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Abstract— Occupancy grid maps are by far the most used
spatial representation of the environment for robot navigation.
This paper proposes a simple and effective way to improve the
occupancy grid accuracy by superimposing a small oscillation to
the robot motion when a predefined path is given. The method is
especially suited for range sensors with long range capabilities
but poor angular resolution. The innovative solid state LiDAR
technology is an example of such sensor configuration and
is used in this work for the experimental evaluation of the
presented dithering technique. Experimental results quantita-
tively demonstrated that the proposed oscillating motion is
effective especially in speeding up the detection of corridor
like clearances in the environment.

I. INTRODUCTION

A key aspect in autonomous robot navigation is the
spatial representation of the environment. The ability of
the robot to safely navigate in it is strongly related to the
accuracy of the map available to the path planner. In order
to create a good map, a reliable estimation of the robot
location is required: uncertainties therefore reside not only
in the sensing capabilities of the surrounding environment
but also in the knowledge of the instantaneous robot pose.
Consequently, the estimation of the map and of the robot
pose is usually performed jointly in the so-called SLAM
process (Simultaneous Localization And Mapping). Many
SLAM algorithms make use of occupancy grid maps as
spatial representation (e.g. [1] and [2]). Occupancy grid maps
are one of the most popular spatial representation used in
the robotics community because they are able to account for
sensing uncertainties in a simple and effective manner. The
idea is to represent the environment as an evenly spaced
field of binary random variables (called cells) indicating
the presence of an obstacle at that location. This mapping
technique was first developed by Elfes in [3] as a tentative
to cope with incorrect and noisy measurements returned
by sonar sensors. One of the most challenging problem in
occupancy grid mapping is dealing with the uncertainties
that originates from sensors with poor angular resolution.
Another important aspect of SLAM algorithms is that the
robot trajectory during the mapping process is usually given
a priori: the robot is either manually operated or driven
by an exploration heuristics (e.g. frontier based exploration
algorithms).

The objective of this paper is to experimentally evaluate
the advantages of superimposing a small oscillating high
frequency path to an a priori selected path in order to improve
the accuracy of the occupancy grid map. This approach turns
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out to be useful especially when the range sensors utilized
are characterized by low angular resolution. These sensors
return a detection distance corresponding to an object that
can be anywhere inside a fairly wide detection cone (it can
be up to 25 ◦ for some sonar sensors): in this case small
clearance like corridors may not be visible especially from
long distances as highlighted in Figure 1. The idea is that a
small dither in the trajectory can help in periodically aligning
the detection cone axis with the clearance, maximizing its
probability of detection.

Fig. 1. Situation where a low angular resolution sensor cannot detect a
clearance like a corridor in the environment.

The mentioned dithering techinique can be useful not only
during a mapping process of an area but also in case of
a local obstacle avoidance algorithm that may rely on a
local map generated from range sensors (see for example
the popular Vector Field Histogram approach described in
[8]). In such algorithms detecting or not a clearance may
substantially vary the chosen path. To give a complete
overview of the mapping problem, there are also some more
general and formal methods to select an adequate trajectory
for exploration that can be grouped under the name of active
SLAM (see [9], [10]): these algorithms tries to solve an
optimization problem in order to find the best autonomous
path that minimize the resulting map uncertainty (often
estimated through the Shannon entropy [11]). These kind
of approaches can be very complex since they involve an
optimization in an high dimensional space while the dithering
approach described here is intended to be a simple way to
improve the detection of clearances when an exploration
path is already given. In the paper the pose of the robot
is considered perfectly known but the idea can be easily
extended to solve the full SLAM problem.

Another originality consists in the sensor setup: the ex-
perimental data presented in this work are collected with the
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LiDAR LeddarVu8 that belongs to the innovative category
of solid state laser range finder that are meant to dominate
the LiDAR market in the next years. These sensors are
characterized by a much longer range and improved relia-
bility compared to sonar sensors but, thanks to the absence
of moving parts, they are much cheaper than traditional
laser scanners. Up to now only limited angular resolution
are present on the market (12.5 ◦ in the considered set-up)
motivating the use of the dithering technique here presented.
The paper is structured as follows: Section II reviews the
common approach to occupancy grid mapping, in Section
III the description and modeling of the solid state LiDAR
utilized is presented. Section IV demonstrate qualitatively
and quantitatively the mapping results with and without
dithering.

