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Abstract— In this paper we describe a lightweight framework
for fast image segmentation on embedded systems, based
on superpixels, which leverages on convolutional and graph-
convolutional neural networks. In particular, we analyzed
different superpixel representation looking for the best trade-
off between the efficiency of the system and richness of the
description. Similarly, we analyzed different network sizes, bal-
ancing the number of filters used and the prediction accuracy.
We also compared two different convolutional architecture, one
based on the classical encoder-decoder paradigm and one based
on graphs, to guarantee a most accurate representation of the
image structure. The architecture was tested on the KITTI
dataset using an embedded system with CUDA capabilities.

[. INTRODUCTION

Image segmentation is a crucial task in many fields,
from robotics to medicine. Although the common goal is
to classify each pixel of an image, different domains present
different requirements and challenges. In the medical field,
accuracy can be seen as one of the main goals, while in
robotics this aspect has to be appropriately adjusted trading-
off speed and precision. In small robots, with limited payload
and battery powered, we are forced to use simple algorithms
due to the low computational budget available. Autonomous
cars do not have such limitation, but, in light of the future
industrialization of the product estimated for the first years of
the next decade [1], it is becoming evident the importance of
reducing the cost of the additional equipment needed by these
vehicles. We can achieve this goal in different ways, e.g., by
reducing the number of sensors, in particular LIDARs, or by
reducing the computational power needed to process data [2].

One of the most significant drawbacks of neural networks
is indeed the high demand in terms of resources to process
camera images in real time. Traditional image segmentation
neural networks rely on high-end GPUs [3] [4] or do
not consider as mandatory predicting the data at camera
frame rate [5]. Nevertheless, autonomous driving cars rely
heavily on these networks to accomplish the task of road
segmentation to identify different elements of the vehicle
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Fig. 1. Example image from the KITTI dataset. On top the original picture
and on the bottom the ground truth segmentation.

surrounding, like drivable areas, road lanes, and obstacles,
either cars or pedestrians (see Figure 1). With the upcoming
industrialization of autonomous or semi-autonomous cars,
it is not feasible to load vehicles with big and expensive
GPUs to process data; then it is necessary to develop new
lightweight approaches to the image segmentation problem.

The easiest way to achieve this goal is to process smaller
images, but the risk with this approach is to lose crucial
details, in particular elements like lines and markings can
be easily lost if the picture is excessively downsampled. Our
approach to this problem is to introduce a pre-processing
phase to reduce the amount of data fed to the network. In
particular, we segment the image using superpixels then,
from each element, we extract a set of features and then
feed the neural network with a tensor having size equal to the
number of superpixels. Using this pre-processing step, the in-
put of the system becomes hundreds of times smaller, making
the whole prediction process extremely fast. The superpixel
segmentation, unlike a simple grid subsampling, preserves
edges and objects’ shapes making the correct prediction of
each pixel as accurate as a traditional convolutional neural
network.

What we propose in this paper is then a framework
composed by a pre-processing, phase based on superpixels,
and two network architectures for real-time image segmen-
tation on embedded systems. One approach uses a classical
U-net style convolutional neural network while the other
implements a graph convolutional neural network to achieve
more accurate data representation. To test our algorithm, we
use a low power device with CUDA capabilities, the Nvidia
Jetson Tx2 board, which has already proved to perform ex-



ceptionally well in deep learning scenarios [6], in particular
in time depending image segmentation task [7]. To accurately
benchmark our results on the task of road segmentation, we
trained our network using KITTI dataset [8].

This paper is structured as it follows; in the first section,
we illustrate the general architecture of the system, then we
proceed analyzing the quality of the segmentation performed
using different descriptors for the processed image. Next, we
analyze different versions of the neural network and number
of extracted features to find the best trade-off between speed
and accuracy. Lastly, we compare the results obtained with
this architecture with a custom implementation of a graph
convolutional neural network.

