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1 Introduction

Nowadays, vehicle suspension systems have become a field 
of increasing relevance in control theory and applications. 
Taking advantage of new computing tools and efficient 
numerical algorithms, a significant number of advanced con-
trol strategies for active and semi-active suspension systems 
have been proposed to deal with control problems of grow-
ing complexity. Some interesting recent works can be found 
in [1–8].

Information constraints and, in particular, restricted access 
to the state information are factors of indubitable impor-
tance [9, 10]. When the information available for feedback 
purposes consists in a reduced number of linear combina-
tions of the states, static output-feedback control strategies 
constitute an excellent option to facilitate a simple imple-
mentation in practice [11–15]. The design of this kind of 
controllers, however, leads to challenging theoretical prob-
lems and serious computational difficulties [11, 16]. To 
provide a practical solution to these problems, a variety of 
multi-step numerical algorithms have been proposed, which 
allow finding suboptimal solutions with a reasonable com-
putational cost [17–25]. These heuristic approaches typically 
involve a number of free parameters and, for a practical 
application of the method, a suitable set of parameter val-
ues has to be determined. In most cases, however, there is 
no satisfactory solution for this important issue, which can 
critically compromise the effectiveness of the method.
Recently, a new computational strategy for static output-
feedback controller design was presented in [26]. This
approach considers a linear matrix inequality (LMI) for-
mulation of the state-feedback control problem, and uses
a suitable transformation of the LMI variables to obtain
an LMI formulation for the static output-feedback con-
troller. The definition of the LMI variables transformation
involves a matrix L, which can take arbitrary values. For
the choice L = 0, this design methodology has produced
positive results in the fields of vibration control of large
structures [27–30], control of offshore wind turbines [31, 32]
and control of active vehicle suspensions [33]. The choice
L = 0 has the obvious advantage of its mathematical sim-
plicity, but it presents the drawback of ignoring the specific
properties of the considered control problem.

After a detailed study of the L matrix properties, an
improved two-step design methodology has been proposed
in [34]. In the initial step, a first LMI optimisation prob-
lem is solved to compute an optimal state-feedback con-
troller. As a side product, the LMI solver provides a matrix
X that facilitates a suitable definition of the L matrix.
Next, the output-feedback controller is obtained by solv-
ing a second LMI optimisation problem. Overall, the new
approach requires solving two LMI optimisation problems.
Moreover, the optimal state-feedback controller computed
in the first step can be used as a natural reference in
the performance assessment of the static output-feedback
controller.



The objective of this work is to explore the potential appli-
cability of the new two-step design methodology in the field
of vehicle suspensions. In addition, we are also interested in
providing a clear and practical presentation of the main the-
oretical elements of the new approach, which we believe
can be of general interest for control engineers in different
fields. To this end, two static output-feedback H∞ controllers
are designed for a simplified quarter-car suspension system.
The first one uses the suspension deflection and the sprung
mass velocity as feedback information, whereas the second
one only requires the sprung mass velocity to compute the
control actions. The state-feedback H∞ controller obtained
in the first step of the design procedure is used as a refer-
ence in the performance assessment. The main contribution
of the paper is to provide an effective computational strategy
to design static output-feedback controllers for active vehi-
cle suspension systems. This strategy is conceptually simple,
allows taking advantage of the existing state-feedback LMI
formulations, and can be implemented without determining
additional parameter values.

The paper is organised as follows: Section 2 provides a
minimal summary of the fundamental theoretical elements
involved in the proposed two-step design methodology,
and its application to the particular case of H∞ controller
design. In Section 3, a suitable mathematical model for a
quarter-car suspension system is provided, and the static
output-feedback H∞ controllers are designed. In Section 4, a
suitable set of frequency and time responses are computed to
assess the effectiveness of the proposed controllers. Finally,
in Section 5, some conclusions and future lines of research
are briefly presented.

2 Theoretical background

In this section, we provide a minimal background on the
design methodology for static output-feedback controllers
proposed in [26, 34]. Next, in Section 2.2, we detail how
these general ideas can be applied to the particular case of
H∞ controller design.

