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Friction State Classification Based on Vehicle
Inertial Measurements

Donald Selmanaj, Matteo Corno and Sergio M. Savaresi

Abstract—Tire-road friction is the most important charac-
teristic defining the planar dynamics of wheeled vehicles. It
has consequences on the drivability, stability and tuning of the
active vehicle dynamics control systems. This paper proposes two
methods for the on-line estimation of the tire-road friction, with
the specific goal of adapting the active vehicle dynamics control
systems. The problem is framed as a classification problem where
inertial measurements are used to discriminate between high
and low friction regimes. The first method merges a recursive
least-squares (RLS) algorithm with a heuristic bistable logic to
classify the friction condition and promptly react to its changes.
The second method runs a classification algorithm on the slip-
acceleration bi-dimensional map. Both methods simultaneously
account for the longitudinal and lateral dynamics. The methods
are extensively tested on experimental data. The results show that
the driving conditions play a critical role in the performance,
nevertheless both methods present satisfactory results under
excited conditions and detection delay can be as low as 2 sec.

Index Terms—road friction, surface detection

I. INTRODUCTION

Tire-road friction plays an essential role in the vehicle be-
havior. It represents the most important and the most uncertain
parameter of the planar dynamics. Tire forces nonlinearly
depend on a number of vehicle states (e.g. speed, sideslip angle
and camber angle) and parameters (road condition, wear, etc.).
These nonlinear, time-varying characteristics play a fundamen-
tal role in determining the dynamic properties of the vehicle
[1], and their knowledge is especially important to model-
based vehicle dynamics controllers. As the road condition
changes, control systems need to guarantee robustness.

An important aspect characterizing active vehicle dynamics
control systems is the tire-road friction knowledge. It dis-
tinguishes robust algorithms that do not need the tire-road
friction information from algorithms that depend on the tire-
road friction estimate.
In the realm of robust methods one can find methods based
on the close loop control of the yaw rate. The Internal
Model Control (IMC) technique is a suitable approach for
designing feedback controllers that guarantee robust stability
and manage the control saturation, while the combination with
a feedforward action improves the transient behavior of the
system, [2]. In addition to the yaw rate, the sideslip angle
(i.e., the angle between the vehicle longitudinal axis and the
speed vector) plays an important role in the vehicle stability.
The sideslip and its derivative can be used by a supervisor
to assist the yaw rate feedback controller, [3]. However, the
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sideslip can not be measured and need to be estimated; to this
end the authors propose an estimation method unaware of the
tire-road friction.
The knowledge of the tire-road friction allows for an optimized
control of the available actions as it is essential for the knowl-
edge of the tire force limits. In [4], the authors propose a two-
level control scheme. The first level, composed by a nonlinear
sliding mode controller, determines the generalized tire forces
required to achieve the vehicle motion objectives. The second
level distributes the effort on each wheel and takes into account
for the tire-road friction. The estimation of the latter is used in
emergency braking maneuvers in automated highway systems,
[5]; the authors exploit the friction knowledge to determine
the pressure in the master cylinder of the braking system and
achieve maximum deceleration during braking. Other studies
focus on over-actuated vehicles (i.e., four-wheel steering and
driving vehicles) and present control schemes that employ the
friction estimation to maximize the forces exerted by the tires
on the road [6]. The wide use of friction information in control
systems is the reason for the effort dedicated to its estimate.

One characteristic classifying the friction estimation meth-
ods is the sensor layout. Three layouts can be found in the
literature: inertial, combined GPS (Global Positioning System)
and inertial, and “Smart-tire”. Their main differences regard
the sensors reliability and costs.

“Smart-tire” systems refer to tires equipped with sensors
for monitoring the tire thermal and mechanical parameters
during driving [7]. “In-tire” accelerometers are also a possible
choice [8]. “Smart-tire” applicability to commercial vehicles
is still limited and researchers have focused their efforts in
developing methods that exploit the vehicle dynamics and
rely on vehicle measurements. Measurement layouts using
GPS, [9], [10], or combination of GPS with brake and motor
torque measurements as well as inertial measurements, [11],
can improve the estimation of the vehicle state and, as a
consequence, the estimation of the tire friction. However, GPS
presents issues in terms of reliability, as the measurements
are not always available and methods relying only on inertial
measurements are preferred. The present work is focused on
low-cost off-the-shelf senors, common in consumer vehicles.
The measurement layout includes vehicle inertial quantities
(i.e., vehicle accelerations and angular rates), wheels angular
speeds and steering wheel angle.

