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useful in radiotherapy (RT), where different types of medical 
images could lead to better identifying the structures of 
interest for the RT plan, such as the tumour and the organs at 
risk, and for studying the efficiency of RT and its collateral 
effects [14, 15]. For example, when three-dimensional (3D) 

1 Introduction

Image registration (IR) is an important research topic 
addressed through image processing and optimisation tools. 
IR can be divided into two main streams: rigid or 

parametric registration, and elastic or non-rigid registration 
(NRR) [1, 2]. The parametric registration has been studied 
extensively [3], where techniques based on gradient descent 
[4, 5] are most commonly used to optimise a similarity
measure (e.g. mutual information [6–8, 34]) and to obtain the 
spatial transformation (e.g. affine or perspective [9]) that 
aligns the target and source images [1, 2]. Other options based 
on global optimisation methods such as genetic algorithms 
[10] and particle filtering (PF) [11], have begun to play an 
important role in this field [12, 13]. In fact, NRR is a more 
complex and involved problem, especially for multimodal 
images, where the selected images could not have an intensity 
correspondence between them, because of the acquisition with 
different imaging technologies or acquisition parameters. 
Thus, direct NRR techniques based on intensity alignment 
cannot be employed. Nowadays, multimodal NRR has a vast 
number of applications in medical imaging [14]. For instance, 
multimodal NRR is
conformal radiotherapy treatment planning is employed for 
tumour treatment, the relative position between the tumour 
and its adjacent tissues could be obtained accurately through 
analysing the medical datasets, which fuse the information of 
functional and anatomical images [15]. In the literature, the 
most common methods to solve the elastic registration 
employ splines, where a family of functions is used to 
approximate the complex deformations, but the main 
drawback of these methods is their complexity and high 
computational cost
[16–18], mostly in terms of the number of interpolation 
points.
As described in [19], a most recent proposal to solve the 

NRR problem is based on iterative optical flow (OF) in order 
to find the deformation vector field that aligns the target and 
source images, after conducting an initial parametric 
registration by using the PF. This combined algorithm (PF + 
OF) has shown promising results in [20,



 

IT r( ) = F IS(r + V (r))
[ ]

(1)

û

21]. Nonetheless, an important restriction of this approach is 
the hypothesis of intensity constancy between the target and 
source images, restricting the methodology to monomodal 
images. In this context, this work pursues to overcome the 
monomodal restriction of the PF + OF algorithm in [19], by 
applying a local intensity mapping over the images, after an 
initial parametric registration. In this proposal, the 
multimodal images are mapped into a space where their 
intensities can be compared, in order to perform an OF 
algorithm iteratively, as proposed in [22].
The rest of the paper is organised as follows: in Section 2.1, 

we briefly describe the monomodal NRR based on PF + OF, 
and in Section 2.2 the proposed multimodal NRR 
methodology is detailed; Section 2.3 presents the 
characteristics of the images datasets (clinical and synthetic) 
to perform the evaluation, and in Section 2.4 the standard 
indices used to evaluate the accuracy of the NRR are 
described. Section 3 presents the NRR results for the 
synthetic and clinical datasets, and in Section 4, we discuss 
those findings. Finally, in Section 5, the principal 
conclusions about the algorithm performance in multimodal 
NRR of anatomical structures of interest in RT are outlined.

2 Methodology

The NRR problem can be formulated as to find the 
displacements vector field V(r) such that it can align a 
source image (IS), with a target one (IT). Then, the problem 
can be mathematically written as follows

where r = (x, y)` denotes a position within the rectangular 
domain V , R2 of the images, and F[·] represents the 
relation between the intensities of both images IT and IS. 
According to (1), F is the identity if the two images are 
monomodal, and the registration problem can be formulated 
as to find the OF between them. However, standard OF 
techniques can only find the correspondence between small 
displacements in the pixels of the images (IT, IS), and then 
it is recommended to have an initial approximation d0(r) of
the vector field V(r) by using a parametric registration 
algorithm. Thus, the NRR problem is addressed in two 
steps: first an initial parametric registration is performed, 
and next an iterative OF solution is computed [19]. This 
approach is described briefly in the following subsection.

