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1. Introduction

Coupled systems on networks (CSNs) are composed of a large number of highly interconnected dynamical nodes. Each
node is a unit with specific contents [1]. In the real world, many systems are modeled as coupled systems on networks
(CSNs), such as communication networks, social networks, power grids, cellular networks, World Wide Web, metabolic
systems, food webs, disease transmission networks, etc. [2,3]. When studying complex networks’ dynamics, one problem is
learning how a large ensemble of dynamical systems can behave collectively [4]. Therefore, it is very necessary to construct
a relation between the stability criteria of a CSNs and some topology property of the network [5–7]. Li and Shuai [8] have
considered global stability for the general CSNs based on graph theory, without discussing the stochastic effects.

Many large-scale dynamical systems from science and engineering often are represented as stochastic coupled systems
on networks (SCSNs) [9–11], which could be described in a directed graph. Kao, Sun and Cao [12] have considered stability
of coupled stochastic systems with time delay on networks without reaction–diffusion effects. However, for many realistic
networks, the node state in CSNs is seriously dependent on the time and space. Hence, in order to describe more accurately
the dynamic changes of CSNs, reaction–diffusion effects should also be considered [13–18]. Kao andWang have considered
global stability analysis for stochastic coupled reaction–diffusion systems on networks [19]. Markovian jump systems,
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introduced by Krasovskii and Lidskii [20] in 1961, have received increasing attentions [21–38], because the hybrid systems
driven by continuous-time Markov chains have been used to model many practical systems such as components failures or
repairs, changing subsystem interconnections, and abrupt environmental disturbances, please see [22] and the references
therein. The CSNsmay be driven by continuous-timeMarkov chains. To the best of the authors’ knowledge, stability analysis
for Markovian switching reaction–diffusion coupled systems on networks (MSRDCSNs) has not been properly addressed,
which still remains important and challenging.

Motivated by the above discussions, in this paper, we propose the MSRDCSNs model. In Section 2, some preliminaries
are presented. In Section 3, some new stability principles for the global stability of MSRDCSNs are established. We provide
a systematic method to construct the global Lyapunov function of MSRDCSNs by combining graph theory and the Lyapunov
second method. The findings show that, if each vertex system has a globally stable equilibrium and possesses a global
Lyapunov function Vk, then the global Lyapunov function for the MSRDCSNs can be systematically produced by individual
Vk. An example is provided in Section 4. Section 5 is conclusion.

Notations: for convenience, we sometimes write v, vk and vj as v(t, x), vk(t, x) and vj(t, x), respectively.

2. Preliminaries

Let (Ω, F , Ft , P) be a complete probability space with a filtration {Ft}t≥t0 satisfying the usual conditions.W (·) be am-
dimensional Brownian motion defined on the complete probability space. Let {γ (t), t ≥ 0} be a right-continuous Markov
process on the probability space which takes values in the finite space S = {1, 2, . . . , Ñ}with generator Γ = (πkj)(k, j ∈ S)
given by

P{γ (t + ∆) = j|γ (t) = k} =


πkj∆ + o(∆) if k ≠ j,
1 + πkk∆ + o(∆) if k = j,

where ∆ > 0 and lim∆→0 o(∆)/∆ = 0, πkj ≥ 0 is the transition rate from k to j if k ≠ j and πkk = −


j≠k πkj. We assume
that the Markov chain γ (·) is independent of the Brownian motion W (·). A general stochastic reaction–diffusion system
with Markovian switching reads

dv(t, x) = [ρ(γ (t))∆v(t, x) + f (t, x, v(t, x), γ (t))]dt

+ g(t, x, v(t, x), γ (t))dW (t), (t, x, γ (t)) ∈ R+

t0 × G × S

v(t0, x) = ϕ(x), x ∈ G
∂v(t, x)

∂N
= 0, (t, x) ∈ R+

t0 × ∂G

(1)

where ∆v(t, x) , (
r

k=1
∂

∂xk
[D1k(t, x, v(t, x)) ∂ui

∂xk
], . . . ,

r
k=1

∂
∂xk

[Dnk(t, x, v(t, x)) ∂ui
∂xk

])T ,G = {x = (x1, x2, . . . , xr)T :

∥x∥l < +∞} ⊂ Rr , ρ = diag(ρ1, ρ2, . . . , ρn) is the diffusion-matrix, ρn ≥ 0 is constant; f : R+ × G × Rn
× S → Rn and

g : R+ × G × Rn
× S → Rn×m are both Borel measurable functions. Dik(t, x, v(t, x)) ≥ 0 is smooth enough. N is the unit

normal vector of ∂G. Initial data v(t0, x) = v0 = ϕ(x) is suitably smooth known function and γ (t0) = γ0, where γ0 is an
S-valued Ft0-measurable random variable. ∥ · ∥ stands for vector norm.

(Assumption 1) Function g(t, x, v(t, x), γ (t)) satisfies the integral linear growth condition and f , g meet Lipschitz
condition, that is, there exists a constant L > 0 such that for ∀i ∈ S

∥g(t, x, v(t, x), i)∥G ≤ L(1 + ∥v∥)
∥g(t, x, v1(t, x), i) − g(t, x, v2(t, x), i)∥G ≤ L∥v1 − v2∥G

∥f (t, x, v1(t, x), i) − f (t, x, v2(t, x), i)∥G ≤ L∥v1 − v2∥G

(2)

where ∥v(·, x)∥G , |

G v(·, x)dx|.