II. OCCUPANCY GRID MAPPING

The general occupancy map problem can be casted into the
Bayesian inference theory. In this framework, the problem
of estimating the map m can be expressed by the following
posterior:

p(m|x1:t ,z1:t) (1)

where x1:t and z1:t stands for the robot poses and mea-
surements respectively from the time instant 1 up to t. The
original formulation by Elfes in [3], makes the assump-
tion of mutual independence between cells. Thanks to this
strong assumption, the mapping problem is reduced from
an estimation problem in the high dimensional space of all
possible maps to many one-dimensional estimation problem
corresponding to the occupancy of the single cell mi j:

p(m|x1:t ,z1:t) = ∏
i j

p(mi j|z1:t ,x1:t) (2)

The probability of occupancy of a single cell can be
derived applying Bayesian reasoning, the full derivation is
not reported here and it is well explained in [12]. The result
is a recursive formula expressed in log-odds ratios lt

i j:

lt
i j = log(

p(mi j|x1:t ,z1:t)

1− p(mi j|x1:t ,z1:t)
) = lt−1

i j + log(
p(mi j|zt ,xt)

1− p(mi j|zt ,xt)
) (3)

where in writing (3) the prior knowledge of the map oc-
cupancy p(mi j) was set to 0.5 indicating an initial unknown
state. Equation (3) states that, under the assumption of cell
mutual independence and static map, the cell probability can
be updated incrementally adding to the current knowledge
of the cell occupancy lt−1

i j , the information coming from the
latest measurement zt carried by the term p(mi j|xt ,zt). The
quantity p(mi j|xt ,zt) is usually called inverse sensor model
because it maps the latest sensor measurement back to its
cause specifying the probability of occupancy of the cell ij
conditioned to the measured zt .

Different improvements and extension to this formulation
are presented in literature, especially to better deal with
the uncertainties coming from sonar measurements due to
their poor angular resolution, e.g [4], [5]. A well known

approach in this sense, in clear contrast with the presented
formulation, is the one presented by Thrun in [6]: here the
author makes use of the so-called forward sensor model
p(zt |m) and solves the mapping problem directly in the high
dimensional space. A comparison of the performance of
different grid mapping algorithm is present in [7] where the
superior performance of a forward-sensor model approach
are demonstrated. Despite its inferior accuracy, the log-odds
update rule based on the inverse sensor model is still the most
used in practice: its simplicity, low computational burden
and recursive formulation allow real-time implementation.
Therefore in this work the inverse sensor model formulation
described by (3) is used to compute the occupancy grid map
update. An approach simlar to what presented in [6] has not
been pursued because, due to the lack of in depth technical
information about the solid state LiDAR employed, defining
the expression of the forward model resulted cumbersome.
In absensce of an accurate forward model, the theoretical
superiority of the approach may not be reflected in practice.

III. SENSOR SETUP AND INVERSE MODEL

Fig. 2. Schematic of the LeddarVu8 functionig. In the top figure, the sensor
is depicted with the main components highlighted. In the bottom figure a
top view of the sensor field of view.

The Laser sensor used in this work is the LeddarVu8, a
2D solid state LiDAR by the Canadian company Leddartech
[13]. As most of the LiDAR technologies, this sensor works
with the time of flight principle. Compared to common
mechanical laser scanners the LeddarVu8 does not present
any rotating parts but it employs the so-called flash LiDAR
technology. This technology consists in using a single fixed
beam light source that is diffused through the use of an
appropriate optics over a field of view of 100 degrees. The
total field of view is divided in 8 detection segments: the
sensor is infact provided by an array of eight independent
photo-detectors that receive and process the light reflected by
objects in the field of view. The detection frequency depends
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on some parameters that can be set-up by the user in order
to select the most suitable trade-off between sampling rate
and accuracy. As a result of our tuning, the sensors returns 8
detection distances at a frequency of 10 Hz with an angular
resolution of 12.5 degrees. A scheme depicting the sensor
functioning is presented in Figure 2. The specific version of
the sensor used is capable of detecting obstacle up to 34 m
of distance.

As introduced in the previous section, the inverse sensor
model p(mi j|zt ,xt) describes the probability that a cell is
occupied conditioned to the measured zt . The poor angular
resolution of 12.5 ◦, around 100 times lower than common
laser scanners, originates a substantial angular uncertainty:
given a measurement, many cells belonging to the same
segment may be the cause of that detection, especially at
long ranges. This fact motivated the decision of using an
inverse sensor model similar to what has been presented for
other wide-beam sensors like sonar or radars. The inverse
sensor model here employed is the one described in [14].
Each detection segment is treated separately and the update
probability p(mi j|zt ,xt) depends on the position of the cell
inside the detection beam described in polar coordinates
through the tuple (d,θ) (see Figure 3).