2.1 Monomodal NRR based on PF + OF

The basic idea of the parametric registration based on PF, 
proposed in [13], is to estimate the parameter vector θ of a 
geometrical transformation T(r|θ) (e.g. affine or perspective) 
applied to each pixel r by a stochastic search over an 
optimisation surface (cost function) [23], where the 
estimated parameter vector û is a statistic over the particles 
(e.g. the mean value). For specific details about the 
implementation of the parametric registration based on PF, 
the reader refers to [11, 13, 21, 24]. Once the parametric 
registration has been carried out, an initial estimation of the
elastic vector field d0(r) = r − T (r| ) can be obtained, and 
the remaining displacements di(r) that accomplish the NRR 
between the target IT and the transformed
ĨS r( ) W IS(r + d0(r)) images are expected to be small. If the 
images are monomodal, it is possible to find these
displacements by using an OF technique without
parameterising the deformation space. Our approach for OF
estimation is based on optimising the following quadratic
energy function

C d r( )( ) =
∑
∀r

IT r( ) − ĨS(r + d(r))
[ ]2

+ l
∑
kr,sl

d(r)− d(s)
∥∥ ∥∥2

2 (2)

where kr, sl denotes that pixels r and s are neighbours, λ is a
regularisation term to control flow homogeneity and ·‖ ‖2
represents the Euclidean norm. Note that (2) describes a
discrete version of the classical Horn–Schunck method [25],
which is the basis of most OF algorithms proposed in the
literature [26, 35]. To optimise the non-linear quadratic cost
function in (2), the data term can be linearised by
conducting a first-order Taylor approximation

ĨS(r + d(r)) ≃ ĨS(r)+ ∇ĨS(r)`d(r) (3)

where ∇ĨS(r) is the gradient of ĨS and (·)` denotes
transposition. Therefore the minimum solution for the
quadratic problem in (2) can be obtained by a direct
calculation of the stationary optimality conditions with
respect to d(r), and then solving the resulting system of
linear equations with efficient iterative methods (e.g.
Gauss–Seidel technique [27]). For more implementation
details of this strategy, the reader is referred to [19, 20].
Hence, the initial estimation d0(r) can be refined by

accumulating the displacements obtained after solving the
optimisation in (2) recursively. Thus, the monomodal PF +
OF algorithm can be summarised in the next three steps:

1. Parametric registration: Find the parameters vector û of
the perspective transformation T r|û( )

that provides the best
alignment between IT(r) and IS(r), and compute the initial
(rigid) displacement vector field d0(r). In this work, the
parameters vector is defined as û = [dx, dy, ex, ey, sx, sy]

`

where f denotes the rotation (degrees), dx and dy the
displacements in x- and y-axis (mm), ex and ey are scales,
and sx and sy are skewness in each axis.
2. OF: Find the displacements between IT and ĨS by an
iterative scheme of OF, d(r) = d1(r)+ d2(r)+ · · · + dk(r),
until convergence is achieved; where at each kth iteration

the OF is computed over IT(r) and Ĩ
k
S(r), where

Ĩ
k
S(r) W ĨS r+∑k−1

i=1 di(r)
( )

.

3. NRR: Finally, we can obtain the vector field of the
non-rigid deformation by adding the rigid vector field to the
one obtained by the iterative OF, that is,
V (r) W d0(r)+ d(r). Consequently, we can deduce the
elastic registered image as IR(r) W IS(r + V (r)).

2.2 Multimodal algorithm for NRR based on local
variability measures

In the case of multimodal NRR, the algorithm in [19] suggests
approximating the transfer function of intensities between the
target and source images by using the joint histogram, but this
approach is only feasible if the intensity relation F[·] in (1) is
injective. Hence, in this work, we propose an extension of this
methodology in order to overcome these limitations by
applying an intensity mapping over the images, once the
target and source images are roughly aligned by a



parametric registration, by using measures that describe the
intensity variability around each pixel [22]. This mapping
transforms both images into a space where each pixel
intensity in one image could be compared with its
corresponding in the other image, despite their intrinsic
multimodal characteristics; namely, establishing a mapping
G[·] such that

G IT(r)
[ ] = G IS(r + V (r))

[ ]
(4)