2.1 Static output-feedback controller design

Let us consider a state-feedback controller

u(t) = Gs x(t) (1)

where u(t) ∈ R
m and x(t) ∈ R

n denote the control and state
vectors, respectively, and Gs ∈ R

m×n is the state gain matrix.
Let us also assume that this state-feedback controller can be
designed by solving an LMI optimisation problem of the
form {

minimise h(X, Y, ζ)
subject to F(X, Y, ζ) < 0, X > 0

(2)

where h and F are given affine maps, X ∈ R
n×n and Y ∈

R
m×n are variable matrices, and ζ ∈ R

p×1 is a vector that
collects other LMI variables not contained in X and Y. More
precisely, if an optimal solution to the optimisation problem
(2) is attained for the triplet(X̃s, Ỹs, ζ̃s), then the state gain
matrix can be computed as

Gs = Ỹs X̃
−1

s (3)

Now, let us suppose that the available information for feed-
back purposes consists in a vector of observed outputs
y(t) ∈ R
q, which can be written in the form

y(t) = Cy x(t) (4)

where Cy is a q × n matrix with full row-rank q < n.
An interesting option in this second scenario consists in
considering a static output-feedback controller

u(t) = Ky(t) (5)

which computes the control actions from the observed-
output information by means of an output gain matrix K ∈
R

m×q.
The problem of obtaining a static output-feedback con-

troller (5) can be seen as a constrained state-feedback control
problem, where the state gain matrix G must admit the
factorisation

G = KCy (6)

When an LMI formulation of the form (2) is available for the
state-feedback controller design, the static output-feedback
controller (5) can be computed by solving the following
optimisation problem{

minimise h(X, Y, ζ)
subject to F(X, Y, ζ) < 0, X > 0, (X, Y) ∈ M (7)

where M is the set of all pairs of matrices (X, Y) for which
there exists an m × q matrix K satisfying the matrix equation

YX−1 = KCy (8)

Using the results presented in [26], an effective compu-
tational strategy to deal with the non-convex optimisation
problem (7) and computing the output gain matrix K can be
defined as follows:

(S1) Choose a suitable (n − q) × q matrix L and compute

R = C†
y + QL (9)

where Q is an n × (n − q) matrix whose columns are a basis
of the nullspace of Cy and C†

y = CT
y (CyCT

y )
−1 is the Moore–

Penrose pseudoinverse of Cy.
(S2) Solve the following LMI optimisation problem with
variables XQ, XR, YR and ζ{

minimise ĥ(XQ, XR, YR, ζ)
subject to F̂(XQ, XR, YR, ζ < 0, XQ) > 0, XR > 0

(10)
where XQ ∈ R

(n−q)×(n−q) and XR ∈ R
q×q are symmetric

positive-definite matrices, YR ∈ R
m×q and ζ ∈ R

p×1 are arbi-
trary matrices and the functions ĥ and F̂ are defined
as

ĥ(XQ, XR, YR, ζ) = h(QXQQT + RXRRT, YRRT, ζ)

F̂(XQ, XR, YR, ζ) = F(QXQQT + RXRRT, YRRT, ζ)
(11)

If an optimal solution to the LMI optimisation problem (10)
is obtained for the quartet (X̃Q, X̃R, ỸR, ζ̃), then the triplet
(X̃, Ỹ, ζ̃) with

X̃ = QX̃QQT + RX̃RRT, Ỹ = ỸRRT (12)

defines a feasible solution of the optimisation problem (7),
and the matrix equation (8) is satisfied by X̃, Ỹ and the



output gain matrix

K = ỸRX̃
−1

R (13)

To date, this computational procedure has been successfully
applied to design static output-feedback controllers in the
fields of vibration control of large structures [27–30], control
of offshore wind turbines [31, 32] and control of active vehi-
cle suspensions [33]. In all these works, a zero matrix L was
selected in the step (S1). The choice L = 0 leads to R = C†

y
in (9), and has the obvious advantage of its mathematical
simplicity. This option, however, presents the drawback of
ignoring the specific properties of the considered control
problem.