II. RELATED WORKS

In this work, we focus on real-time image segmentation
in roads scenario. During past years, researchers have pro-
posed different architectures to this purpose using mainly
convolutional neural networks [9] [10] [11] [12]. They show
significant results, but to achieve such precision they relay on
power-hungry GPUs, creating big networks with hundreds of
millions of parameters. Most of the top scores on KITTI [8]
[13] are more focused on the precision in prediction than on
time requirements and hardware setup.

Superpixel based classification is nowadays a consolidated
approach [14], but most of its use is limited as support
to classical computer vision algorithms [15] [16]. Due to
the growing interest in superpixel segmentation as a pre-
processing phase in different computer vision toolchains
nowadays it is possible to find optimized implementations
of this algorithm [17] [18] working on GPU.

Only recently we assisted to the combined use of super-
pixel and convolutional neural networks,in an architecture
called SP-CNN, but its use has been limited. In particular the
most remarkable results concern cloud classification [19] or
aerial pictures classification [20]. This type of segmentation
performs exceptionally well in such scenarios due to the
texture in the acquired images. In particular, areal images
of cites are, most of the time, segmented using road lines
by the superpixel algorithm. Some studies showed how it is
possible to divide an image in superpixels and than treat each
element as a single object to be classified [21]. This approach
loses some spatial information, but can be performed by a
small network without the need to add a decoding phase
like in U-net like segmentation network. Other methods
stay closer to the classical image segmentation architecture,
passing the whole set of superpixels to the system and then
reconstructing the image [22].

Due to the structure of the superpixel algorithm, which
allows each element to expand toward its neighbours, it is
possible to model the connection between each superpixel
using a graph instead of a matrix. Graph-based neural
networks have been research a field for a while, [23], [24].
In general, this approach has been used on structured data
where connections of elements of the input are highly
significative, [25], [26], and the number of elements remains
low. This explains why this approach is not generally used on
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Fig. 2. Schema of our algorithm for road segmentation. As input, we have
an image with size 1242x375 (Kitti images size); this picture is processed
by the superpixel algorithm, which outputs a mask with shape 120x36
superpixels. For each superpixel, we extract a set of features, creating a 3D
tensor that is fed to the neural network. Lastly, from the network predictions,
we reconstruct the segmentation on the original input applying the predicted
value to each superpixel in the mask.

image classification where the number of pixels to classify
is considerably large and the connections between elements
are really simple.

III. PROPOSED METHOD

Our segmentation algorithm is divided into four blocks,
shown in Figure 2; in the first block the image is acquired and
processed by a uniform superpixel segmentation algorithm
through which the system divides the picture into NxM
superpixel areas. In the second phase, we extract for each
superpixel a set of features. Then, we feed a convolutional
neural network with a tensor of size NxM and depth equal
to the number of features extracted. For this phase, we tested



two different approaches, one using classical U-net like
network and one using a graph convolutional neural network
(G-CNN). In particular, as stated in the previous section, it
is possible to represent the connection between superpixels
using a graph; this approach offers a better representation of
the superpixel structure with respect to the 3D tensor used in
the U-net. The G-CNN, differently from the U-net, takes as
input a graph where each node is indeed represented by a list
of features extracted from a superpixel and the arc between
two nodes represents the adjacency between two superpixels
in the image. Last we remap each superpixel value computed
by the network to the original image.

A. Superpixel segmentation and features extraction

The first block of our framework consists in the superpixel
segmentation. This pre-processing phase takes as input a
picture and returns a segmentation mask where each pixel
of the input image is linked to one of the NxM superpixels.
The size in pixels of the single superpixel is not constant
because it adapts around the particular texture, but the total
number of superpixel in the image does not change so that
it can be easily fed to a CNN. To ensure that the input of
the network remains constant, the first step of the superpixel
segmentation returns a uniform grid division of NxM size;
then the algorithm iteratively adapts to the texture around.
Using this procedure, we guarantee that, even if its sur-
roundings completely incorporate a superpixel, we maintain
a constant size input; simply some superpixel will have zero
size. This operation is the most resource demanding of the
whole system. For this reason, we have implemented it using
CUDA, which allows reducing drastically the time needed to
compute the superpixel.