In order to define this mapping, we propose to employ
measures that do not depend on the grey level of the pixels,
but on their intensity variability around neighbour elements.
Two measures that meet the above description are the
entropy and the variance, computed over a window centred
in the pixel of interest, which we call local variability
measures (LVM). In addition, we also propose to employ a
combination of these two metrics in order to take advantage
of the local information that they capture. Euclidean and
maximum weights are used, similarly to the two and
infinity norms of two-dimensional (2D) vectors. The
proposed methodology PF + LVM +OF for multimodal
NRR adds two intermediate steps to the algorithm described
in the previous subsection (see flowchart of the proposed
method in Fig. 1):

1. Parametric registration.
2. Intensity mapping based on LVM. Apply the mappingG[·]
based on a LVM over all the pixels rin the images IT(r) and
ĨS(r). That is, compute the intensity mapping, and obtain
ĨT(r) W G IT(r)

[ ]
and Ĩ

0
S(r) W G IS(r + d0(r))

[ ]
, according to

the following four proposals

G1 I(r)
[ ] = ∑

s[Nr

pr I (s)
( )

log I (s)
[ ]

(5)

G2 I(r)
[ ] = ∑

s[Nr

pr I(s)
( )

mr − I(s)
[ ]2

(6)

G3 I(r)
[ ] = �����������������������

G1 I (r)
[ ]2+G2 I(r)

[ ]2√
(7)

G4 I(r)
[ ] = max

r
G1 I (r)

[ ]
, G2 I(r)

[ ]{ }
(8)

where G1 represents the LVM using ‘entropy’, G2 using
‘variance’, G3 is an Euclidean weight between variance and
entropy, and G4 is selecting the maximum value between
variance and entropy at each pixel. In addition, Nr

represents the set of pixels of an n × n window centred at r,
pr(I(s)) is the local probability distribution of the image
intensities I(s) within Nr and μr is the average value of the
intensity I(s) with s∈Nr. In this work, the size of Nr is 7 ×
7 pixels, as suggested in [22].
Fig. 1 Flowchart of the proposed algorithm for multimodal NRR based
3. Equalisation: After the transformation, the intensities of

the images (ĨT and Ĩ
0
S) could have small values and could

be concentrated in a short dynamic range. For this reason, it
is necessary to rescale the two-image intensities and to
apply a histogram equalisation [9].
4. OF: Find the remaining displacements between IT and Ĩ

0
S

by an OF iterative scheme.
5. Non-rigid registration.

2.3 Clinical and synthetic image datasets

Computed tomography (CT) and magnetic resonance (MR)
clinical studies of three patients with cerebral tumour were
selected for evaluation purposes. In these studies, it is
possible to observe deformations of the brain structures in
the axial plane, because of tumour structures (primary
tumour and metastatic or secondary tumours) shrinkage as a
result of the medical treatment. These patients underwent
pre-operative diagnostic and RT treatment at the San
Raffaele Hospital in Milan, Italy. The dataset was
composed by CT scans and MR T1 weighted images before
the RT treatment (CT-pre and MR-pre), and MR T1
weighted images after the treatment (MR-post). Owing to
the effectiveness of the RT treatment in all clinical cases,
some tumours were no longer visible after the medical
intervention, and to avoid information inconsistencies in the
registration process, we decided to use 2D images instead
of the whole 3D scan. Thus, from the three clinical studies,
ten pairs of CT/MR 2D images from different sections of
the head were carefully selected, in order to have anatomic
correspondence between pre- and post-images, and to study
different morphological structures. Each image has a
dimension of 512 × 512 pixels with a pixel size of 1.0 × 1.0
mm. The slice-by-slice correspondence between CT-pre and
both MR images (pre and post) was obtained by using the
software available in the Eclipse Treatment Planning
System [28].
In addition to the clinical dataset, we generated new

synthetic data for the algorithm evaluation, where two
MR-pre images of different sections of the head were
deformed in a controlled way (three deformations per
image) by using the moving least squares algorithm [29], in
order to simulate a tumour evolution during RT treatment.
In this way, the NRR process was evaluated between a
CT-pre image and the synthetically modified MR-pre
image. Moreover, our interest was to use the proposed
algorithm to follow the tumour evolution during RT
treatment. For this reason, in the clinical images, the
proposed algorithm was adapted to compute the OF over
the tumour area and its near structures, where the
displacements at the edges of the selected regions were
controlled through the regularisation term in (2), and by the
vector field obtained by PF.
on LVM and OF



