
Real-Time Prognosis of Crack Growth Evolution
Using Sequential Monte Carlo Methods

and Statistical Model Parameters
Matteo Corbetta, Claudio Sbarufatti, Andrea Manes, and Marco Giglio

ACRONYMS AND ABBREVIATIONS:

ANN Artificial Neural Network
DSS Dynamic State-Space
EOP End of Prediction
FCG Fatigue Crack Growth
FEM Finite Element Model
MCMC Markov chain Monte Carlo
MH Metropolis-Hastings
MLP Multi-Layer Perceptron
PDF Probability Density Function
PHM Prognostic Health Management
RL Residual Lifetime
SDSS Stochastic Dynamic State-Space
SHM Structural Health Monitoring
SIF Stress Intensity Factor
SIR Sequential Importance Resampling
SIS Sequential Importance Sampling

Manuscript received February 20, 2014; revised May 19, 2014, July 29,
2014, September 09, 2014, and October 03, 2014; accepted October 28, 2014.
Date of publication November 11, 2014; date of current version June 01, 2015.
Associate Editor: E. Zio.
The authors are with Politecnico di Milano, Dipartimento di Mec-

canica, Milan 20156, Italy (e-mail: matteo.corbetta@polimi.it; claudio.
sbarufatti@polimi.it; andrea.manes@polimi.it; marco.giglio@polimi.it).

SMC Sequential Monte Carlo
TTF Time To Failure

NOTATION:
probability density function
conditioned probability density function
conditioned proposal density function
-normal probability density function
likelihood
acceptance probability
probability
conditioned probability
expected value
-mean
variance
Dirac delta function
system state at the k-th time step
-th sample of the system state (“particle”)
measure (or observation) at the k-th time step
measure sequence up to the k-th time step
weight of the -th sample at the -th time step
artificial noise affecting the evolution equation
variance of the random process
noise affecting the measurement system
variance of the random noise
vector of model parameters
evolution function of the system state
observation function
update frequency parameter
memory parameter
Matrix of the last H samples of the Markov
chain
scaling parameter of the adaptive proposal
algorithm
average bias index
actual residual lifetime of the system
estimated residual lifetime of the system



I. INTRODUCTION

N OWADAYS, the necessity of advanced maintenance
strategies for critical systems is a concept generally

accepted by the scientific and industrial community. The safety
requirements are becoming higher as are the maintenance costs
of large structures (bridges, high-rise buildings), and flight
structures (airframes and aeronautical components). Obviously,
maintenance optimization requires an in-depth knowledge of
the system health, possibly with information related to the
Residual Lifetime (RL) of the system. This concept goes well
with the current developments on Structural Health Monitoring
(SHM) and Prognostic Health Management (PHM) systems.
SHM focuses on identification, localization, and quantification
of damages [1], [2], while PHM focuses on the estimation
of the Time To Failure (TTF), based on the current health
condition, reliability prediction [3], and probabilistic state
evolution [4]. Focusing on PHM, Fatigue Crack Growth (FCG)
is one of the most widespread degradation problems affecting
metallic structures, and much published work is dedicated to
FCG prediction ([5], [6], and [7] are just a few examples).
In particular, structural engineers are familiar with the phe-
nomenological aspects of FCG. Recent advances on Sequential
Monte Carlo (SMC) methods, specifically particle filtering
algorithms, allowed coupling the mathematical FCG model
(Paris-Erdogan model [8], NASGRO model [9], etc.) with the
multiple uncertainties coming from measurement systems, and
the intrinsic uncertainty of the phenomenon ([10], [11], and
[12]).
Particle filter can be applied to nonlinear system evolu-