Estimation methods based on inertial measurements can
be classified in three main groups: (i) methods exploiting
the longitudinal vehicle dynamics, (ii) methods exploiting the
lateral dynamics and (iii) methods exploiting both dynamics.

Longitudinal dynamic based methods exploit the relation
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between the longitudinal slip and the longitudinal tire force,
which converts to vehicle acceleration. The friction character-
istic is estimated by analyzing the longitudinal stiffness or the
maximum longitudinal force. Based on this relation a Kalman
Filter (KF) observer can be designed for each driving wheel,
[12], and a fault detection algorithm is integrated to manage
the fast variations of the friction. The main weaknesses of
the approach are the limited driving conditions that do not
include braking and the requirement of the traction force.
A method extended to braking conditions is presented in
[13]. The method uses the relation between the longitudinal
stiffness and the maximum friction force while still requiring
the estimate of the traction force and the normal load. In
[12], [13] the estimation quality of the friction is indeed
affected by the accuracy of longitudinal forces estimation.
To improve the estimate of the longitudinal force, in [14],
the authors enhance the traction force observer with normal
force, brake pressure and tire radii observers. Although the
method shows promising results its main drawback is the
dependency of traction force estimation from the engine map;
the latter is highly dependent on the running conditions and is
not robust for online estimation algorithms. To overcome the
dependency on the traction force alternative studies rely on the
brake pressure measuerement, see e.g. [15], [16]. Although
simulation, [15], and experimental, [16], results show the
effectiveness of the methods, the applied brake pressure is not
always available.
The main drawback of methods relying only on the longitu-
dinal dynamics is their functioning range, limited to braking
and accelerating maneuvers. They do not work if the vehicle
is performing nearly constant speed curves.

Lateral dynamic based methods employ the relation between
the lateral forces generated by the tires and the lateral slips.
The lateral forces are obtained through the vehicle single-track
model and the inertial measurements while the tire lateral slips
are obtained as algebraic functions of the vehicle state. De-
pending on the available inertial measurements the cornering
stiffness can be estimated by means of the lateral dynamics,
yaw dynamics or a combination of the two, [17]. Based on
the relation between the vehicle lateral dynamics and the tire-
road friction, in [18], the authors propose a loop approach
for estimating the cornering stiffnesses from the tire lateral
slips, the tire maximum forces making use of the cornering
stiffnesses and the tire lateral slips by using the maximum tire
forces. The method results are shown on short experimental
maneuvers and the paper lacks a sensitivity analysis of the
slip observer to the estimated friction. Other approaches are
based on the well known Extended Kalman Filter (EKF). By
describing the vehicle dynamics with the single-track model
and augmenting the state with the front and rear cornering
stiffnesses, in [19], the authors show promising results on
simulation data. The same approach is exploited in [20], where
the capabilities of the EKF are shown in short experimental
tests. EKF is suitable for different model representations of the
vehicle and the tires. A combination of the vehicle single-track
model and the tire Burckhard/Kiencke model is employed in
[21]. The authors use a nonlinear adaptive model of the tire
and show that designing an EKF on the adaptive model is

advantageous compared to non adaptive linear and nonlinear
models. The main weakness of the EKF based approaches is
the analysis of the system observability. The studies focus on
short dynamic maneuvers and lack the analysis of the methods
behavior on unexcited maneuvers. The excitation of the driving
conditions is a physical boundary that limits the estimation
capabilities of all the methods; if the driving conditions are
not excited the influence of the tire-road friction on the vehicle
behavior is undetectable. Estimation methods based only on
the lateral or longitudinal dynamics are limited respectively
to turning conditions or accelerating/braking maneuvers. With
the goal of expanding the driving conditions of the estimation
methods, different studies exploit both dynamics.