While developing the aforementioned applications, it
became apparent that a suitable choice of the matrix L
can exert a critical influence on both, the feasibility of the
optimisation problem (10), and the optimality level of the
feasible triplet (X̃, Ỹ, ζ̃). A detailed study of some relevant
properties of the matrix L has been recently presented in
[34]. The results obtained in that work led the authors to
propose the following L-matrix for the step (S1)

L = Q†X̃sC
T
y (CyX̃sC

T
y )

−1 (14)

where Q† = (QTQ)−1QT denotes the Moore–Penrose pseu-
doinverse of Q and X̃s is the X-matrix corresponding to an
optimal solution (X̃s, Ỹs, ζ̃s) of the LMI optimisation prob-
lem (2) associated to the state-feedback controller design.
This choice of the matrix L has proved to be particu-
larly effective in the field of seismic protection of large
structures, and it will be used in the present paper to
obtain static output-feedback controllers for a quarter-car
suspension system with satisfactory results.

2.2 H∞ controllers

Let us consider a system of the form

{
ẋ(t) = Ax(t) + Bu(t) + Bww(t)
z(t) = Cx(t) + Du(t)

(15)

where x(t) ∈ R
n is the state vector, u(t) ∈ R

m is the control
input, w(t) ∈ R

r is the disturbance input, z(t) ∈ R
d is the

controlled output and A, B, Bw, C and D are real constant
matrices with appropriate dimensions. For a given state-
feedback controller u(t) = Gx(t), the following closed-loop
system results

{
ẋ(t) = AGx(t) + Bww(t)
z(t) = CGx(t)

(16)

where

AG = A + BG, CG = C + DG (17)

In the H∞ approach, the objective is to obtain a state gain
matrix G that produces an asymptotically stable matrix AG
and, simultaneously, minimises the H∞ norm

γG = ‖TG‖∞ = sup
ω∈R

σmax[TG(jω)] (18)

where σmax[·] denotes the maximum singular value and

TG(s) = CG(sI − AG)−1Bw (19)

is the transfer function from the disturbance input to the
controlled output.

According to the ‘Bounded Real Lemma’ [35], for a given
γ > 0, the closed-loop state matrix AG is asymptotically
stable and γG < γ if and only if there exists a symmetric
positive-definite matrix X ∈ R

n×n that satisfies the matrix
inequality [

AGX + XAT
G + γ −2BwBT

w ∗
CGX −I

]
< 0 (20)

where (∗) denotes the transpose of the symmetric entry.
Using the values of the closed-loop matrices in (17), and
by introducing the new variables η = γ −2 and Y = GX, we
obtain the following LMI[

AX + XAT + BY + YTBT + ηBwBT
w ∗

CX + DY −I

]
< 0 (21)

Hence, an optimal state-feedback H∞ controller can be
computed by solving the LMI optimisation problem{

maximise η

subject to LMI (21), η > 0, X > 0
(22)

If the triplet (X̃s, Ỹs, η̃s) provides an optimal solution to
(22), then the state gain matrix Gs = ỸsX̃

−1

s defines a state-
feedback controller with optimal H∞-norm

γGs = η̃
− 1

2
s (23)

By setting ζ = η, h(X, Y, η) = −η, and taking the affine
map F(X, Y, η) as⎡

⎣AX + XAT + BY + YTBT + ηBwBT
w ∗ ∗

CX + DY −I ∗
0 0 −η

⎤
⎦ (24)

the LMI optimisation problem (22) can be written in the
standard form presented in (2). Consequently, for a given
observed output y(t) = Cy x(t), the general design method-
ology presented in Section 2.1 can be applied to obtain a
static output-feedback H∞ controller u(t) = Ky(t) for the
system (15). In this case, the LMI optimisation problem (10)
can be formulated as follows{

maximise η

subject to F̂(XQ, XR, YR, η) < 0, XQ > 0, XR > 0
(25)

where F̂(XQ, XR, YR, η) has the form (see (26))
⎡
⎣AQXQQT + QXQQTAT + ARXRRT + RXRRTAT + BYRRT + RYT

RBT + ηBwBT
w ∗ ∗

CQXQQT + CRXRRT + DYRRT −I ∗
0 0 −η

⎤
⎦ (26)



If an optimal solution to the optimisation problem (25)
is attained for the quartet (X̃Q, X̃R, ỸR, η̃), then the output

gain matrix K = ỸRX̃
−1

R defines an output-feedback con-
troller u(t) = Ky(t) with an asymptotically stable closed-
loop matrix AGK and an H∞-norm γGK that satisfies

γGK ≤ η̃− 1
2 (27)

where GK = KCy is the state gain matrix associated to the
output gain matrix K.