ADiff = (A<B)\(A>B)
∣∣ ∣∣ = A\B( )

< (B\A)∣∣ ∣∣ (9)

and the DSC index

DSC = 2
A>B| |
A| | + B| | (10)

where |·| denotes the cardinality of the set, \ represents the set
difference, and ∪ and ∩ are the union and intersection,
respectively. In our evaluations, we had an equivalence of
the area associated with each pixel in the images. In this
way, it is possible to quantify ADiff in area units (mm2).
Note that ADiff equals to zero means a complete overlap.
On the other hand, DSC ranges from 0 (no spatial overlap)
to 1 (complete overlap).

2.4 Registration accuracy

First, an expert physician evaluated the results of the 
registration process by visual inspection, in order to label 
the performance as acceptable or not acceptable from a 
clinical point of view. Then, segmentations of the structures 
of interest (brain cortex and tumour in synthetic dataset, 
ventricles and tumour in clinical dataset) were carried out 
for each of the four images obtained after the registration 
with the PF + LVM + OF method, and for the original PF + 
OF implementation (without LVM). For analysis purposes, 
we define LVMk as the PF + LVM + OF approach by using 
the mapping Gk, as described in (5)–(8), and No-LVM for 
just PF + OF. Owing to the difficulty in properly locating 
anatomical structures just by using the CT image, a CT-pre/
MR-pre correspondence was used to ensure a proper 
segmentation of the structures of interest in the CT images, 
where contour delineations of the structures in the MR-pre 
images were used for this purpose. These segmentations 
were performed by an expert observer through the MIPAV 
software [30] (see Fig. 2). From these segmentations, 
differences in the anatomical structures before and after the 
registration process were calculated by using standard 
indices usually adopted for accuracy assessment: the area 
difference (ADiff), the dice similarity coefficient (DSC), the 
average symmetric distance (ASD) and the maximum
symmetric distance (DMax) [20, 31–33].
First, ADiff and DSC are indices that measure the overlap 

between two structures described by binary masks. Hence, 
given two different binary masks A and B, representing two 
sets of pixels delimited by a contour, the index ADiff can 
be defined as
Fig. 2 Example of the set of images used for the algorithm evaluation
a CT-pre with contours of the anatomical structures of interest
b MR-pre with contours of the anatomical structures of interest
c CT-pre with contours of the anatomical structures of interest obtained from MR-
Likewise, given contours CA and CB of the binary masks A
and B respectively, the ASD index calculates the average
distance between two contours. To compute it, first
calculates for each contour pixel pB∈ CB, the Euclidean
distance between pB and its closest pixel in CA. In order to
provide symmetry, the same process is applied to the
contour pixels of pA∈ CA with respect to CB. The ASD is
then defined as the average of all computed distances

ASD = 1

CA

∣∣ ∣∣+ CB

∣∣ ∣∣ ∑
pA[CA

d pA, CB

( )+ ∑
pB[CB

d pB, CA

( )( )

(11)

where d(p, C) = minq[C p− q
∥∥ ∥∥

2. Therefore a perfect match
between contours CA and CB is expressed as a zero value for
ASD. Meanwhile, DMax calculates the maximum distance
between the analysed overlapped contours, where zero
means a perfect overlap. As a result, DMax provides an
estimation of the worst local distance mismatch and is
defined as

DMax = max max
pA[CA

d pA,CB

( )
, max
pB[CB

d pB,CA

( ){ }
(12)

To avoid bias in the quantitative evaluation owing to
differences in the dimensions of the structures of interest,
the resulting indices were analysed for each type of
anatomical structure (brain cortex, tumour and ventricles).
So the evaluation results are presented as mean ± std for
each structure. Additionally, in the synthetic images, eight
markers were placed around the tumour with the goal of
estimating the Euclidean distance between the coordinates
of the markers in the images, before and after the
registration process.