tions described by non-Gaussian probability density functions
(PDFs) [13]. Moreover, it is particularly suitable for real-time
applications because of its sequential updating of the system
state estimation. From a practical point of view, the main
drawback of the method is the uncertainty related to the model
parameters.1 As recently presented by Kantas et al. [14], the
knowledge of the actual model parameters can potentially be
improved during the particle filtering operation (sometimes
producing biased estimation depending on the adopted tech-
nique). The identification of model parameters is a crucial step
for the lifetime prediction of structures subjected to FCG. As a
matter of fact, the variability of the phenomenon markedly af-
fects the TTF estimation. The deterministic definition of model
parameters within particle filters can provide good results in
terms of state estimation (if the artificial noise is able to filter
the measure uncertainty), but it can make the life prediction
useless because the estimation of the future evolution will
be wrong if the expected parameters are different from the
actual ones [4], [15], [16]. For this reason, a Sequential Monte
Carlo sampling framework considering the statistical definition
of FCG parameters is presented in this paper. The Dynamic
State-Space (DSS) model, which is at the basis of the algorithm,
becomes a Stochastic Dynamic State-Space (SDSS) model,
and it is recursively updated using a Markov chain Monte
Carlo (MCMC) subroutine. The methodology is first tested on
simulated crack propagations, and then on real-portions of a
helicopter fuselage, introducing an automatic estimation of the

1i.e., overlooking the mathematical problems related to the sampling impov-
erishment etc. [13].

Stress Intensity Factor (SIF) acting on the crack tips by means
of dedicated Artificial Neural Networks (ANN) trained with
Finite Element (FE) data. The proposed algorithm is compared
with a standard particle filter formulation for FCG, highlighting
the differences in terms of residual life prediction. The appli-
cation of a modified particle filter for real-time prognosis on
several portions of helicopter fuselage is the main novelty of
the work. As a matter of fact, the majority of particle filtering
literature for lifetime prediction makes use of FCG simulations
or small specimens in laboratory environments to prove the
prognostic capabilities. If more complex structures are of
interest, the amount of uncertainties related to FCG prediction
explodes, and the damage evolution can be extremely different
from the one that is actually predicted based on material
properties available in literature. In this context, the proposed
algorithm is applied several times, proving the robustness of the
method and its validity for the prognosis of realistic structures.
A performance index is used to evaluate the stability of the
particle filter with adaptation of model parameters, according
to the literature of prognostic performance. This performance
index is applied on both simulated and experimental data.
The paper is structured as follows. Section II provides an

overview of SMC sampling (i.e., particle filter), and MCMC
algorithms. In Section III, the stochastic definition of the DSS
model and the updating of the model parameters are shown. In
Section IV, the results of the simulated crack growth case are
presented. Section V is dedicated to the validation of the method
with experimental FCG test data, showing the structure under
discussion, the test-rig, the ANN for SIF range estimation, and
the global prognostic performance. In the last section, the re-
sults are discussed.

II. THEORETICAL BACKGROUND

The literature on Monte Carlo Sampling, Bayesian filters,
and related techniques is very extensive; therefore, this section
only provides a brief summary of the mathematical tools imple-
mented in the prognostic unit. These algorithms are particle fil-
tering methods (named also Sequential Monte Carlo Sampling,
Sequential Importance Sampling (SIS), or Sequential Impor-
tance Resampling (SIR) algorithms), and Metropolis-Hastings
(MH) algorithms with adaptive proposal distribution. The inter-
ested reader can refer to [13], [17], [18], and references therein
for in-depth information on each subject.

A. Summary of Particle Filter

Particle filter is a recursive Bayesian filter method based on
Monte Carlo simulation. It can be considered as a generalization
of the Kalman filter using Monte Carlo sampling to estimate the
system state in the presence of highly nonlinear dynamics and
non-Gaussian PDFs. The two equations needed to implement a
particle filter are the evolution (1), and the observation equation
linking the measures with the system state (2):

(1)
(2)

A series of possible trajectories or particles defined by rep-
resent the stochastic system evolution, indicating with the su-



perscript the general i-th particle. The probabilities associ-
ated to the trajectories depend on the model describing the phe-
nomenon, and the available observations on the system itself.
Supposing to be at time step , the particle (properly
weighted using the likelihood of the measures and the prob-
abilities related to the model of the system) is representative of
the conditioned probability of the system state given the series
of available measures . The weight of each trajec-
tory is defined in (3), supposing the simplest weight defini-
tion often referred to as bootstrap approximation.

(3)

This weight definition implies an importance density function
equal to the transition density describing the system evolution.
The term represents the likelihood of the measure
given the value of the particle at the general k-th step. The ap-
proximation of the posterior distribution is now available, based
on the couples , indicating with the number of
particles (4).

(4)

The term indicates a normalized weight such that
. The transition density (5) that is directly related to (1) drives
the particle evolution in time from to .