Remark 1: It should be noted that the LMI optimisation
problem (25) only provides an upper bound for γGK . The
actual value of the H∞-norm corresponding to the output-
feedback controller u(t) = Ky(t) can be obtained by setting
G = GK in (20), and solving the LMI optimisation problem

{
maximise η

subject to LMI (20), η > 0, X > 0
(28)

If an optimal value η̂ is obtained in (28), then we have
γGK = η̂−1/2. Alternatively, γGK can also be computed by
maximising the maximum singular value of the transfer
function TGK , as indicated in (18).

3 Application to vehicle suspensions

In this section, the design methodology presented in
Section 2 is applied to compute two different static output-
feedback H∞ controllers for a quarter-car suspension system.
The first controller uses the suspension deflection and the
sprung mass velocity as feedback information. The second
controller only uses the sprung mass velocity to compute
the control actions. A state-feedback H∞ controller is also
designed, which is taken as a natural reference in the
performance assessment of the proposed output-feedback
controllers, and provides the matrix X̃s to compute the
L-matrix defined in (14). The LMI optimisation problems
corresponding to the different controller designs have been
solved with the ‘MATLAB Robust Control Toolbox’ [36].

3.1 Quarter-car suspension model

Let us consider a lumped-mass model of a quarter-car sus-
pension system shown in Fig. 1, where ms and mu represent
the sprung and unsprung masses, respectively; cs is the
damping of the suspension system; ks and ku are, respec-
tively, the suspension stiffness and the tyre stiffness; zr(t) is
the vertical road displacement; zs(t) and zu(t) represent the
vertical displacements of the sprung and unsprung masses,
respectively; and u(t) is the active input of the suspension
system. The quarter-car motion is governed by the system
of second-order differential equations

msz̈s(t) = −cs[żs(t) − żu(t)] − ks[zs(t) − zu(t)] + u(t)

muz̈u(t) = cs[żs(t) − żu(t)] + ks[zs(t) − zu(t)]
− ku[zu(t) − zr(t)] − u(t)

(29)

which can be converted into the state-space model

ẋ(t) = Ax(t) + Bu(t) + Bww(t) (30)

(31)

where

x(t) = [zs(t) − zu(t), zu(t) − zr (t), żs(t), żu(t)]T
Fig. 1 Quarter-car suspension model with active suspension

is the state vector, w(t) = żr(t) is the road displacement
velocity, u(t) is the control input and the matrices A, B and
Bw have the following form

A =
⎡
⎢⎣

0 0 1 −1
0 0 0 1

−ks/ms 0 −cs/ms cs/ms

ks/mu −ku/mu cs/mu −cs/mu

⎤
⎥⎦ (32)

B =
⎡
⎢⎣

0
0

1/ms

−1/mu

⎤
⎥⎦ , Bw =

⎡
⎢⎣

0
−1
0
0

⎤
⎥⎦ (33)

The following particular values of the parameters [19, 37]

ms = 504.5, mu = 62 kg, ks = 13100,

ku = 252000 N/m, cs = 400 N s/m (34)

are used in the controllers design of Section 3.2 and in the
numerical simulations conducted in Section 4.

The vertical body acceleration is widely used to quan-
tify the ride comfort. Hence, a natural point of interest
in the controllers design consists in minimising the sprung
mass acceleration z̈s(t), especially in the sensitive frequency
range of 0–65 rad/s [38]. Additionally, in order to respect
the suspension stroke limits and to improve the road hold-
ing ability, we are also interested in reducing the suspension
deflection zs(t) − zu(t) and the tire deflection zu(t) − zr(t).
Obviously, avoiding high levels of control effort is also
desirable. Accordingly, the following vector of controlled
outputs is selected

z(t) = [z̈s(t), α(zs(t) − zu(t)), β(zu(t) − zr(t)), ρu(t)]T

(35)
where α, β and ρ are weighting coefficients that manage the
tradeoff between the conflicting design requirements. Con-
sidering the first equation in (29), this vector of controlled
outputs can be written in the form

z(t) = Cx(t) + Du(t) (36)

with

C =
⎡
⎢⎣

−ks/ms 0 −cs/ms cs/ms

α 0 0 0
0 β 0 0
0 0 0 0

⎤
⎥⎦ (37)



and

D =
⎡
⎢⎣

1/ms

0
0
ρ

⎤
⎥⎦ (38)

The following particular values of the weighting coefficients

α = 0.1, β = 0.2, ρ = 0.1 × 10−3 (39)

are used to compute the controllers presented in the next
section.

