testing set), 
given by the remaining points. In particular, we considered a sample S of variable size N ≥ 300 measures well distributed 
and we have used a training set always composed by 300 points. The location of the measures in the training set was 
randomly chosen according to a uniform probability function. The best value of the conduction velocity has been found to 
be V e = 0.36 m/s.

In Table 4 we reported the mean absolute error and the standard deviation obtained by using the patient-specific and the 
tentative networks for different values of N .

As expected, the numerical results proved that the accuracy obtained by using the tentative network were almost the 
same for different values of N , whereas that obtained by using the patient-specific network deteriorated for decreasing 
values of measures used to generate the network. Nevertheless, the performance of the patient-specific network, even in 
the case when only 3% of the measures were used to drive the generation, were still superior to the tentative one. This 
clearly showed the improvement in the accuracy of the network when using clinical data, justifying the effort needed to 
generate a patient-specific network.

In the following tests, we considered all the measures to generate the patient-specific network.

4.5. Robustness test with respect to the samples’ distribution

In this section we analyzed the robustness of the proposed method with respect to an unbalanced distributions of the 

synthetic data. This is the case when the clinicians are not able to reach with the catheters some regions of the endocardium 



Fig. 8. Representation of the unbalanced samples’ distributions on the two halves of the ventricle. (a) Unbalanced distribution on the septum; (b) unbalanced
distribution on the opposite site of the septum; (c) unbalanced distribution on the apex. Unbalanced samples’ distribution, idealized geometry.

Table 5
Mean absolute error E given by (28) and standard deviation σ given by (29) (in ms) for the 
patient-specific Purkinje networks generated with three different samples’ distribution 
and for the related tentative networks. For each row, the name indicates the region where 
the measures were localized. Unbalanced samples’ distribution, idealized geometry.

Region of unbalanced measures Tentative Patient specific

Septum 3.36 ± 3.12 1.71 ± 1.83
Opposite to the septum 3.48 ± 2.87 2.07 ± 1.95
Apex 4.03 ± 2.60 1.92 ± 1.86

Table 6
Mean absolute error E given by (28) and standard deviation σ given by (29) (in ms) for the 
tentative and the patient-specific Purkinje networks, for different values of the 
endocardial velocity V e . Dependence of the accuracy on the endocardial velocity, idealized 
geometry.

Network/Ve 0.032 m/s 0.036 m/s 0.040 m/s

Tentative 3.67 ± 2.93 3.38 ± 2.76 3.76 ± 3.01
Patient-specific 3.06 ± 2.72 2.75 ± 2.64 3.02 ± 2.73

or when they are interested on the activation times in a specific region. To this aim, we considered three unbalanced 
distributions of the synthetic data, each of them characterized by a greater density of the measures in a specific region of 
the endocardium. In particular, we tested the algorithm with the following samples’ configurations:

(i) Unbalanced distribution on the septum with N = 324 measures (see Fig. 8a);
(ii) Unbalanced distribution on the opposite site of the septum with N = 366 measures (see Fig. 8b);

(iii) Unbalanced distribution on the apex with N = 283 measures (see Fig. 8c).

The best value of the conduction velocity has been found to be V e = 0.35 m/s for case (a) and V e = 0.36 m/s for cases 
(b) and (c).

In Table 5 we reported the mean absolute error and the standard deviation obtained by the patient-specific Purkinje 
networks generated by using the three different samples’ distributions, using the same tentative network as starting point.

From these results, we found for all the cases more or less the same accuracy when using the patient-specific network. 
We highlight that in any case the accuracy has been increased with respect to that obtained by using the tentative net-
work. This showed that our method should be reliable also in real cases, when the measures are not acquired uniformly, 
independently of the region where they are localized.

4.6. Dependence of the solution on the choice of the endocardial velocity V e

In this section we aim to study how the accuracy depends on the choice of the endocardial velocity V e , which has been 
chosen with a trial-and-error strategy. To this aim, we re-ran the experiment reported in Section 4.4 with N = 300 points in 
the testing set, with two different values of V e , namely V e = 0.032 m/s and V e = 0.040 m/s, the optimal values being V e 
= 0.036 m/s.

In Table 6 we reported the mean absolute error and the standard deviation for the tentative and patient-specific net-
works, obtained for the three values of V e . From these results we observe that a change of about 10% in the value of V e 

produced an increase of the error of about 10% for both the patient-specific and the tentative networks.



Table 7
Mean absolute error E given by (28) and standard deviation σ given by (29) (in ms) ob-
tained for different values of ω. The generation of the network has been driven by the 
sample S̃(ω), whilst their accuracy has been evaluated with respect to the sample S. 
Noisy data, idealized geometry.