The existence and uniqueness of the solution for system (1) can refer to the relevant conclusions in [22], because
stochastic reaction–diffusion systems can be transformed, via semi-group method, into abstract differential systems in
Banach space including infinite linear operator and nonlinear term. Suppose that f (t, x, 0, i) ≡ 0 and g(t, x, 0, i) ≡ 0, t ≥

t0, which means v(t, x) = 0 is a trivial solution of (1).
Let the mathematical expectation with respect to the given probability measure P be denoted by E(·). Let | · | denote the

Euclidean norm for vectors or the trace norm for matrices. We shall use the notations Sn
δ = {ξ : G → Rn

: |

G ξ(x)dx| < δ}

and Rn
+

= {x ∈ Rn
: xk > 0, i = 1, 2, . . . , n}. Some definitions on the stochastic stability of the trivial solution are given as

follows.

Definition 1. If for every triple of ∀ε1 ∈ (0, 1), ∀ε2 > 0 and t0 ≥ 0, ∋ δ = δ(ε1, ε2, t0) > 0 such that

P{∥v(t, x, t0, v0, i)∥G < ε2, t ≥ t0} ≥ 1 − ε1

holds for any (v0, i) ∈ Sδ × S, the trivial solution of system (1) is said to be stochastically stable or stable in probability.
Otherwise, the trivial solution is said to be unstable in probability.



Definition 2. The trivial solution of Eq. (1) is said to be stochastically asymptotically stable if it is stochastically stable and,
moreover, for ∀ε ∈ (0, 1) and t0 ≥ 0, there exists a δ0 = δ0(ε, t0) > 0 such that

P

lim
t→∞

∥v(t, x, t0, v0, i)∥G = 0


≥ 1 − ε

for any (v0, i) ∈ Sδ0 × S.

Definition 3. The trivial solution of Eq. (1) is said to be stochastically globally asymptotically stable if it is stochastically
stable and, moreover, for ∀δ > 0 and (v0, i) ∈ Sδ × S

P

lim
t→∞

∥v(t, x, t0, v0, i)∥G = 0


= 1.

Definition 4. The trivial solution of system (1) is said to be almost surely exponentially stable if there is, for any (v0, i) ∈

Sδ × S

λ , lim
t→∞

sup
1
t
lg ∥v(t, x, t0, v0, i)∥G < 0 a.s.

where λ is called as Lyapunov exponent of the solution for system (1). Therefore, the trivial solution of system (1) is almost
surely exponentially stable if and only if λ < 0.

Definition 5. If µ(·) ∈ C[[0, r], R] is a strictly increasing function and µ(0) = 0, function µ is said to be class K function.
Denote µ ∈ K concisely. If µ(·) ∈ C[R+, R+

] and µ ∈ K, limr→+∞ µ(r) = +∞, then µ ∈ KR.

A continuous function V (t, ξ , i) is said to be positive-definite if V (t, 0, i) = 0 for i ∈ S and for some µ ∈ K ,
V (t, ξ , i) ≥ µ(|ξ |). Write C1,2(R+ × Rn

× S; R+) for the family of all nonnegative functions V (t, ξ , i) on R+ × Rn
× S

that are continuously twice differentiable in ξ and once in t for all i ∈ S. If V (t, ξ , i) ∈ C1,2(R+ × Rn
× S; R+), then define

an operator LV (t, ξ , i) from R+ × Rn
× S to R with respect to (1) by

LV (t, ξ , i) = Vt(t, ξ , i) + V T
ξ (t, ξ , i)f (t, x, ξ , i) +

1
2
Trace[gT (t, x, ξ , i)Vξξ (t, ξ , i)g(t, x, ξ , i)]

+

N
j=1

γkjV (t, ξ , j) (3)

where

Vt(t, ξ , i) =
∂V (t, ξ , i)

∂t
, V T

ξ (t, ξ , i) =


∂V (t, ξ , i)

∂ξ1
, . . . ,

∂V (t, ξ , i)
∂ξn


and

Vξξ (t, ξ , i) =


∂2V (t, ξ , i)

∂ξk∂ξj


n×n

.

Applying the generalized Itô formula to

G V (t, v(t, x), γ (t))dx along system (1) gives for ∀t ≥ t0

G
V (t, v(t, x), γ (t))dx =


G
V (t0, v0, γ0)dx +


G

 t

0
[LV (s, v(s, x), γ (s))

+ V T
v (s, v, γ (s))△v(s, x)]dsdx +


G

 t

0
V T
v (s, v)g(s, x, v(s, x), γ (s))dW (s)dx. (4)

The existence of function V (t, v(t, x), i) ∈ C1,2(R+ × Rn
× S; R+) and another conditions in the classical Lyapunov

theorem on the stability of (1) are needed. For convenience, similarly, we give the following definitions:

Definition 6. Function V ∈ C1,2(R+ ×Rn
; R+) is called as Lyapunov-A function for (1), ifL


G V (t, v, i)dx ≤ 0, and is called

as Lyapunov-B function for (1), if L

G V (t, v, i)dx ≤ −b


G V (t, v, i)dx in which b > 0.