EKF is suitable also for combined dynamics. In [22], the
authors design an EKF to estimate the vehicle state and the
tire forces (longitudinal and lateral); the friction is estimated
as the rate between the friction forces and the nominal vertical
loads. The method presents satisfactory results on low sideslip
angle experimental tests, but lacks the analysis of the unexcited
conditions and the convergence time. A different approach
exploiting longitudinal and lateral dynamics is proosed in
[23]. The authors distinguish four conditions: (1) during lateral
medium excitation conditions a closed loop nonlinear observer
estimates the vehicle state and the friction; (2) during lateral
high excitation conditions the estimation employs the self-
aligning torque of the front wheels and requires the steering
torque measurement; (3) during longitudinal small excitation
condition the longitudinal stiffness is estimated through RLS
and (4) during longitudinal high excitation conditions the
RLS algorithm is employed to estimate the friction peak. To
integrate the four methods an algorithm employing combined
slip Brush model and a four-wheel vehicle model is proposed.
The method presents promising results on a long experimental
test, however the interaction between the vehicle state estima-
tion and the friction estimation is the weakest point of the
approach. Indeed, during low sideslip angle maneuvers the
friction estimate presents not justified abrupt changes. Besides
methods using closed loop observers (EKF) or recursive
methods (RLS) a diagnostic-based approach is presented in
[24]. The estimations of the instantaneous longitudinal friction
and lateral forces are obtained by algebraic computations of
the vehicle single-track model. These quantities are then used
as inputs for the friction predictor, build on the Dugoff model.
The method is tested only on short maneuvers and it is not
clear if the maneuvers include curves.

For all approaches, the estimation of the tire-road friction
presents two main challenges, the estimation of the vehicle
state and the excitation of the running conditions. To the extent
of the authors knowledge these aspects are not considered in
previous approaches. This paper is focused on the distinction
of two extreme conditions: high friction and low friction. For
this purpose two methods are proposed. The first method em-
ploys a modified RLS algorithm, which estimates the friction
based on the vehicle measurements during excited condition
and uses external information during unexcited conditions. The
second method is based on a nonlinear classification approach
and estimates the friction by opportunely weighting the slip-
acceleration maps of the vehicle. Both methods focus on the
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fast detection of the friction change.
The paper is organized as follows. In Section II, the vehicle
and tire modeling are described. Section III introduces a
modified version of the RLS algorithm, which here is referred
as bistable RLS (bRLS), and demonstrates the algorithm func-
tioning on artificial data. The first method, which employs
the bRLS algorithm, is presented in Section IV while the
second method is presented in V. Section VI shows the results
obtained on experimental data. The paper ends with some
concluding remarks in Section VII.

II. VEHICLE MODEL

The methods presented in this work exploit the vehicle iner-
tial measurements and the vehicle single-track model relating
the tire-road friction with the vehicle measurements. Figure 1
shows the model and the quantities involved. The equations
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Figure 1. Vehicle single-track model.

modeling the longitudinal and the lateral dynamics can be
approximated for small steering angles (δ) as follows:

Max = cos δ · FFx + FRx ≈ FFx + FRx

May = cos δ · FFy + FRy ≈ FFy + FRy

Izω̇z = LF cos δ · FFy − LRFRy ≈ LRFFy − LRFRy ,
(1)

where ax and ay are the vehicle longitudinal and lateral
accelerations, ωz is the yaw rate, M is the vehicle mass and
Iz is the moment of inertia. FFx and FRx are the longitudinal
forces exerted by the front and the rear tires respectively,
FFy and FRy are the lateral forces exerted by the front and
the rear tires respectively. The development of a complete
vehicle model requires the definition of the tire force model
and researchers have dedicated a considerable effort to this
end.

The tire forces depend mainly on the tire slips; the longi-
tudinal slip is the difference between the vehicle and the tire
longitudinal speed and the lateral slip is the tire sideslip angle
(i.e., the angle between the tire longitudinal axis and the tire
speed vector). For small slips, tires present a linear behavior,
and the forces are determined by the longitudinal stiffness(
Ck = ∂Fx

∂k

∣∣
k=0

)
and cornering stiffnesses

(
Cα =

∂Fy
∂α

∣∣∣
α=0

)
.