3.2 Controllers design

Following the discussion in Section 2, we begin by designing
an optimal state-feedback H∞ controller

u(t) = Gs x(t) (40)

which uses the full state x(t) defined in (31) as feedback
information. By solving the LMI optimisation problem (22)
with the matrices A, B, Bw, C and D given by (32), (33),
(37) and (38), the particular parameter values in (34) and
the weighting coefficients in (39), we obtain the state gain
matrix

Gs = 104 × [1.1810 0.2333 −0.1096 0.0109] (41)

and the optimal H∞-norm

γGs = 7.8365 (42)

We also obtain the X-matrix corresponding to this optimal
solution

X̃s =
⎡
⎢⎣

0.5965 −0.0020 −0.5075 −0.0085
−0.0020 0.0020 0.0020 −0.0081
−0.5075 0.0020 0.7659 −0.0015
−0.0085 −0.0081 −0.0015 8.0713

⎤
⎥⎦ (43)

Next, we compute a first static output-feedback controller

u(t) = KI yI(t) (44)

which uses the suspension deflection and the sprung mass
velocity as feedback information [19]. In this case, the
observed output is given by

yI(t) = [zs(t) − zu(t), żs(t)]T (45)

which can be written as

yI(t) = (Cy)I x(t) (46)

with

(Cy)I =
[

1 0 0 0
0 0 1 0

]
(47)

By computing the nullspace of (Cy)I, we obtain the matrix

QI =
⎡
⎢⎣

0 0
1 0
0 0
0 1

⎤
⎥⎦ (48)
Using the matrices (43), (47) and (48) in (14), we obtain

LI =
[−0.0025 0.0009
−0.0364 −0.0261

]
(49)

and, by substituting the matrices (47)–(49) in (9), we finally
obtain

RI =
⎡
⎢⎣

1 0
−0.0025 0.0009

0 1
−0.0364 −0.0261

⎤
⎥⎦ (50)

Now, we solve the LMI optimisation problem (25) with the
same matrices A, B, Bw, C and D used in the state-feedback
controller design, and the matrices QI and RI given in (48)
and (50). As a result, we obtain the output gain matrix

KI = 104 × [1.0824 −0.2071] (51)

The state gain matrix GI = KI(Cy)I associated to the output
gain matrix KI is given by

GI = 104 × [1.0824 0 −0.2071 0] (52)

Setting G = GI in (20), and solving the optimisation prob-
lem (28), we obtain an H∞-norm of

γGI = 7.8432 (53)

To illustrate the flexibility of the proposed design methodol-
ogy, we compute a second static output-feedback controller

u(t) = KII yII(t) (54)

which only uses the sprung mass velocity żs(t) as feedback
information. In this second case, the observed output can be
written as

yII(t) = (Cy)II x(t) (55)

with

(Cy)II = [
0 0 1 0

]
(56)

and the matrices L, Q and R take the following values

LII = [0.0026 −0.6627 −0.0019]T (57)

QII =
⎡
⎢⎣

0 1 0
1 0 0
0 0 0
0 0 1

⎤
⎥⎦ , RII =

⎡
⎢⎣

−0.6627
0.0026
1.0000

−0.0019

⎤
⎥⎦ (58)

Solving the LMI optimisation problem (25) with the new
values of the matrices Q and R, we obtain the output gain

KII = −8.9703 × 103 (59)

which has an associated state gain matrix

GII = KII(Cy)II = 103 × [0 0 −8.9703 0] (60)

and H∞-norm

γGII = 7.9068 (61)

Remark 2: In the first step of the proposed design procedure,
the objective is to find a suitable state-feedback controller.
This ideal controller has full access to the state infor-
mation and must satisfy the performance requirements of



the problem under consideration. Clearly, if no satisfactory
solution can be found for this exploratory step, the possibil-
ity of obtaining a suitable static output-feedback controller
should be reconsidered. The output-feedback controller pre-
sented in [19] has been taken as a reference to compute
the control gain matrix Gs given in (41). In what follows,
we will assume that Gs defines a suitable state-feedback
controller for the active suspension system introduced in
Section 3.1.