The following basic concepts and theorems on graph theory can be found in [7]. A directed graph G = (V, E) contains a
set V = {1, 2, . . . , n} of vertices and a set E of arcs (i, j) leading from initial vertex i to terminal vertex j. A subgraph H of
G is said to be spanning if H and G have the same vertex set. A digraph G is weighted if each arc (j, i) is assigned a positive
weight akj. Here akj > 0 if and only if there exists an arc from vertex j to vertex i in G. The weightW (G) of G is the product of
the weights on all its arcs. A directed path P in G is a subgraph with distinct vertices {i1, i2, . . . , im} such that its set of arcs
is {(ik, ik+1) : k = 1, 2, . . . ,m − 1}. If im = i1, we call P a directed cycle. A connected subgraph T is a tree if it contains no



cycles. A tree T is rooted at vertex i, called the root, if i is not a terminal vertex of any arcs, and each of the remaining vertices
is a terminal vertex of exactly one arc. A digraph G is strongly connected if, for any pair of distinct vertices, there exists a
directed path from one to the other. Given a weighted digraph G with n vertices, define the weight matrix A = (aij)n×n
whose entry akj equals the weight of arc (j, i) if it exists, and 0 otherwise. Denote the directed graph with weight matrix A as
(G, A). A weighted digraph (G, A) is said to be balanced if W (C) = W (−C) for all directed cycles C. Here, −C denotes the
reverse of C and is constructed by reversing the direction of all arcs in C. For a unicyclic graph Q with cycle CQ , let Q̃ be the
unicyclic graph obtained by replacing CQ with −CQ . Suppose that (G, A) is balanced, then W (Q) = W (Q̃). The Laplacian
matrix of (G, A) is defined as

L =




k≠1

a1k −a12 · · · −a1n

−a21

k≠2

a2k · · · −a2n

...
...

. . .
...

−an1 −an2 · · ·


k≠n

ank


.

Let ck denote the cofactor of the ith diagonal element of L.

Lemma 1 (Kirchhoff’s Matrix Tree Theorem). Assume n ≥ 2. Then

ck =


T ∈Tk

W (T ), k = 1, 2, . . . ,N (5)

where Tk is the set of all spanning trees T of (G, A) that are rooted at vertex i. In particular, if (G, A) is strongly connected, then
ck > 0 for ck = 1, 2, . . . , n.

Lemma 2 ([8]). Assume n ≥ 2. Let ck be given in (5). Then the following identity holds:

n
k,j=1

ckakjFkj(xk, xj) =


Q∈Q

W (Q)


(k,j)∈E(CQ)

Fkj(xk, xj). (6)

Here Fkj(xk, xj), 1 ≤ k, j ≤ n, are arbitrary functions, Q is the set of all spanning unicyclic graphs of (G, A), W (Q) is the weight
of Q, and CQ denotes the directed cycle of Q.

Lemma 3. Under Assumption 1,

P{∥v(t, x, t0, v0, i)∥G ≠ 0, t ≥ t0} = 1

for all (t0, v0, γ0) ∈ R+ × (Rn
− 0) × S. That is, almost any trajectory of (1) starting from a non-zero state will never be zero.

Proof. If the lemma was false, there would exist some t0 ≥ 0, v0 ≠ 0 and i ∈ S such that P{τ < ∞} > 0, where τ is the
first time to reach zero for the corresponding solution, that is,

τ = inf

t ≥ t0,


G
v(t, x, t0, v0, γ0)dx = 0


.

It is not difficult to find an integer k > t0 ∨ (1 + ∥v0∥) sufficiently large for P{B} > 0, where B = {τ < T , T is the
time upper bound and ∥v(t, x)∥ ≤ k − 1, for ∀(t, x) ∈ [t0, τ ] × G}. While in view of the linear growth conditions there is
positive constant Lk such that, for any ∥v(t, x)∥ ≥ k, ∀(t, x, i) ∈ [t0, τ ] × G × S,

∥f (t, x, v(t, x), i)∥G ∨ ∥g(t, x, v(t, x), i)∥G ≤ Lk(1 + ∥v∥).

Let V (t, v, i) = ∥v∥−1, we calculate, for ∥v(t, x)∥ ≥ k, ∀(t, x, i) ∈ [t0, τ ] × G × S,

L


G
V (t, v(t, x), i)dx =


G
LV (t, v(t, x), i)dx

=


G
[−∥v∥−3vT f (t, x, v, i) − ∥v∥−3vTρ(i)△v(t, x)

+
1
2


−∥v∥−3

∥g(t, x, v, i)∥2
+ 3∥v∥−5

∥vTg(t, x, v, i)∥2
]dx

≤


G


∥v∥−1

∥f (t, x, v, i)∥ + ∥v∥−1
∥g(t, x, v, i)∥2 dx

≤


G


Lk∥v∥−1

+ L2k∥v∥
−1 dx = |G|Lk(1 + Lk)∥v∥−1.



For any ε ∈ (0, ∥v0∥), define a stopping time τε = inf{t ≥ t0 : ∥v∥ ̸∈ (ε, k)}. Applying the Itô formula gives

E

e−Lk(1+Lk)(τε∧k)


G
V (τε ∧ k, v(τε ∧ k, x), i)dx


= ∥v0∥−1e−Lk(1+Lk)t0 |G|

+ E
 τε∧k

t0
e−Lk(1+Lk)s


−|G|Lk(1 + Lk)∥v(s, x)∥−1

+


G
V (s, v(s, x), γ (s))dx


ds ≤ ∥v0∥−1e−Lk(1+Lk)t0 |G|.

Note that for ω ∈ B we have τε ≤ k and ∥v(τε ≤ k, x)∥ = ε, then we obtain

E

e−Lk(1+Lk)kε−1

|G|XB


≤ ∥v0∥−1e−Lk(1+Lk)t0 |G|.