3 Results

3.1 Synthetic images

Fig. 3 shows an example of the registration results obtained
by the different LVM proposed in this paper, where a
CT-pre image is used as IT, and an MR-pre synthetically
deformed as IS. In the parametric registration, the PF
estimated the following parameters û = [−0.838,
−4.805,−4.218, 1.074, 1.066,−0.020,−0.022]`. Table 1
presents the overall results for the brain contour and tumour
by using the accuracy indices described earlier. The results
pre



Fig. 3 Example of NRR results of the synthetic dataset for the four LVM and original PF +OF algorithm (No-LVM)

The first row shows the CT-pre and MR-pre synthetically deformed, target and source respectively, with markers in the structures of interest. The second row
shows the registration result by using the algorithm (PF + OF), without LVM mapping (first column) and with each LVM mapping (columns two to five)
show a similarity in ADiff for the brain contour, before and
after the registration process (for any LVM); while in the
tumour, a considerable decrease of about 60% is observed
in LVM1 and LVM4, and an increase of about 50% is
presented for LVM2, LVM3, and No-LVM. For the ASD
index, the NRR results for the brain structure show a slight
decrease only by LVM1 with respect to the initial
registration value. At the same time, an increment of about
20% is found in ASD for the rest of the LVM. In the
tumour, a considerable decrease (around 45%) was
accomplished by LVM1 and LVM4, with respect to the
ASD value before registration; LVM2, LVM3 and No-LVM
presented an increment of approximately twice its initial
value. Analysing the brain contour for the DMax index, a
slightly decrease is observed in LVM1 and LVM4 (around
20%) although LVM2 and LVM3 remain approximately at
the same value before the NRR process, and No-LVM
presented an increase of 23%. For the tumour, a 20%
decrease is presented in LVM1 and LVM4 for DMax.
Although a 35% increase is presented with the other two
LVM and No-LVM case. Finally, the NRR average
performance for the brain structure with the DSC index was
always above 0.9 for all cases, before and after the NRR
process. In the tumour, DSC shows an increase after the
NRR process with LVM1 (10%) and LVM4 (7%), and a
decrease of about 15% with LVM2, LVM3 and No-LVM.
Table 1 Mean ± standard deviation of ADiff (area difference), AS
distance) and DSC (dice similarity coefficient) obtained before the r
Euclidean and maximum weights between them) and with the No-LV
synthetic images of Fig. 3

Index Anatomical structure

Before registration No-LVM

ADiff, mm2 tumour 0.283 ± 0.049 0.328 ± 0.09
brain 0.005 ± 0.002 0.008 ± 0.00

ASD, mm tumour 2.698 ± 0.729 3.992 ± 1.00
brain 0.340 ± 0.075 0.542 ± 0.18

DMax, mm tumour 6.143 ± 2.120 8.600 ± 1.98
brain 3.549 ± 0.992 4.368 ± 0.99

DSC tumour 0.817 ± 0.042 0.729 ± 0.05
brain 0.995 ± 0.001 0.993 ± 0.00

A bold font highlights the best results per row after NRR based on the
The overall evaluation in Table 1 shows that the NRR with
LVM1 achieved the best mean index in 75% of the cases,
and the lowest variability (std) in 63%.
In addition to the accuracy indices, the Euclidean error is

calculated between the tumour markers before and after the
NRR process in Table 2. For each deformation (Def), the
mean ± std value of the distance between the eight markers
around the tumour is presented for each LVM. In this table,
we can observe a decrease in the mean error and its
variability (std) for LVM1 and LVM4 (25%). Meanwhile,
the error increased for LVM2, LVM3 and No-LVM
(roughly 50%).

3.2 Clinical images

Fig. 4 shows an example of the NRR process of the proposed
approach with clinical data, where it is possible to visually
assess the performance of the registration for each LVM.
The CT-pre and MR-post images (IT and IS, respectively)
show the tumour before and after the RT treatment, located
in the centre of the left hemisphere (Fig. 4 first column,
rows one and two). Therefore the visual inspection
consisted in evaluating whether the registration process was
able to recover the deformation (shrinking) suffered by the
tumour owing to the RT treatment. Taking this information
into account, LVM1, LVM3 and LVM4 have an acceptable
D (average symmetric distance), DMax (maximum symmetric
egistration process, with the four LVM (entropy, variance, and
M version, for the three anatomical structures of interest in the

Mean ± Std. Dev.