(5)

Once the samples and the measure are available, a subse-
quent step of the algorithm can be computed by means of (3),
(4), and (5). The estimation of the RL starts from the posterior
distribution of the state . Starting from (4), the evo-
lution of the system up to a pre-defined or critical state can be
computed considering all the possible evolutions, as highlighted
in [10].

B. Metropolis-Hastings Algorithm

MCMC methods are widespread algorithms able to approx-
imate complex, non-Gaussian, and multivariate posterior dis-
tributions [19]. Among various MCMC methods, the MH al-
gorithm is one of the most popular algorithms because of its
simplicity. The application of the MH algorithm in the field of
parameter estimation delivers, as a result, a series of samples
generated by the posterior PDF of the parameters, given a se-
ries of observations of quantities directly related to the param-
eters themselves. Moreover, the algorithm is able to estimate
the noise associated to the observations. The algorithm finds
general acceptance in this field, proven by the extensive liter-
ature on the topic. The MH algorithm employed hereafter has
recently been further applied to crack growth parameter identifi-
cation in the presence of variable-amplitude loading conditions
[20]. Roughly speaking, it is a random walk based on a tran-
sition kernel linking two subsequent samples. This transition
kernel is a PDF properly created to satisfy the reversibility and
the ergodicity of the chain to guarantee an unbiased estimation
of the posterior PDF of the parameters defined . This
unbiased estimation of the posterior PDF is allowed, satisfying

TABLE I
MH ALGORITHM WITH ADAPTIVE PROPOSAL

the detailed balance condition [20]. A correct transition kernel
can be built using a proposal distribution called , and
an acceptance probability . The latter depends on
the likelihood of the sample given the measures, on the pro-
posal distribution, and on the prior distribution (if it exists). The
term governs the acceptance or the rejection of the sample
generated by the random walk. The definition of the likelihood
strongly depends on the random processes affecting the obser-
vations. A Gaussian likelihood is assumed here, considering a
measurement system affected by Gaussian random noise. The
likelihood of the j-th sample with respect to the observation
vector can be computed according to Table I. Because the ac-
ceptance of the sample depends on the ratio of two likelihoods,
the proportionality can be changed into an equality for the algo-
rithm implementation. The term in the likelihood function
is the variance of the random noise associated to the observa-
tions. This value is calculated through the MH algorithm itself.
A sample of the random noise variance is extracted from a pro-
posal distribution with the same procedure adopted for the pa-
rameter vector . As a consequence, the acceptance of the pa-
rameter samples depends on the sample of , too. At the end of
the algorithm, a series of samples coming from the distribution
of the noise variance are available, and they are representative
of the noise affecting the measurement system and the damage
evolution process.
One of the main challenges of the algorithm is the tuning

of the variance associated to the proposal distribution . Intu-
itively, the proposal distribution should be able to draw reason-
able samples according to the initially known observations. If
the proposal variance is too large, the number of accepted sam-
ples will be too low, and the convergence of the chain cannot
be guaranteed. On the other hand, if this variance is too small,
the random walk will produce jumps that are too small, and
the chain will require too many samples to reach the conver-
gence. The use of an adaptive proposal distribution resolves the
problem, and a number of papers discuss the problem of adap-
tive proposal distributions to maximize the acceptance ratio and
the convergence of the MCMC algorithms [21]–[26].



The method presented in [25] is used hereafter, due to its sim-
plicity and effectiveness proven several times [4], [20]. It is able 
to recursively update the variance of the proposal distribution 
using the residuals of the chain, introducing two additional con-
stant parameters U, and H called the update frequency, and the
memory parameters, respectively. The first parameter drives the 
interval between two updates of the proposal variance, and the 
second parameter drives the number of samples used to evaluate 
the residuals and the covariance matrix of the proposal. In spite 
of the slight bias introduced with this method, the authors in [25] 
state that the error is negligible in the majority of the cases, and 
the chain remains ergodic [26]. Moreover, the thinning proce-
dure at the end of the algorithm reduces the correlation of the 
samples [27].
A pseudo-code of the Metropolis-Hastings algorithm with an 

adaptive proposal is presented hereafter in Table I. The scaling
parameter is defined as , where is the number of
parameters to be estimated [25], [28], and is the prior
probability associated to the sample . It should be noted that
thematrix contains also the samples of themeasurement noise
in addition to the model parameters. The MH algorithm is used
together with the particle filter method in Section III to build the
prognostic system.