Thus,

P{B} ≤ ε∥v0∥−1e−Lk(1+Lk)(k−t0)|G|.

Letting ε → 0 yields P{B} = 0, which is in contradiction with the definition of P{B} > 0. The proof is complete. 

3. Global stability analysis for Markovian switching coupled reaction–diffusion systems on networks

To begin with our main results, we will give a MSRDCSNs represented by digraph G with N vertices, N ≥ 2. In ith vertex
it is assigned a stochastic reaction–diffusion system with Markovian switching

dvk(t, x) = [ρk(γ (t))∆vk(t, x) + fk(t, x, vk(t, x), γ (t))]dt

+ gk(t, x, vk(t, x), γ (t))dWk(t), (t, x, γ (t)) ∈ R+

t0 × Ω × S (7)

where vk(t, x) ∈ Rnk , fk : R+ × G × Rnk × S → Rnk and gk : R+ × G × Rnk×mi × S → Rnk×m. If these systems are coupled,
let

Hkj : Rnk × Rnj × R × S → Rmi , Nkj : Rnk × Rnj × R × S → Rnk×m, k, j = 1, 2, . . . ,N

represent the influence of vertex j on vertex i, and Hkj = Nkj = 0 if there exists no arc from j to i in G. Then, by replacing fk
and gk with fk +

n
j=1 Hkj and gk +

n
j=1 Nkj, we get the following stochastic coupled system on graph G:

dvk(t, x) =


ρk(i)∆vk(t, x) + fk(t, x, vk(t, x), i ) +

N
j=1

Hkj(vk, vj, t, i )


dt

+


gk(t, x, vk(t, x), i ) +

N
j=1

Nkj(vk, vj, t, i )


dW (t), (t, x, i ) ∈ R+

t0 × G × S

vk(t0, x) = ϕk(x), x ∈ G, γ (t0) = γ0

∂vk(t, x)
∂N

= 0, (t, x) ∈ R+

t0 × ∂G.

(8)

Without loss of generality, we suppose that functions fk, gk, Hkj and Nkj are such that initial-value problems to (7) and
(8) have unique solution and trivial solution v(t, x) = (v1, . . . , vn) = 0. Functions fk and gk meet Lipschitz conditions and
linear growth conditions with constant L > 0. For Vk(t, vk, i ) ∈ C1,2(R+ × Rnk × S; R+), define a differential operator
LVk(t, vk, i ) associated with the ith equation of (8) by

LVk(t, vk, i ) ,
∂Vk(t, vk, i)

∂t
+


∂Vk(t, vk, i)

∂vk

T

fk(t, x, vk(t, x), i) +

N
j=1

Hkj(vk, vj, t, i)



+
1
2
Trace



gk(t, x, vk(t, x), i) +

N
j=1

Nkj(vk, vj, t, i)

T 
Vk(t, vk)

′′

vkvj

×


gk(t, x, vk(t, x), i) +

N
j=1

Nkj(vk, vj, t, i)

+

N
j=1

γkjV (t, v, j). (9)

Theorem 1. Suppose that the following conditions hold.

A1. Assume that there exist positive functions Vk(t, ξ , i) ∈ C1,2(R+ ×Rnk ×S; R+), functions Fkj(vk, vj, t) and constants akj ≥ 0
satisfying



(I) there exist µ1, µ2 ∈ KR such that

µ1(∥vk∥) ≤


G
Vk(t, vk, i)dx ≤ µ2(∥vk∥),

L


G
Vk(t, vk, i )dx ≤

n
j=1

akjFkj(vk, vj, t),

t ≥ t0, k = 1, 2, . . . ,N,

(10)

hold for ∀(t, vk(t, x), i) ∈ [t0, ∞) × s
nk
h × S, where vk(t, ·) ∈ s

nk
h = {ζ : G → Rnk ∥


G ζ (x)dx| < h};

(II) Vk(t, ξ , i) is separated as to variables ξ(k ∈ N) for i ∈ S;
(III) ∂2Vk(t,ξ ,i)

∂ξ2
≥ 0, k ∈ N, (t, ξ) ∈ R+ × Rn for i ∈ S;

A2. Along each directed cycle C of the weighted digraph (G, A) in which A = (akj)n×n, there is
(i,j)∈E(C)

Fkj(vk, vj, t) ≤ 0, t ≥ t0. (11)

Then function V (t, v, i) ,
n

i=1 ckVk(t, vk, i ) is a Lyapunov-A function for (8), in which ck is defined as (5). Furthermore, the
trivial solution of (8) is stochastically stable. In addition, if more condition is added.
A3. If Vk(t, ξ , i) is radial unbounded, then the trivial solution of (8) is globally asymptotically stable in probability.
Proof. We first prove that the trivial solution of system (8) is stochastically stable.

For ∀ε1 ∈ (0, 1) and ε2 ≥ 0, suppose ε2 < h. Since Vk(t, ξ , i ) is continuous and Vk(t0, 0, i) = 0, there is δ = δ
(ε1, ε1, t0) > 0, such that

1
ε1

sup
v(t,x)∈Snδ


G
V (t0, v(t, x), i)dx ≤ µ∗(ε2), (12)

where n = n1 + n2 + · · · + nN , µ∗
∈ KR.