Fig. 3. Detection beam defined by a measurement. The position of a cell
inside the beam is defined in polar coordinates.

The sensor model is than defined piece-wise as follows:

p(mi j|zt ,xt)= 0.5+


−s(zt ,θ) d < zt −d1

−s(zt ,θ)+
s(zt ,θ)

d1
(d− zt +d1) d < zt +d2

+s(zt ,θ) d < zt −d1

+s(zt ,θ)− s(zt ,θ)
d3−d2

(d− zt +d2) d < zt +d3
0 otherwise

(4)
where s(zt ,θ) depends linearly on the measured range

through g(zt) and on the angular position through a Gaussian
distribution centered on the beam axis:

s(zt ,θ) = g(zt)N (0, σθ ) (5)

Figure 4 shows the probability update for a single mea-
surement occured at 7 meters: cells closer than the measured
distance are assigned a low occupancy probability (smaller
than the prior p(mi j) = 0.5) and cells around the measured
distance are assigned an high occupancy probability. Mo-
rover, with the definition of s(zt ,θ) in Equation (5), shorter
measurements provides higher probability updates and cells
closer to the beam axis are given a higher probability of
occupancy compared to the one on the edges.
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Fig. 4. Representation of an occupancy grid update through the inverse
sensor model described in Equation (4) for a measurement occurred at 7 m.
Straigth red lines delimit a single detection segment.

IV. EXPERIMETAL EVALUATION OF THE
DITHERING MAPPING

This section is dedicated to the description of the exper-
iments performed to evaluate the benefit of the dithering
technique. First, the description of how the mechanical
dither is applied to the robot is provided. Then, a specific
map evaluation metric is defined and finally the mapping
performance of the robot with the dithering motion are
evaluated in a specific case and compared with a nominal
case when the dither is not applied.

A. Applying the dither

Fig. 5. The two wheeled self-balancing robot used in the experiments. The
mounting position of the LiDAR is highlighted.

All the experiments were performed using a two wheeled
self balancing robot depicted in Figure 5. The two wheel
configuration is of great importance in this context because,
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thanks to the differential drive capability, the robot is very
agile.

Fig. 6. Robot control scheme for path tracking task. The dithering trajectory
is added as an angular speed reference oscillation.

The robot control system has been implemented in a
cascade manner as depicted in Figure 6. The outer loop is
the path tracking control that, based on the posture estimate,
decides the angular velocity reference ωre f in order to
follow, at a pre-defined speed, a desired path specified in
the Cartesian plane (see [15] for details on the path tracking
implementation). The inner control loop consists in the
balancing control that has the task of actuating the velocities
references through the wheel torques, while keeping the
robot in equilibrium. The dithering trajectory is actuated
adding an high frequency sinusoidal signal ωdither to the
reference angular speed as specified in Figure 6.

Since the frequency of the dither is much higher than the
bandwidth of the path tracking loop, a dithering trajectory
results superimposed to the reference path. The resulting
robot motion is shown in figure 7: while the robot path seems
almost perfectly overlapped to the reference, an oscillation
corresponding to the applied dither is clearly visible around
the robot orientation requested by the reference path.
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Fig. 7. Resulting robot trajectory when a dither is applied.

B. Map evaluation criteria

480 500 520 540 560 580 600 620 640 660

x [cells]

280

300

320

340

360

380

400

420

440

460

y 
[c

el
ls

]
Fig. 8. Definition of spanned region. The red square corresponds to the
robot position, the green sectors corresponds to the measurements returned
by the LiDAR, the blu cells corresponds to the ground truth walls and the
spanned region is highlighted in white.

In this section, a map evaluation metric is defined in order
to compare different mapping results and highlights quan-
titatively the advantages of performing a dithering motion.
Defining a map metric is not as trivial as it may seems,
different methods described in literature are reviewed in
[16]. The method described here is based on a pixel to
pixel comparison to a ground truth reconstructed by hand
through direct measurements of distances and walls length.
The metric takes inspiration from the Overall Error quantity
described in [17] where it was defined as the summation
over the considered map of the cell to cell error calculated
as the difference between the probability of occupancy in the
estimated map and the ground truth. As highlighted in [7],
this formulation carries an intrinsic problem: in general the
amount of empty space in an environment is largely superior
to the amount of objects and walls, therefore a merit function
that considers in the same way all the cells will somehow
underrate the occupied space. This fact leads to the definition
of Weighted Overall Error WOE where each cell contribution
to the total error is weighted by the occupancy ratio OR
calculated based on the ground truth map:

WOE =
(1−OR)∑occ |p(mi j)−mi jgt |+OR∑emp |p(mi j)−mi jgt |

# of cells
(6)

With this formulation, cells that are estimated as occupied
(p(mi j)> 0.5) have more weight in the total WOE.