Remark 3: Note that all the controllers presented in this
section have been computed using the same controlled out-
put z(t) defined in (36)–(39). For this choice of z(t), the
state-feedback controller defined by Gs attains the opti-
mal H∞-norm γGs = 7.8365. A suboptimal γ -value will be
produced by any static output-feedback controller designed
using the same z(t). Looking at the γ -value in (53), it can
be seen that the output-feedback controller (44) is practi-
cally optimal. Comparing the γ -values in (42) and (61), it
can also be appreciated that the H∞-norm achieved by the
second output-feedback controller (54) exceeds the optimal
γ -value (42) in less than a 1%. From a practical point of
view, the behaviour of these almost-optimal controllers is
often very similar to the behaviour exhibited by the optimal
state-feedback controller. The numerical simulations carried
out in Section 4 illustrate this fact.

Remark 4: An output-feedback controller design for a
quarter-car suspension model using a single-step procedure
can be found in [33]. In this preliminary work, the state vari-
ables are zs(t), zu(t), żs(t), żu(t) and a static output-feedback
controller of the form given in (44) is computed by using
R = C†

y , which can be considered as a particular case of (9)
with L = 0. However, in this case, the corresponding LMI is
unfeasible for an output-feedback controller of the form (54).
For the state variables (31), proposed in [19] and used in the
present paper, the attempt of computing the output-feedback
controllers (44) and (54) by using a null matrix L in (9) also
fails, and the corresponding LMI optimisation problems are
reported to be infeasible by the MATLAB LMI solver. Sim-
ilar feasibility problems associated to the choice L = 0 were
encountered in previous works on vibration control of large
structures [27–30], and they were circumvented by using
a slightly perturbed state matrix of the form Â = A − εI
with a small ε > 0. By means of this computational trick,
it was possible to overcome the initial feasibility difficulties
and to obtain suitable static output-feedback controllers. This
approach, however, has proved to be inappropriate for the
output-feedback controllers considered in the present paper
and, after extensive numerical testing, no satisfactory results
have been obtained by using a perturbed state matrix Â.
These facts come to highlight the singular relevance of the
matrix L defined in (14), showing its ability to avoid unfeasi-
bility and to capture the specific properties of the considered
control problem.
a b

c d

Fig. 2 Frequency transfer functions from road displacement velocity to

a Sprung mass acceleration
b Suspension deflection
c Tyre deflection
d Control effort, corresponding to the output-feedback controller I (red dash-dotted line), velocity-feedback controller II (green solid line), state-feedback

(blue dashed line) and uncontrolled (black dotted line) configurations
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4 Numerical results

In this section, we consider the following control configura-
tions for the quarter-car suspension model:

(i) Controlled system using the active output-feedback con-
troller (44), defined by the two-measurement observed out-
put yI(t) = [zs(t) − zu(t), ˙s(t)]T and the output gain matrix 
KI in (51). This controller will be called output-feedback 
controller I in the sequel.
(ii) Controlled system using the active output-feedback con-
troller (54), defined by the single-measurement observed
output yII(t) = żs(t) and the output gain KII given in (59). 
For clarity, this controller will be referred to as velocity-
feedback controller II in what follows.
(iii) Controlled system using the active state-feedback con-
troller (40), defined by the full state

x(t) = [zs(t) − zu(t), zu(t) − zr (t), żs(t), żu(t)]T

and the state gain matrix Gs in (41).
(iv) Uncontrolled system with no active control implemen-
tation.