To feed the neural network with enough information to
correctly classify each superpixel, we proceed extracting a
set of features for each of them. Previous works in SP-CNN
have proposed complex sets of features, having in some cases
almost one hundred of them [21] [27]. Our goal is to have a
lightweight and efficient algorithm; then, we tested different
feature sets looking for the best trade-off between execution
time and precision, while limiting the dimensionality of the
data.

For each region, we extract the mean RGB and HSV
values, plus the number of pixels in the superpixel and the
mean value of x and y components. Then we computed
the histogram of the H component of HSV. During our
analysis, we also tested different representations, adding
more histograms or even LBP pattern descriptors. In the next
section, we analyze in details the sets of features used and
how different combinations impact on the precision of the
segmentation.

B. Network architectures

The output of the previous step is a tensor with N rows,
M columns and depth equal to the number of features.
Considering the size of the single superpixel, around 100
pixels, the height and width of this tensor are one-tenth of
the size of the original picture. This implies that we can
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Fig. 3. Structure of the U-net. The architecture used is the classical encoder-
decoder from the original paper but, due to the considerably smaller input,
the depth of the network is reduced to just two max-pooling layers.
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not use traditional size encoding-decoding network like U-
net [28], because after five steps of max-pooling the tensor
size would be too small.

Differently from classical segmentation, our tensor has
already some information, and the superpixel algorithm has
already divided the image into similar areas. This means it
is not necessary to have such a deep network.

Our convolutional architecture is based on a classical U-
net, but we reduced the number of layers. In this way,
the computational power needed to predict the superpixel
label is extremely low, and the size of the tensors remains
significative for the segmentation task. The structure of the
network used for the kitty dataset is shown in Figure 3.

On the other hand, the graph convolutional neural network
we used is based on work of [26]. The graph approach,
differently from the previous, takes into consideration the
connections between the superpixel removing those elements
which have size zero due to the erosion process of the
superpixel algorithm. In particular, the superpixel process
fuses areas with similar characteristics, which are connected,
into a single element, as shown in Figure 4. This means that
we have an item with twice the size of a classical superpixel
near one with size zero. When we train the network using
the U-net style architecture the elements with zero size are
still part of the input because we have fixed size inputs in
convolutions.

The number of “fused” superpixels is considerably lower
compared to the total amount of superpixels, but there is
no reason apart from the fixed input size of the network
to predict those elements. This is why we decided to test
a second approach based on a graph convolutional neural
network. Using a graph, we can specify the connection
between the superpixels and we do not connect to the graph
those elements with zero size, giving the network a more
accurate representation of the picture structure.
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Fig. 4. Comparison between the Tensor representation (on the top), where
superpixel fusion is not considered, and the graph representation (on the
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Fig. 5. KITTI picture processed with the superpixel algorithm.

The last phase of the segmentation toolchain is image
reconstruction. The output of the network is indeed an NxM
image where each superpixel has a predicted label. What we
do next is parsing the original picture assigning to each pixel
the correct label based on the superpixel mask computed in
the first phase.

IV. RESULTS

To properly evaluate our algorithm we tested it on the
KITTI benchmark dataset for road segmentation [8]. We first
processed the entire KITTI dataset extracting for each image
a set of superpixel as shown in Figure 5.

From a KITTI image with a size of 1242x375 pixels we
extracted 120x36 superpixels. Then from each superpixel, we
computed a set of features; in particular, we experimented
with different representations. We started using only the
mean RGB values of each superpixel and the number of
pixels of each cluster; then we gradually added more features
like different colour spaces, shape, texture descriptors and
histograms. While RGB mean values take only three values,
a complete histogram requires 256 different numbers for
each channel. Due to the limited size of the network, it
is counterproductive to use hundreds of features. For this
reason, the histogram has been processed and compressed
into a 16 values array taking the mean from a group of 16
consecutive elements of the original vector. A list of the
tested parameter configurations is shown in Table I.