LVM1 LVM2 LVM3 LVM4

4 0.100 ± 0.073 0.445 ± 0.187 0.432 ± 0.132 0.145 ± 0.096
5 0.004 ± 0.003 0.005 ± 0.002 0.007 ± 0.004 0.004 ± 0.002
1 1.427 ± 0.587 4.560 ± 1.226 4.284 ± 1.063 1.735 ± 0.766
5 0.331 ± 0.086 0.466 ± 0.178 0.495 ± 0.170 0.415 ± 0.205
9 4.778 ± 1.967 8.327 ± 1.750 8.371 ± 2.139 4.837 ± 1.929
2 2.730 ± 0.846 3.413 ± 1.312 3.276 ± 0.518 2.867 ± 0.449
1 0.906 ± 0.036 0.667 ± 0.126 0.693 ± 0.094 0.883 ± 0.049
2 0.996 ± 0.001 0.994 ± 0.002 0.993 ± 0.003 0.995 ± 0.002

mean values



Deformations Mean ± Std. Dev., mm

Before registration No-LVM LVM1 LVM2 LVM3 LVM4

Image1 Def1 3.695 ± 0.910 5.650 ± 3.244 1.714 ± 0.461 8.019 ± 1.283 6.074 ± 1.767 1.675 ± 1.106
Def2 5.383 ± 1.081 6.898 ± 2.778 3.761 ± 2.799 7.522 ± 2.488 7.270 ± 2.146 3.385 ± 1.865
Def3 4.437 ± 1.103 6.303 ± 3.099 2.061 ± 1.196 8.369 ± 1.052 6.919 ± 1.466 2.428 ± 1.504

Image2 Def1 3.571 ± 2.267 5.978 ± 2.648 3.169 ± 1.397 5.540 ± 3.104 5.892 ± 3.364 3.530 ± 1.214
Def2 3.468 ± 2.228 5.500 ± 2.205 3.206 ± 2.384 5.021 ± 2.984 5.142 ± 3.012 3.621 ± 2.538
Def3 6.364 ± 3.999 8.476 ± 4.315 5.400 ± 2.896 8.141 ± 5.516 8.367 ± 2.680 5.676 ± 2.896

A bold font highlights the best results per row after NRR based on the mean values

Table 2 Euclidean distance (mm) of the tumour markers (mean ± standard deviation), before and after registration for each synthetic 
deformation (Def) of Fig. 3
performance from a clinical point of view (see Fig. 4 columns
two, four and five) whereas LVM2 and No-LVM have not,
since they predict a change in opposite direction (see Fig. 4
columns one and three). During the parametric registration,
the following parameters û = [−1.925,
−1.241, 0.286, 0.936, 0.919, −0.009, −0.062]` were
estimated by the PF. Meanwhile, the final deformation field
V(r) over a rectangular grid is shown in the third row of
Fig. 4 for each LVM.
The quantitative analysis is presented in Table 3, where for

each performance index the mean ± std for the group of
anatomical structures of interest in RT (ventricles and
tumour) is shown. We decided to exclude the brain contour,
because this structure depends on the parametric registration
Fig. 4 Example of NRR results with clinical images using LVM and No

The first row shows the CT-pre, used as a target, without LVM mapping (first colu
five); in the same way the MR-post, used as a source, is shown in the second row. T
OF), without LVM mapping (first column) and with each LVM mapping (columns
column) and for each LVM mapping (columns two to five)
(as the synthetic data shows), and in our clinical cases, this
step does not have a big impact in the final registration
performance. However, it is necessary to continue
considering the parametric registration, since in
many clinical cases this step could be very helpful, as has
been described in the literature [1–3, 14]. As shown in
Table 3, for the ventricles and the tumour, a more
evident decrease was presented in all LVM and
No-LVM cases. For the ventricles, a decrease was found
with all four LVM, where LVM2 showed the largest
improvement (15%).
Finally, the DSC in the ventricles shows a slight increase

after NRR (about 8%) with all LVMs and No-LVM
scenarios. Analysing the tumour in Table 3, LVM2 and
-LVM version

mn) and after applying the intesity mapping with each LVM (columns two to
he third row shows the obtained deformation field using the algorithm (PF +
two to five). The fourth row shows the registration result, for No-LVM (first



Table 3 Mean ± standard deviation of ADiff (area difference), ASD (average symmetric distance), DMax (maximum symmetric
distance) and DSC (dice similarity coefficient) obtained before the registration process, with the four LVM (entropy, variance, two-norm
and infinity-norm) and with the No-LVM version for the three anatomical structures of interest in Fig. 4

Index Anatomical structure Mean ± Std. Dev.