However, as the slips increase, the tire forces saturate and
present a complex behavior, Figure 2. The tire-road friction
limits the maximum forces exerted by tires, the dynamical
behavior as well the drivability limits of the vehicle. Due to
the complexity of the phenomena and the unknown factors,
such as road surface, models for different use have been
developed. In [25], the authors present an overview of the

existing models. Complex models can precisely describe the
behavior of the tire, however they require ad-hoc experiments
for the estimation of the unknown parameters. For online
estimation problems researchers have focused their efforts on
simple models which are easy to combine with the vehicle
model.

This combination requires the definition of the tire slips. The
longitudinal slip can be computed by the following expression:

ki =
r · ωi − Vx

max (Vx, r · ωi)
, i = FL,FR,RL,RR, (2)

where ω and r are the wheel speed and radius respectively
and Vx is the vehicle longitudinal speed.
The tire lateral slips depend on the vehicle state according to
the following relations:

αF = arctan

(
V Fy
V Fx

)
≈ β − δ + ωz

LF

Vx

αR = arctan

(
V Ry
V Rx

)
≈ β − ωz

LR

Vx

, (3)

where V Fx , V
R
x are the longitudinal velocities of the tires,

V Fy , V
R
y are their lateral velocities and LF , LR are the dis-

tances of axles from the vehicle center of mass. As Equation
(3) shows the tire lateral slips can be approximated as linear
expressions of the vehicle state.

The computation of the tire slips requires the yaw rate (ωz),
the steering wheel angle (δ), the wheel rotational speeds (ω),
the vehicle longitudinal speed (Vx) and the sideslip angle (β).
While ωz , δ and ω can be measured by reliable sensors, Vx
and β need to be estimated. In this paper, Vx and β are
estimated with the methods presented in [26]. The estimation
methods rely on kinematic approaches and do not require
the knowledge of the tire-road friction; this decouples the
estimation of the tire-road friction from the estimation of the
vehicle state.

The paper is focused on the fast detection of the fric-
tion condition rather than the exact determination of the its
characteristic. To this purpose, if similar front and real axle
stiffnesses are considered, the following linear equations are
derived by (1), (2) and (3):

ax =
Ck
M

(
kFL + kFR + kRL + kRR

)
ay =

2Cα
M

(
αF cos δ + αR

)
.

(4)

Therefore, the behavior of the vehicle resembles the behavior
of an equivalent tire, relating the vehicle longitudinal accel-
eration with the sum of the wheel longitudinal slips and the
vehicle lateral acceleration with the sum of the wheel lateral
slips. Figure 2 depicts some experimental data collected on
high and low friction roads and a nonlinear model of the tire
(opportunely scaled). The good fit of the two is the main
motivation of the methods proposed in this paper. The two
friction conditions can be distinguished by focusing on the
linear relation of the measurements, i.e. the slopes of the
accelerations at nearly zero slip or the nonlinear relation, i.e.
the maximum acceelerations reached at high slips.
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Figure 2. Low friction (LF) and high friction (HF) data distribution on the
slip-acceleration planes.

III. RLS WITH REFERENCE

In the realm of Prediction Error Methods (PEM), the
recursive least-square (RLS) is a well known algorithm for
identifying unknown parameters in linear regression models.
Given the following linear regression model:

y (t) = ϕ (t)
T
θ (t) , (5)

y is referred as the model output, ϕ is referred as the regressor
and θ is the unknown parameter vector to be estimated.
With regard to the problem of the tire stiffness estimation and
the quantities involved in the vehicle linear model, (4), θk =
Ck
M and θα = 2Cα

M are the parameters to be estimated, yk = ax
and yα = ay are the outputs of the two linear regressions,
ϕk = kFL + kFR + kRL + kRR and ϕα = αF cos δ+αR are
the two regressors.
The RLS provides a reliable solution for the on-line estimation
of the unknown parameter vector with proven convergence
properties under the assumption of persistent excitation [27],
[28].