We also performed a set of tests using different superpixel
sizes, but we quickly determined that a further increase of the

TABLE I
LIST OF FEATURES SETS USED FOR THE TESTS

[ num. of feature feature |

4 N. pixels, RGB mean

7 N. pixels, RGB mean, HSV mean

9 N. pixels,size X, size y, RGB mean,
HSV mean

23 N. pixels, RGB mean, HSV mean,
hist HSV

26 N. pixels, RGB mean, HSV mean,

LBP, mean, hist H

39 index, size x,size y, N. pixels, RGB
mean, H histogram, LBP histogram
42 index, size x, size y, N. pixels, RGB

mean, HSV mean, H histogram,
LBP histogram

superpixel size caused an excessive loss of accuracy, forcing
also a smaller network architecture. While a reduction of
superpixels size did not offer a significative improvement
in the segmentation task. In particular, the chosen resolution
was already able to correctly follow the shape of the object in
the pictures, and smaller superpixels did not produce better
superpixel segmentations while adding computational time
to process a bigger tensor.

This whole process of superpixel segmentation and feature
extraction takes, on images of size 1242x375, at average 60
milliseconds using a GPU optimized algorithm [17] on a
laptop equipped with Nvidia 840, while on the Jetson TX2
board the compute time is approximately 50 milliseconds
(i.e., 20Hz.). The extraction of 3 features or a full set
of 50 elements does not affect the elaboration time; the
superpixel segmentation algorithm indeed requires most of
the computational power.

Extracted features are converted into a tensor and fed to
a convolutional neural network. As previously stated, we
decided to use a classical architecture like U-net, but, due to
the reduced size of the input images, we drastically reduced
the number of layers as shown in Figure 3. Our architecture
maintains the classical structure of the U-net, with a con-
tracting path built using two 3X3 convolutions followed by a
2X2 max-pooling for each layer. While the expansive path is
created using a 2X2 bilinear up-convolution, a concatenation
with the corresponding feature of the contraction path, and
two 3X3 convolutions. The main difference from the original
U-net is the number of layers which is limited to three.
Another important aspect is the shape of the input, which
is no more an RGB tensor, which has depth 3, but is
made using the extracted features and can have depth up
to 42 elements. The network, thanks to its limited size, runs
extremely fast and on the Nvidia Jetson TX2, requiring only
four milliseconds for the forward pass.

To evaluate the different feature sets, we set up a test
on the KITTI dataset; we started training the network using
only the RGB descriptor, and then we gradually added more
features up to 42 elements. For all the test we divided the
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the x-axis we have the number of features extracted; while on the y-axis
we have the MaxF value, namely the harmonic average of the precision and
recall. It is possible to notice how the MaxF value increases only for the
first steps, decreasing with a value greater than 9. From this, we gathered
that adding more feature to the representation does not guarantee better
prediction.

Kitti dataset into a training set, 70% of the images, and
a validation set, the remaining 30%. All the results shown
refer to the MaxF value on the validation set, where MaxF
stands for the F1 score, namely the harmonic average of the
precision and recall. The results obtained, as a function of
the extracted feature listed in Tabel I, are shown in Figure 6
for different convolutions’ filter sizes. We notice that adding
features increases the overall quality of the reconstruction up
to a certain extent. Detailed representation of the superpixel,
like his 16 element histogram can cause a loss in precision.
The superpixel with 42 features produces a less accurate
reconstruction than the one described only by his RGB mean
values.