It follows from Condition (I) and (12) that δ < ε2. Denote v̄(t) =

G v(t, x, t0, v0, i )dx for ∀(v0, i ) ∈ Sn

δ × S. Let τ be the
first escape time of v̄(t) from Sn

ε2
, that is

τ = inf{t ≥ t0|v̄(t) ∉ Sn
ε2

}.

Applying the Itô formula to

G Vk(t, vk(t, x), i)dx along system (8) gives for ∀t ≥ t0

G
Vk(τ ∧ t, vk(τ ∧ t, x), γ (τ ∧ t))dx =


G
Vk(t0, vk0, γ0)dx

+

 τ∧t

t0


G
LVk(s, vk(s, v, t0, vk0, i))dxds

+

 τ∧t

t0


G


∂Vk(t, vk, i)

∂vk

T

△vk(s, x)dxds

+

 τ∧t

t0


G


∂Vk(t, vk, i)

∂vk

T

gk(t, x, vk(t, x, t0, vk0, i))

+

N
j=1

Nkj(vk, vj, t, i)


dxdW (t). (13)

By Condition A1(II), we have ∂2Vk(t,ξ)

∂ξk∂ξj
= 0, ( k ≠ j, k, j ∈ N). Employing integration by parts and combining Condition

A1(II), A1(III) and boundary condition of (8), we obtain
G


∂Vk(t, vk, i)

∂vk

T

△vk(t, x)dx ≤ 0. (14)

Furthermore, due to the continuity of ∂Vk(t,vk,i)
∂vk

on [t0, τ ∧ t] × SRnk
h × S, there must exist constant L1 > 0 such that

∥(
∂Vk(t,vk,i)

∂vk
)T∥ ≤ L1 holds for (t, v, i) ∈ [t0, τ ∧ t] × SRnk

h × S, in addition, since gk(t, x, vk(t, x), i) meets integral linear

growth condition, we obtain, for (t, v(t, x)) ∈ [t0, τ ∧ t] × SRnk
h


∂Vk(t, vk, i)

∂vk

T

gk(t, x, vk(t, x), i)


G

≤ L1L(1 + ∥vk(t, x)∥G) ≤ L1L(1 + h)



From Theorem 1.45 of Ref. ([22], pp. 49), we have

E

 τ∧t

t0


G


∂Vk(t, vk, i)

∂vk

T

gk(t, x, vk(t, x, t0, vk0), i) +

N
j=1

Nkj(vk, vj, t, i)


dxdW (t)


= 0. (15)

On the other hand, by (10), it is derived that

L


G
V (t, v, i)dx =

n
i=1

ckL

G
Vk(t, vk, i )dx ≤


k,j=1

ckakjFkj(vk, vj, t). (16)

Making use of Lemma 2 with weighted digraph (G, A), it yields
k,j=1

ckakjFkj(vk, vj, t) =


Q∈Q

W (Q)


(i,j)∈E(CQ)

Fkj(vk, vj, t). (17)

In view of Condition A2 and the factW (Q) > 0, we get

L


G
V (t, v, i)dx ≤


Q∈Q

W (Q)


(i,j)∈E(CQ)

Fkj(vk, vj, t) ≤ 0. (18)

Thus V (t, v, i) is a Lyapunov-A function for (8). Taking the mathematical expectation at the two sides of Eq. (13) and using
(15), (16) and (19) we have

E


G
V (τ ∧ t, v(τ ∧ t, x), γ (τ ∧ t))dx


≤


G
V (t0, v0, γ0)dx. (19)

Recalling the fact that ∥v(τ ∧ t, x)∥G = ∥v(τ , x)∥G = ε2 if τ ≤ t , it is derived

E


G
V (τ ∧ t, v(τ ∧ t, x), γ (τ ∧ t))dx


≥ E


I{τ<t}


G
V (τ , v(τ , x), γ (τ ))dx


≥ µ∗(ε2)P(τ ≤ t).

Combining (12) and (19) we get P(τ ≤ t) ≤ ε1. Letting t → ∞, we infer that

P(τ ≤ ∞) ≤ ε1.

That is,

P(|v̄(t)| < ε2, ∀t ≥ t0) ≥ 1 − ε1.

Namely,

P(∥v(t, x, t0, v0, i)∥G < ε2, t ≥ t0) ≥ 1 − ε1

which implies that the trivial solution of system (8) is stable in probability.
We then prove that the trivial solution of system (8) is globally asymptotically stable in probability. In the following, we

only need to prove for ∀v0,

P

lim
t→∞

∥v(t, x, t0, v0, i)∥G = 0


= 1. (20)

For ∀ε ∈ (0, 1), since Vk(t, ξ , i) is radial unbounded, we can find h > ∥v0∥G for i ∈ S satisfying

inf
t≥t0,∥v∥G≥h


G
V (t0, v(t, x), i)dx ≥

4
ε


G
V (t0, v0, i)dx. (21)

Define stop-time τh = inf{t ≥ t0, ∥v̄(t)∥ ≥ h}. Applying Itô formula, similar to get (19), we obtain for t ≥ t0

E


G
V (τh ∧ t, v(τh ∧ t, x), γ (τ ∧ t))dx


≤


G
V (t0, v0, γ0)dx. (22)

From (21), we get

E


G
V (τh ∧ t, v(τh ∧ t, x), γ (τ ∧ t))dx


≥

4
ε


G
V (t0, v0, γ0)dxP{τh ≤ t}. (23)

Then, it follows that

P{τh ≤ t} ≤
ε

4
.