The RLS algorithm presents two main drawbacks that need
addressing:

• The lack of persistent excitation limits the estimation
capabilities. For the problem at hand the lack of persistent
excitation corresponds to soft acceleration, braking and
turning maneuvers. During these conditions the behavior
of the parameters estimated through the RLS presents
abrupt variations and can diverge;

• The algorithm does not provide the possibility of merging
the data with external information. The present work
is focused on the fast discrimination between low and
high friction. For both conditions a priori values of the
corresponding longitudinal and lateral stiffnesses can be
computed offline. These information can be used online
to accelerate the estimation of the friction.

Here an addition to the RLS algorithm is proposed and the
modified algorithm is referred as bRLS. It is capable of
managing the unexcited conditions and includes the a priori
external information in the estimation process. The modifica-

tion regards the prediction error computation as shown by the
following equations:

θ̂ (t) = θ̂ (t− 1) +K (t) εref (t)

K (t) = S (t)ϕ (t)

ε (t) = y (t)− ϕ (t)
T
θ̂ (t− 1)

εref (t) =
(
1− e−γ|ϕ(t)|

)
ε (t)

+ e−γ|ϕ(t)|ϕ (t)
T
(
θref (t)− θ̂ (t− 1)

)
S (t) =

S(t−1)− η(t−1)−1
S(t−1)ϕ (t)ϕ (t)

T
S(t−1)

µ

η (t− 1) = µ+ ϕ (t)
T
S (t− 1)ϕ (t) ,

(6)
where µ is the forgetting factor and determines the conver-
gence speed and the accuracy of the estimate. High values of
µ lead to slower and smoother estimates.

During unexcited conditions, when |ϕ| is small, the pre-
diction error is modified in order to drive the estimate to a
reference (θref ). The estimate reference represents a preferred
value for the parameters to be estimated or values given by
an external mechanism. In Section III-A a method to turn off
the estimate if the data are not excited is introduced, while in
Section III-B the bRLS is combined with a state machine for
fast classification of the parameter. The parameter γ needs
tuning and determines the ϕ-region where the estimate is
driven to the reference. Figure 3 shows the weight of the data
compared to the weight of the reference for a range of the
regressor; as ϕ decreases, the influence of the new data on the
estimate is decreased.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

Figure 3. bRLS measurement VS reference weighting.

A. Smooth estimation turn off with the bRLS

The bRLS algorithm can be used to manage conditions with
unexcited data. By imposing

θref = θ̂(t− 1), (7)

the estimate is driven to its previous values when ϕ is small.
This is equivalent to smoothly turning off the algorithm and
in the extreme case ϕ=0 the estimate preserves its old value.
Figure 4 shows the results obtained on artificial data with
µ=0.96. The results of the RLS are compared with the bRLS
for three different values of γ. As γ decreases the behavior
of the bRLS tends to the behavior of the RLS algorithm.
The modified algorithm allows the use of small values of the
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Figure 4. Smooth turn off of RLS estimation algorithm (µ=0.96).

forgetting factor (µ) for a fast convergence time and avoids
abrupt changes in the estimation during unexcited conditions.

B. Fast classification with the bRLS

One possibility for using the bRLS to classify parameter
clusters or ranges is shown in Figure 5. A state machine keeps
trace of the current state of the parameter and provides to the
bRLS algorithm the appropriate reference of the parameter. For
each state the parameter reference can be obtained by a priori
knowledge of the problem at hand. Regarding the friction
condition estimation, extensive tests on known high friction
and low friction road can provide the parameter reference for
each state. The state machine manages the switch between
the parameter states. Here a threshold condition is used. The

State 1

State 2

θ̂
>
TH

θ̂
<
TH

bRLS

θref

θ̂ Out
ϕ

y

Figure 5. Schematic of the bRLS algorithm used for fast classification.

forgetting factor of the bRLS can be set to low values in
order to have fast convergence of the estimate during excited
conditions, while γ determines the behavior for unexcited
conditions. Figure 6 shows the results obtained on artificial
data with noise. The parameter presents two transitions: (i)
step transition from 0.8 to 0.2 at sample=1000; (ii) step
transition from 0.2 to 0.8 at sample=2000. The estimation is
initialized at θ̂ (0)=0.2 and S (0)=100. The estimate presents
two transitions at excited conditions (i.e., initial and at sam-
ple=2000). During these transitions the method behaves as a
fast RLS and converges quickly to the new parameter value.
During the unexcited transition (sample=1000) the reference
influences the estimate behavior and the method behaves as
a slow RLS. The state machine transition is managed by the
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Figure 6. Parameter classification with bRLS on artificial data.

comparison with a threshold. To obtain the results of Figure
6, the threshold is 0.6.