As reported in Figure 6, in our test we also analyzed the
size of the network, experimenting a different number of
filters; in particular, we analyzed the same architecture using
32, 64, 128 and 256 filters. We noticed that the architecture
with 128 filters performs better in most situations, while the
further increase to 256 filters does not produce a significant
improvement. We can also notice that the use of simple shape
descriptor, as the size in pixels on the x and y-axis, causes
a significative improvement in precision, while the use of
histograms generally causes a loss in quality. The image
representations that use more features generally benefit from
the increased complexity of the network but are not yet
able to achieve the same results of the nine-features version.
On the other hand, the increased number of connections
significantly changes the time needed to predict an image.
The best tradeoff between quality and performance we found
is then the nine feature representation and a 64 filters U-
Net. The complete performance of this configuration of the
network on the Kitti dataset is shown in Table II divided
into the three KITTI categories of road scenes: urban marked,
urban marked multiline and urban unmarked. For an accurate
description of the metrics used, we refer to the original Kitti
paper [8]. These results place this framework within the top
Kitti scores for road segmentation [29], [30], [13], despite

TABLE I
BEST ACHIEVED RESULT ON THE KITTI DATASET

metrics um_road | umm.road | uu_road
MaxF 93.92 89.18 77.13
AvgPrec 85.55 80.65 57.80
PRE_wp 92.24 93.03 67.66
REC_wp 95.66 85.64 89.69
FPR_wp 1.85 2.13 6.67
FNR_wp 4.34 14.36 10.31
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Fig. 7. Structure of the graph convolutional neural network based on [26],
but with a considerably larger input due to the different application field.

TABLE III
RESULT ON THE KITTI DATASET USING GRAPH-CNN

metrics um_road | umm_road | uu_road
MaxF 84.61 88.73 70.05
AvgPrec 70.82 79.33 49.81
PRE_wp 76.25 84.96 57.73
REC_wp 95.04 92.86 89.08
FPR_wp 5.86 493 10.80
FNR_wp 4.96 7.14 10.92

less performing hardware or computational time than most
of the proposed network.

A. Graph convolutional neural network

Using the best performing feature set retrieved from the
results on CNN we also trained a graph convolutional
neural network to be consistent with the uneven topology
of superpixels. The model of the system is based on the one
proposed by [26], as reported in Figure 7.

The main difference from the Kipf and Welling archi-
tecture consist of the size of the input which, for us,
is considerably larger. This has forced us to increase the
number of hidden units from 16 in the original paper to
256. We also decreased the learning rate to achieve higher
precision. The increased input size and number of parameters
cause a significative change in the computational time of
the network. In particular, the process of graph computing,
executed only on CPU, requires 0.4 s at average; while the
execution time of the network is comparable to the U-net
version. This is because for these tests we did not implement
the algorithm using CUDA.

We performed a similar analysis to the one proposed for U-
net, using different sets of features; like in the previous tests,
we found that the best performing feature sets are the one
with seven and nine feature. The results of this architecture
on the Kitti dataset, using the same features set as Table II
are shown in Table III. Despite the better representation of
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the input image, the network performs slightly worse than
the U-net version. It also requires more time than the U-net
approach to predict a single image.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we presented a framework based on convo-
lutional networks on superpixels for fast road segmentation.
The results achieved on the Kitti benchmark dataset show
the potential of this approach in time-demanding embedded
scenarios. The proposed solution can run in real time, i.e., 20
Hz, on a small, low-power device like a Jetson TX2. Despite
this, the framework achieves good accuracy in prediction,
with performance comparable to the state of the art on
the Kitti benchmark dataset [13]. On the plus side, the
comparison tests between multiple feature sets demonstrate
how a simple representation performs considerably better on
small and fast convolutional networks. For a visual example
of the accuracy of our toolchain Figure 8 shows a comparison
between the Kitti ground truth and the prediction from the
two networks. For a more detailed analysis of the two
networks performances, it is possible to compare the results
of Table II and Table III.

Further improvements of this approach can lead to a
generalization of the task of image segmentation on the
multilabel segmentation dataset like Cityscape. Regarding
the graph-based approach, a more optimized implementation
of the graph creation process, using GPU parallelization
could lead to a significative improvement in the prediction
speed, making this architecture desirable for time-depending
tasks too.
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