The final objective is to compare mapping results produced
with different robot trajectories, in the specific case a non
dithering - dithering comparison must be performed. A tra-
jectory with a superimposed dither most probably will scan a
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Fig. 9. Incremental mapping

greater area in the environment due to the periodical dither in
the robot orientation (see upper-left plot in Figure 7). To have
a fair comparison and to be independent from the number
of cells evaluated by the LiDAR sensor during a certain
trajectory, the concept of spanned region is introduced. This
region is defined as the set of cells spanned by the LiDAR
diffused light during the robot motion. Also the cells marked
occupied in the ground truth map and hit by the laser light are
considered in the spanned region. The white area in Figure
8 exemplify the definition of spanned region.

Notice that the cells belonging to the clearance in the
wall and at the extreme right of the robot are included in
the spanned region even if all the LiDAR measurements
corresponds to the closer wall. The spanned region is then
incrementally updated: as new cells are evaluated they are
added to the spanned region. The WOE is therefore evaluated
only for cells belonging to the spanned region: this allows
to monitor the map accuracy incrementally and, at the same
time, to be independent by the explored area since the metric
in Equation (6) is normalized by the total number of cells in

the spanned region. The definition of an index that represents
the accuracy of the mapping process enables a fine tuning of
the inverse sensor model described in Section III. Parameters
describing the uncertainty in the occupancy grid update such
as σθ , d1, d2 and d3 were tuned to minimize the WOE while
navigating in environments rich of clearance like the one
represented in Figure 8.

C. Experiments

A specific experiment has been performed in order to
evaluate the robot mapping accuracy while performing a
dithering motion. The robot is operated in the environment
depicted in Figure 8 and started at 10 meters from the
corridor like clearance: the robot is than programmed to
follow a straight path towards the clearance. Two versions
of the experiment were performed: the first with only the
path tracking controller active and no dithering motion, the
second with a superimposed dither implemented as explained
in Section IV-A. The resulting robot motion derived from
the wheel encoders is depicted in Figure 10: the trajectory
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Fig. 10. Robot motion relative to the experiment described in Figure 9.
The robot is programmed to follow a straight path with a superimposed
dither of around 3 deg amplitude in the robot orientation.

is very close to a straight line but the robot orientation ψ

clearly shows the oscillating behavior. Figure 9 shows the
mapping results of the two experiments comparing the case
with the dithering motion and the one without dithering:
three snapshots of the map that is incrementally updated
while the robot is moving are depicted together with the
WOE describing instant by instant the mapping accuracy as
a function of the distance traveled. In both cases the robot
starts from the same position and the WOE is around 50%
corresponding to the maximum uncertainty level (Snapshot
A). After 1.5 meters traveled, it can be noticed that the
WOE for the dither case is lower than the one without dither
indicating a better mapping accuracy (Snapshot B). This is
due to the fact that the dithering motion enabled the detection
of the clearance in the wall that is represented fairly well in
the map: the oscillating motion infact periodically aligns one
of the LiDAR detection segments with the clearance. When
this happens the occupancy probability of the free space in
the clearance can be correctly updated. As the robot gets
closer and closer to the clearance, even without the dithering
motion the clearance is detected and represented in the map:
this moment is depicted in Snapshot C where the WOE of
both cases settles around 30%. Actually in Snapshot C, the
accuracy of the non dither case is slightly superior to the
dither case: this maybe due to the fact that the estimation of
the robot pose performed through the simple wheel encoders
integration accumulates a greater error in the case of the
dithering motion.

V. CONCLUSIONS

In this paper the possibility of superimposing a small
oscillating motion to a given robot path is explored in
order to improve the mapping accuracy of the environment.
Preliminary experimental results showed that, even a small
oscillation that do not visibly modify the given path, can
help in speeding up the detection of corridor like clearances.
This technique especially suits cases where sensors with long
range capabilities but small angular resolutions are employed
such as the innovative Solid State LiDAR used in this
work. The classical log-odds formulation of the occupancy
grid update is used based on the inverse sensor model.
Future work will focus, beside a more extensive experimental
campaign, on the development of a forward sensor model for
the Solid State LiDAR to verify if a forward approach to the
occupancy grid problem can further enhance the mapping
performance with the dithering technique presented.
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