IV. GRIP ESTIMATE THROUGH BRLS

The method of Figure 5 can be adapted to the problem of
friction classification as shown in Figure 7. Two instances of
the bRLS algorithm run in parallel; one instance estimates the
longitudinal stiffness and one estimates the cornering stiffness.
One state machine keeps trace of the friction state and manages
its transitions.

High friction

Low friction

CLH CHL

bRLS
θ̂k

Friction state

ϕk

yk

bRLS
θ̂α

ϕα

yα

θrefk

θrefα

Figure 7. bRLS algorithm applied to road friction identification.

The transitions are activated by the followings conditions:

CLH = θ̂α < θthresholdα OR θ̂k > θthresholdk

CHL = θ̂α > θthresholdα OR θ̂k < θthresholdk

(8)

Therefore, the estimated friction state can change if sufficiently
excited data are measured on the longitudinal or the lateral
dynamics.

V. NONLINEAR CLASSIFICATION

The bRLS algorithm estimates the friction condition through
the longitudinal and the lateral stiffness. The slip-force planes
of the vehicle are separated by a line (i.e., thresholds on
the longitudinal and lateral stiffness) and the two regions
define the two friction conditions. The method proposed in this
Section separates the low and high friction regions considering
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for the nonlinearities of the tire-road interaction and employs
the distribution of the data on the slip-acceleration planes,
Figure 2. Three main regions can be identified on these planes.
The low slip low acceleration region corresponds to low
excitation running conditions; both friction conditions present
measurements in this region and these data are not reliable
for the distinction of the friction condition. The large slip low
acceleration region is typical of low friction roads and the
large acceleration condition is typical of high friction roads.
The low slip and acceleration regions are identified by com-
parison with thresholds while the high and low friction regions
can be distinguished using the tire medium friction curve.
Therefore, given the slip estimates, references of the longitudi-
nal (arefx ) and lateral (arefy ) accelerations can be computed. If
|ax| >

∣∣arefx ∣∣, or |ay| >
∣∣arefy ∣∣ the current state of the friction

is high, otherwise it is low. The reference curves are computed
by the Pacejka tire model, [29]. The two characteristics are
assumed to be independent: the longitudinal reference curve
is computed with zero lateral slip and the lateral reference
curve is computed with zero longitudinal slip.
The distribution of the samples with respect to the reference
curve indicates the state of the friction, while the distance of
a sample from the reference curve indicates the reliability of
the measure. A sample close to the reference curve is at the
border of the two friction conditions (i.e., can be caused by
both conditions) and is less reliable compared to samples that
are distant from the reference curve. Based on this reasoning,
to each sample a weight expressing the reliability of the
sample is assigned;

∣∣ax − arefx ∣∣ determines the reliability of
the longitudinal dynamics data and

∣∣ay − arefy ∣∣ determines the
reliability of the lateral dynamics data. The weighting of the
samples is computed by the following exponential equation:

Wi = 1− e
−

(
ai − arefi

)2
σ2
i , i = x, y, (9)

where σi are two design parameters. Here, σx = 3 and σy = 2
are used.
Merging the exponential weighting and the nonlinear tire
characteristics, Figure 8 and 9 are obtained. They express the
reliability weight assigned to samples on the slip-acceleration
planes. In addition to the exponential weighting the low slip
low acceleration regions are not considered as they are shared
by the two friction conditions. The second and fourth quadrant
of the longitudinal dynamics and the first and third quadrant
of the lateral dynamics are not considered as data in these
quadrants are caused by measurement noise and estimate
errors and do not represent the real behavior of the vehicle.

Based on the weighting maps of Figure 8 and 9 three
probability indexes are computed:

• pH is the probability that the current samples correspond
to high friction. It is computed as the average of pHk and
pHα , given by:

pHk =

{
Wx if |ax| >

∣∣arefx ∣∣ ,
0 if |ax| <

∣∣arefx ∣∣ (10)

Figure 8. Nonlinear weighting of longitudinal dynamics.