Before registration No-LVM LVM1 LVM2 LVM3 LVM4

ADiff, mm2 tumour 0.420 ± 0.263 0.389 ± 0.350 0.252 ± 0.365 0.415 ± 0.292 0.366 ± 0.310 0.278 ± 0.340
ventricles 0.964 ± 2.163 0.501 ± 0.879 0.520 ± 0.915 0.679 ± 1.973 0.692 ± 2.108 0.665 ± 1.084

ASD, mm tumour 4.265 ± 3.285 4.804 ± 4.265 3.517 ± 4.123 4.669 ± 3.752 4.009 ± 3.926 3.590 ± 3.694
ventricles 2.197 ± 1.241 1.868 ± 1.441 1.891 ± 1.157 1.811 ± 1.234 1.829 ± 1.081 1.970 ± 1.202

DMax, mm tumour 9.398 ± 4.046 10.362 ± 5.713 7.980 ± 4.710 10.144 ± 4.843 9.031 ± 5.228 8.368 ± 4.560
ventricles 7.841 ± 6.372 8.042 ± 7.424 7.308 ± 6.599 6.604 ± 5.447 6.918 ± 4.875 7.833 ± 6.783

DSC tumour 0.683 ± 0.264 0.652 ± 0.322 0.746 ± 0.319 0.661 ± 0.289 0.710 ± 0.301 0.741 ± 0.294
ventricles 0.608 ± 0.198 0.681 ± 0.205 0.659 ± 0.191 0.662 ± 0.213 0.645 ± 0.214 0.656 ± 0.185

A bold font highlights the best results per row after NRR based on the mean values

t 
3

No-LVM did not improve ASD, DMax and DSC after the 
NRR process. An improvement in all four indices is found 
only for LVM1, LVM  and LVM4; being the bes
improvements of 40% for the ADiff, 17% for the ASD, 
15% for the DMax and 9% for the DSC, all of them by 
using LVM1.

4 Discussion

4.1 Synthetic images

In the analysis of the synthetic evaluation, only the brain 
contour, the biggest rigid structure presented in the images, 
and the tumour, which is the structure that presents 
complex deformations, were considered as structures of 
interest for RT. Therefore, as expected, the values of all 
four accuracy indices (ADiff, DSC, ASD and DMax) 
calculated for all the LVM and No-LVM at the contour of 
the brain did not change significantly compared to their 
values before NRR. For the tumour, an improvement was 
presented only for LVM1 and LVM4 in all indices, being 
LVM1 the one with the largest improvement. The analysis 
of the Euclidean error among markers in the tumour section 
provided an estimation of the NRR accuracy on specific 
points for a structure of interest; a new, the corresponding 
results show positive performance only for LVM1 and 
LVM4. However, by considering the results in [22], where 
LVM were first proposed for the registration of medical 
images, an acceptable performance was found in all four 
LVM. Moreover, the performance analysis in [22] was only 
based on the mean error of the entire vector field after 
applying the NRR algorithm; while in this paper, we 
analyse the performance of the different LVM 
methodologies by specifically addressing the anatomical 
structures of clinical interest.