III. STOCHASTIC DEFINITION, AND UPDATING
OF A DYNAMIC STATE-SPACE MODEL

Consider a system state ; it evolves in time, observing the
mathematical law . This law depends on the parameters

. Usually, the model links the state with
the subsequent using deterministic model parameters and an
artificial random noise needed to produce a stochastic process,
thus generating the Dynamic State-Space model. However, the
Stochastic DSS (SDSS)model proposed in [15] is used hereafter
to design the prognostic system.

A. Statistical Definition of Model Parameters
The definition of empirical constants is commonly affected

by errors from the measurement systems, shortage of available
data, uncertainties related to the regression procedure, or the
intrinsic uncertainty of the described phenomenon. Therefore,
many statistical descriptions of model parameters are available
in the literature for a wide range of engineering problems.
It is possible to use the parameter PDFs to produce a swarm

of possible state evolutions, in which every state evolves ac-
cording to a particular sample of the parameters. In this con-
text, each parameter is described by a
PDF , and a covariance term defines
the correlation between the i-th and j-th parameters. The Monte
Carlo Sampling allows the extraction of random values of
from , and assigns these samples to the particles
to generate the SDSS model. The initial weights are set equal to

supposing that a prior distribution of the parameters is
available. This choice is compatible with the pdf of
of the crack growthmodel used later. In practice, the crack prop-
agation problem is well-studied, and a distribution for the two
parameters is available in literature for some ma-
terials (e.g., the Aluminum alloy Al2024 used hereafter [29]).
Thus, it is reasonable to set the initial weight proportional to

the probability of the parameter samples assigned to each par-
ticle. This initial assignment is done at each resampling stage,
according with the parameter sample .
The MH algorithm presented in Section II.B updates the PDF

of the parameters during the system operation, producing the
posterior distributions of the parameters, given the measures.
The updating is carried out according to the resampling strategy
adopted for the particle filter algorithm (i.e., every time a re-
sampling technique regenerates the particles). If a correlation
among the parameters is present, the procedure remains
the same, provided that a multidimensional proposal PDF with
correlation parameters is employed in the algorithm.

B. Updating via Metropolis-Hastings Algorithm
The updating of model parameters is based on the mea-

sures available from the measurement system. In this way, the
knowledge of the model parameters increases in time, and im-
proves the DSS model of the phenomenon from the prediction
capability viewpoint. First, the parameter distributions become
thinner, focusing on the correct parameter for that particular
evolution of the system (reducing the inter-specimen variability
as defined in [30]). Second, the estimation of the noise of the
measures allows tuning the random noise inserted on the DSS
model, optimizing the replicated intra-specimen variability.
The MH algorithm works together with the particle filter

method in the same prognostic unit, and is activated when the
resampling step of the particle filter algorithm is required. As
a matter of fact, two resampling strategies can be adopted:
the Sequential Importance Sampling (SIS) algorithm, and the
Sequential Importance Resampling (SIR) algorithm. The SIS
algorithm requires resampling only when the number of effec-
tive particles becomes unable to reproduce an effective PDF
of the system state. An estimation of the number of effective
particles is shown in (6) according to [13], indicating with

the normalized weight of the i-th particle at the general
k-th time step. If drops below a predetermined threshold,
the resampling procedure is performed, and the MH produces
new parameter PDFs and a new variance of the noise for the
SDSS model. The SIR algorithm works as the SIS; nonetheless,
resampling is performed every time a new value is received
from the measurement system. In this case, the MH algorithm
estimates new PDFs for the model parameters and a new
variance of the noise at each discrete time-step of the system
operation. Table II shows the pseudo-code of the particle
filter combined with the MH algorithm. This method allows
obtaining an unbiased estimation of to the detriment
of high computational costs.