Letting t → ∞ results in

P{τh ≤ ∞} ≤
ε

4
.

Therefore

P(|v̄(t)| < h, ∀t ≥ t0) ≥ 1 −
ε

4
.

From Theorem 4.2.3 of Ref. ([39], pp. 112–114),

P(|v̄(t)| = 0) ≥ 1 − ε.

Thus, (20) holds owing to the arbitrariness of ε. The proof is complete. �

Note that if (G, A) is balanced, then
k,j=1

ckakjFkj(vk, vj, t) =
1
2


Q∈Q

W (Q)


(k,j)∈E(CQ)


Fj k(vj, vk, t) + Fkj(vk, vj, t)


.

In this case, Condition A2 is replaced by the following:
(k,j)∈E(CQ)


Fj k(vj, vk, t) + Fkj(vk, vj, t)


≤ 0. (24)

Consequently, we get the following corollary:

Corollary 1. Suppose that (G, A) is balanced. Then the conclusion of Theorem 1 holds if (11) is replaced by (24).

Remark 1. The MSRDCSNs is so complicated that it is very difficult to give the analytical solution. It is important to work
on the qualitative analysis of the system. Therefore, how to construct appropriate Lyapunov function is of great importance.
The proof shows that, if each vertex system of (8) has a globally stable trivial solution and possesses a Lyapunov function Vk,
then the Lyapunov function for (8) can be systematically constructed by using individual Vk. In special, when ρk = 0,m = 1
some examples are given in [12]. Moreover, when gk = 0 and Nkj = 0 (k, j = 1, 2, . . . , n), some examples are given in [8].

Theorem 2. Suppose that the following conditions hold.

B1. Assume that there exist positive functions Vk(t, ξ , i ) ∈ C1,2(R+ × Rnk × S; R+), satisfying
(I) there exist µ1, µ2 ∈ KR such that

µ1(∥vk∥) ≤


G
Vk(t, vk, i )dx ≤ µ2(∥vk∥) (25)

hold for ∀(t, vk(t, x)) ∈ [t0, ∞) × s
nk
h , where vk(t, ·) ∈ s

nk
h = {ζ : G → Rnk ∥


G ζ (x)dx| < h};

(II) Vk(t, ξ , i) is separated as to variables ξ(k ∈ N) for i ∈ S;
(III) ∂2Vk(t,ξ ,i)

∂ξ2
≥ 0, k ∈ N, (t, ξ) ∈ R+ × Rn for i ∈ S.

B2. There exist functions Fkj(vk, vj, t) and constants akj ≥ 0, bk > 0 such that

L


G
Vk(t, vk, i )dx ≤ −bk


G
Vk(t, vk, i )dx +

n
j=1

akjFkj(vk, vj, t), (26)

t ≥ t0, for k = 1, 2, . . . ,N.
B3. Condition A2 holds, or if (G, A) is balanced and (24) holds.

Then function V (t, v, i) ,
n

i=1 ckVk(t, vk, i ) is a Lyapunov-B function for (8), in which ck is defined as (5). Consequently,
the trivial solution of (8) is asymptotically stable in probability.

In addition, if more condition is added.
B4. Each Vk(x, t, i) satisfies

lim
∥vk∥→∞

inf
t≥t0


G
Vk(t, vk, i )dx = ∞.

Then the trivial solution of (8) is globally asymptotically stable in probability.

Proof. We can show in the same way as in the proof of Theorem 1 that

L


G
V (t, v, i)dx =

n
i=1

ckL

G
Vk(t, vk, i )dx ≤ −b


G
V (t, v, i)dx, (27)



where b = min{b1, b2, . . . , bn}. Hence, we conclude that function V (t, v, i) is a Lyapunov-B function for (8). Let C = max
{c1, c2, . . . , cn}, it follows easily that

G
V (t, v, i)dx =

n
k=1

ck


G
Vk(t, vk, i )dx ≤

n
k=1

Cµ2(∥vk∥) ≤ nCµ2(∥v∥) (28)

where ∥v∥ =
n

i=1 ∥vk∥, obviously, ∥v∥ ≥ ∥vk∥. By Theorem 4.2.3 in (Mao (1997) [39]), the trivial solution of (8) is
stochastically asymptotically stable. Furthermore, making use of Condition B4 yields

lim
∥v∥→∞

inf
t≥0


G
V (t, v, i)dx = lim

∥vk∥→∞

inf
t≥0


n

i=1

ck


G
Vk(t, vk, i )dx


= ∞.

Then, the trivial solution of (8) is globally asymptotically stable in probability. The proof is complete. �

Theorem 3. Suppose that the following conditions hold.

C1. Assume that there exist positive functions Vk(t, vk, i ) ∈ C1,2(R+ × Rnk × S; R+), and constants p > 0, q1 > 0, q2 ≥ 0
satisfying
(I) Vk(t, v, i) is separated as to variables vk(k ∈ N) for i ∈ S;
(II)

q1∥vk∥
p
G ≤


G
Vk(t, vk, i )dx

 (29)

hold for ∀(t, vk(t, x)) ∈ [t0, ∞) × s
nk
h , where vk(t, ·) ∈ s

nk
h = {ζ : G → Rnk ∥


G ζ (x)dx| < h};

(III) ∥


∂Vk(t,vk,i )

∂vk

T 
gk(t, x, vk(t, x, t0, vk0), i) +

N
j=1 Nkj(vk, vj, t, i)


∥
2
G ≥ q2∥Vk(t, vk, i )∥2

G, for any vk ≠ 0, k ∈

N, (t, xk) ∈ R+ × G for i ∈ S.
C2. There exist functions Fkj(v, vj, t) and constants akj ≥ 0, bk > 0 such that

L


G
Vk(t, vk, i )dx ≤ −bk


G
Vk(t, vk, i )dx +

n
j=1

akjFkj(vk, vj, t), (30)

t ≥ t0, for k = 1, 2, . . . ,N. i ∈ S. Here LVk is defined in (9).
C3. Condition A2 holds, or if (G, A) is balanced and (24) holds.