4.2 Clinical images

The resulting images after the NRR process show that LVM1 
(entropy) provides qualitatively and quantitatively the best 
results on the set of evaluation images, followed by LVM4 
(maximum weight between entropy and variance), 
appropriately aligning the anatomical structures in MR-post 
with CT-pre. Although LVM2 and LVM3 (variance and 
Euclidean weight between both metrics) achieve an 
adequate alignment for some structures of interest, these 
metrics generated anatomically inconsistent deformations 
and changes in the textures of tissues in the registered
images (figures omitted owing to space limitations). The
inconsistent deformations obtained after NRR by LVM2

might be caused by highly textured (in MR) and low
contrast areas (in CT), as in several brain regions, where the
values obtained by computing local variance are constant
because of low variability of the intensities in these regions.
This phenomenon becomes similar to estimate the OF
between two constant-intensity areas, where any
displacement in any direction keeps unchanged the cost
function. In the same way, within a homogeneous area,
there is high probability of obtaining values of variance and
entropy for two different locations with similar magnitudes,
generating an identical problem for LVM3 (Euclidean
weight). These effects explain the inconsistent deformations
generated by LVM2 and LVM3, which do not occur in
LVM1, because in highly textured areas, the entropy values
are very different among pixels, owing to the high
uncertainty in the intensities of these regions (see Fig. 4).
In fact, the quantitative analysis on the tumour shows that

the best results for the NRR algorithm were obtained by using
LVM1 and LVM4, despite some problems with the contrast in
the CT-pre images. Moreover, the No-LVM approach does
not provide good results to estimate the tumour
deformation, because the tissue intensities at each modality
(CT and MR) are very different. In contrast, the No-LVM
approach gave the best results in terms of ADiff and DSC
in the ventricles (along with LVM1) and also presented
positive results for the ASD index (see Table 3). This
behaviour could be related to the similarity of intensities in
the ventricles, for both CT and MR.
The positive results found with the No-LVM

implementation follow the performance shown in [19, 20],
where it is stated that the use of the PF + OF method is a
valuable tool for complex NRR problems. In the meantime,
the negative results support the disadvantage of this
methodology for multimodal cases, so that it reinforces the
motivation for using LVM to achieve a multimodal
registration that does not parameterise the elastic
deformation space, in contrast to most of the methods
reported in the literature [16–18]. Furthermore, a
parameterisation of the deformation space (e.g. using
splines) limits the vector fields that can be achieved and
increases the computational cost, because the optimisation
processes used by these methods are typically non-linear
[16–18]. These two problems are solved with the technique
proposed in this work PF + LVM +OF, since each pixel can
move independently, thus increasing the manifoldness of
deformations that can be reproduced. Also, the OF



estimation process is formulated as a quadratic optimisation 
over a convex surface [see (2)], and its global solution is 
computed by a system of linear equations, which ensures a 
low computational cost.
Making a comparison between the four LVM and the 

No-LVM implementation (see Tables 1–3), it is possible to 
see a consistent advantage of LVM1 (entropy) over the 
other LVM and No-LVM approach in mean performance, 
and even in some cases, with less variability. This idea 
suggests that the local entropy is the best performing LVM 
under a quantitative analysis of anatomical structures of 
interest for RT brain images. Furthermore, the results found 
in this work suggest that the PF + LVM + OF algorithm 
could be useful in RT for some important tasks, such as the 
monitoring of medical treatment. Additionally, some 
aspects of the NRR methodology could be still improved in 
future studies, such as modifying the regularisation term in 
(2) through a spatial adaptive structure, which could be 
more consistent with the behaviour of the deformations in 
medical imaging; and evaluating different alternatives for 
OF computation.
5 Conclusions

In this work, local intensity transformations were suggested to 
perform a multimodal NRR based on PF and iterative OF. 
These transformations map the target and source images 
into a space where the multimodal property was overcome, 
such that an efficient OF solution can be pursued. The 
evaluation of the proposal was based on CT and MR brain 
images deformed synthetically, and on real clinical cases. 
The results showed that the local entropy is the LVM with 
the best performance, both qualitatively and quantitatively, 
by analysing the anatomical structures of interest in RT 
(brain, tumour and ventricles). In addition, the proposal 
offers a solution for multimodal NRR based on quadratic 
optimisation over a convex surface, which allows 
independent motion of each pixel. This property increases 
the elastic deformations that could be achieved; in contrast 
to methods that parameterise the deformation space that 
limit the accuracy and increase the computational cost by 
non-linear optimisation processes. Therefore our NRR 
proposal could be considered as a new option for medical 
IR in RT applications by extending and evaluating the 
proposed approach in a 3D context.
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