Network ω E ± σ

Tentative — 4.33 ± 3.05
Patient specific 0.00 1.64 ± 1.99

0.05 1.87 ± 2.50
0.10 1.81 ± 2.10
0.20 2.42 ± 2.35

4.7. Accuracy in the case of noisy data

In order to mimic the measurement error introduced by the acquisition procedure, in this section we considered syn-
thetic data affected by noise to generate the patient-specific network. To this aim, we considered a sample of synthetic data 
S composed by N = 150 measurements well-distributed on the endocardium and we added a random noise as follows:

T̃ i = Ti + ω max
i=1,...,N

{|Ti|
}
Ui[−0.5,0.5] i = 1, . . . , N, (36)

where Ui[−0.5,0.5] is the uniform probability distribution in the interval [−0.5, 0.5], and ω is the percentage of error. In this 
way, we obtained the “noisy” sample S̃(ω) := {(x1, ̃T1), . . . , (xN , ̃T N)} which has been then used to generate the patient-
specific network. Of course, the accuracy of the generated network has been then evaluated with respect to the original 
sample S .

In Table 7 we reported the mean absolute error and the standard deviation obtained by using the tentative and the 
patient-specific Purkinje network.

As expected, we found a decreased accuracy of the patient-specific network for increasing values of the noise. However, 
we still observed an excellent accuracy for ω = 0.05 and ω = 0.1. In any case, the mean absolute error was better than 
those obtained with the tentative network, also in the case ω = 0.2. These results highlighted the robustness and accuracy 
of our method also in the presence of noisy data, justifying the effort needed to generate a patient-specific network.

5. Application to a real case

In this section we present two applications of the proposed method to a real geometry reconstructed starting from 
Magnetic Resonance Images (MRI). In the first one we generated synthetic data (see Section 4.2) to simulate the presence 
of a myocardial ischemia, whereas in the second one we considered real clinical data related to a normal propagation. The 
3D geometry has been manually segmented from the MRI data and it has been discretized in a tetrahedral mesh composed 
of about 2.85 · 105 vertices and 1.5 · 106 elements.

5.1. Simulating an ischemic case

As observed, our method is not only valid in the case of a normal electrical propagation. Indeed, the only requirement 
for its validity is that the sources for the muscular activation are all located on the endocardium. Therefore, our method is 
still valid for a case characterized by a normal propagation in the network, with the presence of a myocardial ischemia in 
the muscle, that is a region characterized by reduced blood supply, resulting in the death of the muscular cells and thus in 
a progressive deterioration of the electrical activity (see [32] for a computational study).

Since we did not have real clinical data for the patient at hand related to a myocardial ischemia, we generated synthetic 
data by solving the 3D Eikonal problem (1) with a reference Purkinje network, as done for the idealized geometry in 
Section 4.2. Again, the reference network has been built with a different realization of the procedure used to generate the 
tentative network. In this way, the synthetic data S := {(x1, T1), . . . , (xN , T N)} were obtained by sampling N = 150 points on 
the endocardium with the exception of the ischemic region I . Indeed, in this region the myocardium is no longer excitable, 
and accordingly we set

Vm(x) =
{

0.65 m/s, if x /∈ I,

0.00 m/s, if x ∈ I,
(37)

whereas we assumed that the portion of the Purkinje network belonging to that region is characterized by a reduced 
conduction velocity, since also the cells of the network are supposed to die under the reduced blood supply. In particular, 
we set

V p(x) =
{

3.90 m/s, if x /∈ I,

0.39 m/s, if x ∈ I.
(38)



Fig. 9. Left: activation maps on the endocardium using the patient-specific Purkinje network generated by using synthetic measures; right: absolute error 
at the measurement points. Case with ischemia, real geometry, synthetic data.

Since we generated synthetically the measures, in this consistency test we assumed, for the sake of simplicity, 
an isotropic propagation through the myocardium. This corresponds to set k = 1 (and then D = I) for the solution of (1). 
In this case, since the propagation is isotropic, it is reasonable to assume that the velocity on the endocardium is equal to 
the one in the myocardium (V e = Vm), so that no optimization on V e was needed.

We then apply the proposed method for the generation of the patient-specific network by using the synthetic data, 
supposing to know the location of the ischemic region and thus the conduction velocities Vm and V p in (37)–(38). Again, to 
validate our methodology, we computed the error (28) at the measurement points and the related standard deviations 
(29). We found E = 1.30 ms, σ = 1.51 ms for the patient-specific network, and E = 3.37 ms, σ = 2.61 ms for the tentative 
network. The numerical results also showed that 88.6% of the measures were satisfied when using the patient-specific 
network (34.0% for the tentative one). In Fig. 9 we depicted the simulated activation maps obtained by solving problem (1) 
with the generated patient-specific network, and the absolute errors at the measurement points.

This consistency test proved the reliability of the proposed method in the case of the presence of an ischemic region. 
Of course, a validation performed with real data of such a pathology will be mandatory. This is under study and it will be 
the subject of future works.

5.2. Clinical data related to a normal propagation

In the second real application we considered a case characterized by a normal propagation, where patient-specific clinical 
data have been used to generate the Purkinje network. In particular, the related activation times on the endocardium were 
acquired with the EnSite NavX system at the Division of Cardiology of Ospedale S. Maria del Carmine, Rovereto (TN), Italy, 
see [29] for more details.