Then

lim
t→∞

sup
1
t
lg ∥v(t, x, t0, v0, i)∥G ≤

−2
N

k=1
ckbk − q2

2p
a.s. (31)

holds. The function V (t, v, i) ,
n

i=1 ckVk(t, vk, i ) is a Lyapunov-B function for (8), in which ck is defined as (5). Particularly,
the trivial solution of (8) is almost surely exponentially stable.

Proof. For any vk0 ≠ 0, denote vk(t, x) , vk(t, x, t0, vk0). It follows from Lemma 3 that vk(t, x) ≠ 0 holds almost surely for
all, (t, x) ∈ (t0, ∞) × G, i ∈ S. Applying the Itô formula to (8) gives

d


G
Vk(t, vk(t, x), γ (t))dx


=


G
LVk(t, vk(t, x), i)dx +


G


∂Vk(t, vk, i)

∂vk

T

△vk(t, x)dx


dt

+


G


∂Vk(t, vk, i)

∂vk

T

gk(t, x, vk(t, x), i) +

N
j=1

Nkj(vk, vj, t, i)


dxdW (t). (32)

By condition C1(I), we have ∂2Vk(t,vk)
∂vk∂vj

= 0, (k ≠ j, i, j ∈ N). From integration by parts and condition C1. (III) together with
boundary condition, we obtain

G


∂Vk(t, vk, i)

∂vk

T

△vk(t, x)dx =


nk

m=1

r
j=1

∂Vk

∂vkm
Dmj(t, x, v)

∂vkm

∂xj


∂G

−


G

nk
m=1

r
j=1

Dmj(t, x, v)
∂2Vk

∂v2
km


∂vkm

∂xj

2

dx ≤ 0 (33)



where vk = (vk1, . . . , vknk)
T . By conditions C2 and C3, we can show in the same way as in the proof of Theorem 1 that

L


G
V (t, v, i)dx =

n
i=1

ckL

G
Vk(t, vk, i )dx ≤ −

n
i=1

ckbk


G
Vk(t, vk, i )dx ≤ −b


G
V (t, v, i)dx, (34)

where b = min{b1, b2, . . . , bn}. Hence, we conclude that function V (t, v, i) is a Lyapunov-B function for (8). From (32)–(34),
we get

log


G
Vk(t, vk(t, x), i)dx


≤ log


G
Vk(t0, v0, γ0)dx


−

n
i=1

ckbk(t − t0) + M(t)

−
1
2

 t

t0

G  ∂Vk(s,vk,i)
∂vk

T 
gk(s, x, vk(s, x), i) +

N
j=1

Nkj(vk, vj, s, i)


dx


2


G Vk(s, vk(s, x), i)dx

2 ds (35)

where

M(t) =

 t

t0


G


∂Vk(s,vk,i)

∂vk

T 
gk(s, x, vk(s, x), i) +

N
j=1

Nkj(vk, vj, s, i)


dx

G Vk(s, vk(s, x), i)dx
dW (s).

It is obvious that M(t) is a continuous martingale with initial value M(t0) = 0 when i = γ0. Assign ε ∈ (0, 1) arbitrarily
and let n = 1, 2, . . .. It can be deduced from the exponential martingale inequality that

P


sup

t0≤t≤t0+n

M(t) −
ε

2

 t

t0

G  ∂Vk(s,vk,i)
∂vk

T 
gk(s, x, vk(s, x), i) +

N
j=1

Nkj(vk, vj, s, i)


dx


2


G Vk(s, vk(s, x), i)dx

2 ds

 >
2
ε
log n


≤

1
n2

.

From Lemma Borel–Cantelli [40], it is easy to see there is a corresponding integer n0 = n0(ω) such that if n ≥ n0

M(t) ≤
ε

2

 t

t0

G  ∂Vk(s,vk,i)
∂vk

T 
gk(s, x, vk(s, x), i) +

N
j=1

Nkj(vk, vj, s, i)


dx


2


G Vk(s, vk(s, x), i)dx

2 ds +
2
ε
log n

holds for all t0 ≤ t ≤ t0 + n. Substituting the above inequality to (35) and noting condition C1(III), we obtain that

log


G
Vk(t, vk(t, x), i)dx


≤ log


G
Vk(t0, v0, γ0)dx


−

(1 − ε)q2 + 2
n

i=1
ckbk

2
(t − t0) +

2
ε
log n (36)

holds for all t0 ≤ t ≤ t0 + n and n ≥ n0 almost surely. Thus, for almost all ω ∈ Ω , when t0 + n − 1 ≤ t ≤ t0 + n, n ≥ n0

1
t
log


G
Vk(t, vk(t, x), i)dx


≤ −

(t − t0)
2t


(1 − ε)q2 + 2

n
i=1

ckbk



+
log


G Vk(t0, v0, γ0)dx


+

2
ε
log n

t0 + n − 1
a.s. (37)

This implies

lim
t→∞

sup
1
t
log


G
Vk(t, vk(t, x), i)dx


≤ −

(1 − ε)q2 + 2
n

i=1
ckbk

2
a.s. (38)



Combining condition C1(I), we infer

lim
t→∞

sup
1
t
log ∥Vk(t, vk(t, x), i)∥ ≤ −

(1 − ε)q2 + 2
n

i=1
ckbk

2p
a.s. (39)

and the required assertion (31) follows since ε > 0 is arbitrary. The proof is complete. �

Remark 2. If in C2, bk > 0 is changed into bk ∈ R such that 2
N

k=1 ckbk < q2, obviously, the trivial solution of (8) is almost
surely exponentially stable.