Figure 9. Nonlinear weighting of lateral dynamics.

pHα =

{
Wy if |ay| >

∣∣arefy ∣∣ ,
0 if |ay| <

∣∣arefy ∣∣ (11)

• pL is the probability that the current samples correspond
to low friction. It is computed as the average of pLk and
pLα , given by:

pLk =

{
Wx if |ax| <

∣∣arefx ∣∣ ,
0 if |ax| >

∣∣arefx ∣∣ (12)

pLα =

{
Wy if |ay| <

∣∣arefy ∣∣ ,
0 if |ay| >

∣∣arefy ∣∣ (13)

• pO is the probability that the friction condition is equal
to its previous state. It is computed as the average of pOk
and pOα , given by:

pOk = 1−Wx (14)

pOα = 1−Wy (15)
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Given pO, pL and pH the friction condition is estimated by:

F̂ = pO · F̂ (k − 1) + pH · vH + pL · vL, (16)

where vH and vL represent desired output values for the
high and low friction conditions. Here vH = 1 and vL = 0
are chosen. The complete method is shown in Figure 10.
It includes a low-pass filter that determines the convergence
speed of the method and is chosen based on the measurement
noise.

∑
k

ax

medium
friction
model

arefx

Exp.
weight

αFcos δ+αR

ay

medium
friction
model

arefy
pHα

pOα

pLα

pHk
pOk
pLk

Exp.
weight

E[ ]

pH

pO

pL
OUT

Low
Pass

Z−1

F̂ (k − 1)

F̂ (k)

Figure 10. Nonlinear classification scheme.

VI. EXPERIMENTAL RESULTS

The method presented in previous Sections are tested and
compared on experimental data. For all the trials the vehicle
is equipped with a 6DOF inertial measurement unit (IMU),
wheels speed measurements, steer angle measurement and
an optical system providing the longitudinal speed and the
sideslip angle measurement.

The test is composed of three parts. During the first and
the third part the vehicle runs on a dry asphalt track (i.e.,
high friction) and during the second part the vehicle runs on a
gravel track (i.e., low friction). Figure 11 present the results of
the longitudinal speed and sideslip angle estimation obtained
with the kinematic method presented in [26], which does
not require the friction knowledge. During the high friction
track the vehicle runs at higher speed while on the gravel
track it presents higher sideslip angles. The estimates present
higher error during the gravel surface, as during this track the
measurements have higher noise levels. These estimates are
used as inputs in the methods proposed here.

A. Results with the bRLS method
The bRLS method detects the friction state and its changes

by estimating the longitudinal and lateral stiffness. The es-
timate is smoothly turned off as the excitation of the data
vanishes, i.e. ϕ ≈ 0. This behavior is evident in Figure 12 at
185 s <t< 250 s. Although the road condition changes from
high to low friction at t=184 s, the method reacts at t=234.4
s as the corresponding maneuver (starting at t=233.8 s) is the
first sufficiently excited during the low friction road. A second
drawback of using a linear method to weight informative data
(i.e. ϕ > 0) is shown at t=341 s when the driver is performing
a strong acceleration. Although yk reaches high values, this
maneuver is not considered in the estimation of the new state
because ϕk is in the range of not excitation.
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Figure 11. Vehicle longitudinal speed estimate.
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Figure 12. bRLS results.
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B. Results with the nonlinear method

The reference curve and the regions used by the nonlinear
classification method to split the slip-acceleration planes fit
the nonlinear behavior of the pneumatic, hence the vehicle.
This translates in a higher accuracy which allows the detection
of the friction change with low excitation maneuver. This
behavior can be seen in Figure 13 at t=191 s with the first
maneuver in the switch from high to low friction road.
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Figure 13. Nonlinear classification results.

C. Comparison of the methods

VII. CONCLUSION

The estimation of the road friction is crucial for chassis
control problems; it determines the vehicle handling limits
and dynamical behavior. A considerable difficulty with the
road friction regards the knowledge of the exact characteristic,
which is time varying and is a nonlinear function of the tire
slips. The methods proposed in this paper are focused on
the fast classification of the friction condition, distinguishing
between high and low friction.
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