In this case, since we have to face clinical measures, it was necessary to include the muscular fibers in our geometry in 
order to obtain physiological results. To this aim we used the strategy proposed in [20] which produces a uniform transmural 
variation of the direction of the fibers. This method is based on selecting three orthogonal directions for each point, the 
first one obtained by solving a harmonic problem and the second one aligned with the longitudinal ventricular axis.

The values used for the conduction velocities are: V p = 3.5 m/s  for  the Purkinje network both to run our algorithm 
and for the final simulation, and Vm = 0.98 m/s for the velocity along the muscular fibers, whereas we set k = 0.5 for  the 
ratio between the velocity orthogonal to the muscular fibers direction and that along the fibers. Moreover, we imposed the 
following boundary conditions for the fibers angle in the harmonic problem used to generate the muscular fibers: −75◦ on 
the endocardium and 45◦ on the epicardium. As usual the value of the endocardial velocity used in our algorithm has been 
set with a trial-and-error strategy so as to maximize the accordance with the measures. In particular, we set V e = 0.6 m/s.

We divided our measures in two groups, the training set used to generate the Purkinje network and the testing set used 
for the validation. We considered half of the measures in the testing set and the remaining measures in the training set. 
In Fig. 10 we represent the muscular fibers’ direction, the tentative and the patient-specific Purkinje networks. We notice that 
our algorithm deleted some of the leaves and PMJ at the base of the ventricle. Probably, accordingly to the physiological 
knowledge, the Purkinje network is absent in this region, so that the clinical measures acquired in this region were related 
to points activated by the muscular propagation. Therefore, the activation in these points due to the tentative network was 
always early, and thus the related PMJ were deleted by our algorithm.

Moreover, we observe a qualitative analogy with the Purkinje networks of rabbits’ hearts reconstructed with a micro-CT 
technique, see [26]. In particular, notice the absence of Purkinje fibers at the base of the ventricle and in the upper part of 

the septum, and the fractal structure of the network.



Fig. 10. Muscular fibers direction represented on a portion of the myocardium (left), tentative (middle), and patient-specific Purkinje network generated 
from clinical data (right). The PMJ are represented by the red spheres. Normal propagation, real geometry and data. (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this article.)

In Fig. 11 we showed the contour lines of the activation maps obtained by solving problem (1) with the patient-specific 
network generated by our algorithm and the absolute errors in the measurements points of the testing set.

We found the following values for the mean absolute error and standard deviation given by (28) and (29): E = 7.13 ± 
4.47 ms for the tentative network and E = 5.84 ± 4.45 ms for the patient-specific network. This highlights the improvement 
of the accuracy in the endocardium when using the patient-specific network. To perform a quantitative validation also in 
the myocardium one needs to have at disposal some measures also below the endocardium. However, the acquisition of the 
activation times in the myocardium is not a common procedure nowadays in the clinical practice.

6. Conclusions

In this work we proposed a new method for the generation of a patient-specific Purkinje network driven by clinical 
measures of the activation times on the endocardium. In particular, we considered the case of sources for the muscular 
activation all located on the endocardium, as happens, for example, for a normal electrical activity or for an ischemic case.

Our algorithm was based on the correction of a tentative network, generated by using a fractal law as proposed in [1, 
12,21], improving the accordance with the measures. Its implementation is very simple and its efficiency very high since it 
requires the solution of 2D isotropic Eikonal problems on the endocardium, thus avoiding the knowledge of the muscular 
fibers and the computation in all the myocardium.

In the case of an ideal geometry and synthetic data, our numerical results highlighted:

1. The consistency of our method and the robustness with respect to the (randomly generated) tentative network;
2. The accuracy of our method when a cross-validation test was performed;
3. The robustness of our method when unbalanced or noisy data were considered;
4. A better accuracy in all the cases with respect to the one obtained with the tentative network.

Moreover, the numerical experiments performed in a real geometry highlighted:

5. The accuracy of our method when an ischemic region characterized by a vanishing conduction velocity was considered
to generate synthetic data.

6. The accuracy of our method when applied to a real geometry with patient-specific measures related to a normal prop-
agation.

For all these reasons, we believe that the proposed method could be an effective tool to improve the accuracy of the
numerical results in computational electrocardiology.

We point out that the accuracy of our method to real cases characterized by a normal propagation has been already 
discussed in [29], whereas in [17] we have extended and applied our strategy to pathological cases, in particular to those 
cases where the muscular sources are not all located on the endocardium, such as in the Wolff–Parkinson–White 
syndrome. Other possible perspectives will be:



Fig. 11. Top: activation maps obtained by solving the 3D anisotropic Eikonal problem in the real geometry with the patient-specific Purkinje network and
values of the measures in the testing set represented by bullets; bottom: absolute errors in the measurement points of the testing set. Normal propagation,
real geometry and data.

– The extension of our method to the case where more accurate models, such as the Bidomain one, will be considered to
compute the ventricular electrical activity;

– The application of our strategy to the Cardiac Resynchronization Therapy, for the optimization of the catheters stimula-
tion.
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