Corollary 2. Suppose that the following conditions hold.

D1. Assume that there exist positive functions Vk(t, vk, i ) ∈ C1,2(R+ × Rnk × S; R+), and constants p > 0, α > 0 satisfying
(I) Vk(t, v, i) is separated as to variables vk(k ∈ N) for i ∈ S;
(II)

α∥Vk(t, vk, i )∥
p
G ≤


G
Vk(t, vk, i )dx (40)

hold for ∀(t, vk(t, x)) ∈ [t0, ∞) × s
nk
h , where vk(t, ·) ∈ s

nk
h = {ζ : G → Rnk ∥


G ζ (x)dx| < h};

(III) ∥(
∂Vk(t,vk,i )

∂vk
)T

gk(t, x, vk(t, x, t0, vk0), i) +

N
j=1 Nkj(vk, vj, t, i)


∥
2
G ≥ q2∥Vk(t, vk, i )∥2

G, for any vk ≠ 0, k ∈

N, (t, xk) ∈ R+ × G for i ∈ S.
D2. There exist functions Fkj(v, vj, t) and constants akj ≥ 0, λ > 0 such that

L


G
Vk(t, vk, i )dx ≤ −λ


G
Vk(t, vk, i )dx +

n
j=1

akjFkj(vk, vj, t), (41)

t ≥ t0, for k = 1, 2, . . . ,N. i ∈ S. Here LVk is defined in (9).
D3. Condition A2 holds, or if (G, A) is balanced and (24) holds.

Then

lim
t→∞

sup
1
t
lg ∥v(t, x, t0, v0, i)∥G ≤

−λ
N

k=1
ck

p
a.s. (42)

holds. The function V (t, v, i) ,
n

i=1 ckVk(t, vk, i ) is a Lyapunov-B function for (8), in which ck is defined as (5). Particularly,
the trivial solution of (8) is almost surely exponentially stable.

Proof. This corollary is the direct result of Theorem 3, if we choose q1 = α, bk = λ and q2 = 0. �

Remark 3. In this paper, the novelmethods of constructing a Lyapunov function to study stability conditions of the SCRDSNs
are proposed. Ours are different from some other latest methods on constructing the Lyapunov function [41–46], because
our methods build a relation between the stability criteria of a CSN and some topology property of the network. Topology
property of the networks is of great importance to the dynamical analysis for the coupled networks. Therefore, for dealing
with CSN, our methods are less conservative.

4. Example

Consider the 2-dimensional Itô SRDSMS (1) satisfying the bounded condition (2), and we assume (G, A) is strongly
connected and balanced. The Markov chain γ (·) is independent of the Brownian motionW (·).

dv1(t, x) =


△v1(t, x) + α(γ (t))v2(t, x) − α(γ (t))v1(t, x) − α(γ (t))

2
j=1

a1j(v1(t, x) − vj(t, x))


dt,

dv2(t, x) =


△v2(t, x) − α(γ (t))v1(t, x) − 2α(γ (t))v2(t, x) + α(γ (t))

2
j=1

a2j(v2(t, x) − vj(t, x))


dt

+


α(γ (t))v2(t, x)dw(t).

(43)

Construct function V = (

G v1(t, x)dx)2 + (


G v2(t, x)dx)2, we have

G
v(t, x)dx ≥

1
∥G∥

∥v∥.



Besides,

L


G
Vdx =


G
LVdx = α(γ (t))


G
[2v1v2 − 2v2

1 − 2v1v2 − 4v2
2 + v2

2]dx +

2
j=1

akjFkj(vk, vj)

= −2α(γ (t))

G
Vdx < 0

where Fkj(vk, vj) = 2

G v2

k − v2
j dx. It is easy to see that along every directed cycle C of the weighted digraph (G, A),

(k,j)∈E(CQ)


Fj k(vj, vk, t) + Fkj(vk, vj, t)


= 0.

According to Corollary 1, we deduce

lim
t→∞

sup
1
t
lg ∥v(t, x, t0, v0, i)∥G ≤ −2 a.s.

Therefore, the trial solution of system (43) is almost surely exponentially stable.

5. Conclusions

In this paper, we have investigated some stabilities of some stochastic coupled reaction–diffusion systems on networks
(MSRDCSNs). First, a MSRDCSNs model has been proposed. Then, a systematic method for constructing a global Lyapunov
function forMSRDCSNs by using graph theory has been presented. Thismethod overcomes the difficulty in finding Lyapunov
function for a coupled system. At last, some sufficient conditions for stability of MSRDCSNs are obtained. Future work is to
give a systematic approach to build a Lyapunov function for coupled impulsive reaction–diffusion systems on networks.
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