For these four control configurations, the frequency transfer 
functions from the road displacement velocity żr (t) to the 
sprung mass acceleration z̈s(t), to the suspension deflection 
zs(t) − zu(t), to the tyre deflection zu(t) − zr (t) and to the 
control force u(t) are presented in Figs. 2a–d, respectively.
In the graphics, the black dotted line corresponds to the
uncontrolled system, the red dash-dotted line corresponds to
the output-feedback controller I, the green solid line pertains
to the velocity-feedback controller II and the blue dashed
line represents the state-feedback controlled system, which
is taken as a reference to evaluate the performance of the
proposed static output-feedback controllers. Looking at the
graphics in Fig. 2, it can be clearly appreciated that the fre-
quency response of the output-feedback controller I (which
has attained a practically optimal γ -value) is very similar to
the response corresponding to the state-feedback controller.
For the velocity-feedback controller II, a small loss of per-
formance with respect to the state-feedback controller can
be observed. However, we must recall the severe feedback
information constraints imposed on this controller.

To provide a better insight into the behaviour exhibited
by the proposed output-feedback controllers, we consider the
time responses to an isolated bump of the form

zr(t) =
⎧⎨
⎩

A

2

[
1 − cos

(
2πV

L
t

)]
if 0 ≤ t ≤ L

V
0 otherwise

(62)

where A and L are the bump height and bump length, respec-
tively and V is the vehicle forward velocity. The following
particular values [39]

A = 0.1 m, L = 5 m, V = 12.5 m/s (63)
a

b

c

d

Fig. 3 Time response to an isolated bump disturbance

a Sprung mass acceleration
b Suspension deflection
c Tyre deflection
d Control effort, corresponding to the output-feedback controller I (red dash-dotted line), velocity-feedback controller II (green solid line), state-feedback

(blue dashed line) and uncontrolled (black dotted line) configurations



have been taken to conduct the numerical simulations. For 
the control configurations (i)–(iv), the graphics correspond-
ing to the sprung mass acceleration z̈s(t) and the control 
efforts u(t) are respectively presented in Figs. 3a and d, 
with the same colours and line styles used in the frequency 
plots. A quick inspection of these figures makes apparent 
the ability of the active controllers to mitigate the sprung 
mass acceleration response. It can also be clearly appreci-
ated that the proposed output-feedback controllers achieve 
similar levels of response mitigation as the state-feedback 
controller, with similar levels of control effort. The graphics 
in Figs. 3b and c demonstrate the effectiveness of the active 
controllers in mitigating the suspension deflection response 
and the tyre deflection response. In this case, slightly larger 
peak values are produced by the active controllers during the 
initial 0.3 s when compared with the uncontrolled configura-
tion. These large initial amplitudes, however, are effectively 
reduced by the active controllers.

Remark 5: As indicated in Remark 2, the state-feedback 
controller (40) has been intendedly designed to match the 
behaviour of the static output-feedback controller presented 
in [19], which uses the observed outputs zs(t) − zu(t), żs(t) 
as feedback information and has been computed using a 
genetic algorithm approach. Consequently, the performances 
of the static output-feedback controller presented in [19] and 
the proposed output-feedback controller I are very similar. 
However, it should be highlighted that the design methodol-
ogy proposed in Section 2 has made it possible to compute 
the output-feedback controller I by solving two LMI opti-
misation problems. Moreover, a second output-feedback 
controller that only uses żs(t) as feedback information has 
also been obtained by solving a single LMI optimisation 
problem. In both cases, after obtaining a satisfactory state-
feedback controller, no additional parameter values need to 
be set to implement the design procedure.

5 Conclusions and future directions

In this work, a novel strategy to design static output-
feedback controllers for vehicle suspension systems has 
been presented. To illustrate the main elements of the new 
approach, two kinds of static output-feedback H∞ controllers 
have been designed for a simplified quarter-car suspension 
system. Numerical simulations show that the proposed static 
output-feedback H∞ controllers exhibit a good behaviour in 
terms of both frequency and time responses, when com-
pared with the corresponding optimal state-feedback H∞ 
controller. In fact, from the point of view of H∞ con-
troller design, the values of the H∞-norms show that the 
proposed static output-feedback controllers are practically 
optimal. The positive results obtained for this simplified 
problem clearly indicate that further research effort should 
be invested in applying the new methodology to more com-
plex scenarios, involving more complete vehicle models 
such as half-car or full-car models, or more sophisticated 
control strategies such as non-fragile control or limited fre-
quency designs. A detailed study of discrete-time controllers 
would also be convenient.
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