(6)

IV. PERFORMANCE ANALYSIS ON SIMULATED CASE
The prognostic unit shown in Section III is applied to a sim-

ulated fatigue crack propagation. The simple mechanical struc-
ture is a simulated thin aluminum plate large enough to avoid
any influence of the boundaries over the stress state at the crack
tip. The phenomenon of crack propagation is described by the
NASGRO (7) from [9] that provides the FCG rate, together with
the assumption of linear damage accumulation (8). NASGRO



TABLE II
PARTICLE FILTER WITH STOCHASTIC DSS MODEL

law describes the whole FCG rate from the threshold regime
up to the unstable crack propagation region, while the linear
damage accumulation function provides the crack length at dif-
ferent discrete time steps. This model constitutes the core of the
Dynamic State-Space model of the particle filter.

(7)

(8)

Some variables in (7) are easily recognizable as the Stress
Intensity Factor affecting the crack tip, the two empirical
parameters and appearing also in the well-known Paris-Er-
dogan model [8], and the load ratio defined as the minimum
over maximum applied load. An explanation of all the entities
within the NASGRO model is beyond the aim of the paper, and
the interested readers can refer to [9] for further information
about the NASGRO equation. Equation (8) defines the crack
length at the general k-th time step assuming that the load cycle
increment is relatively small . The noise as-
sociated to the DSS model is defined in Section IV.D according
to different kinds of simulations. As explained above, the DSS
model in (7) becomes a Stochastic DSS model considering a
statistical definition of the model parameters. is the vector of
the model parameters containing the empirical constants ,
(governing the crack growth). A series of samples is extracted
from the probability density functions of the parameters in
(9), and they are used to propagate the particles describing the
process (10).

(9)
(10)

represents a random sample from ,
and it is randomly associated to a particle representing the crack
length . The parameter sample must remain the same for the
whole particle life. Once resampling is required, the MH algo-
rithm estimates the new posterior distributions, and the proce-
dure can be repeated, associating a new parameter sample to the
new particle. The random noise associated to the process is de-
fined according to a lognormal distribution (because the crack
can only increase over time).

Fig. 1. Simulated thin aluminum plate with a central crack.

A. Specimen
The simulated specimen is shown in Fig. 1. The sinusoidal

fatigue load is responsible for crack propagation, thus the
length of the crack increases over time. The load has a peak
value of 50 MPa, and a minimum value of 5 MPa (load ratio

). The starting crack has a 12 mm length,
and failure is considered upon reaching a 120 mm long crack.

B. Simulated Measurement System
The observations on the simulated plate are the measures

of the crack length itself. These measures are normally dis-
tributed with a standard deviation of 1.5 mm heuristically se-
lected. Moreover, the value remains constant during the entire
crack evolution to satisfy the hypothesis of the MH algorithm.
z being the variable describing the measures, and their stan-
dard deviation, (2) assumes the form in (11),2 where the symbol

states a normal distribution with a mean , and a vari-
ance .

(11)

C. Analytical Formulation of the Stress Intensity Factor
The stress field affecting the crack tip depends on the crack

length itself. Then, the DSS model in (7) requires the relation-
ship between the Stress Intensity Factor range and the crack
length defined by . The SIF assumes a closed form solution
for simple mechanical systems like the thin plate used in this
case (12). The crack shape function F is negligible for a large
plate with a central crack subjected to fatigue load normal to
the crack plane [31]. The SIF range is easily evaluable as the
difference between the SIFs at maximum and minimum applied
stress within the same load cycle.

(12)

D. Algorithm Performance
To evaluate the capabilities of the prognostic unit defined

above, two different simulations are performed: without con-
sidering a random noise affecting the simulated crack growth
(first simulation), and with considering a random noise (second

2If the observations are the direct measures of the crack length, where the only
source of uncertainty of the measurement system is represented by the random
noise , then .



CORBETTA et al.: REAL-TIME PROGNOSIS OF CRACK GROWTH EVOLUTION

simulation). The first simulation is required to understand the
algorithm performance. As a matter of fact, if the random noise
is added to the simulated crack propagation , the MH al-
gorithm is unable to distinguish two sources of uncertainties:
the process noise, and the observation noise. Therefore, the MH
algorithm estimates parameters able to fit the data correctly,
but being unable to associate the correct variance of the mea-
surement noise, it induces a biased estimation of the FCG pa-
rameters. According to this concept, the performances of the
system are assessed as follows. The first simulation is performed
without the noise affecting the simulated crack growth. The ca-
pability of the algorithm in terms of parameter and Residual
Lifetime estimation are evaluated. After that, the algorithm is
tested considering a random noise affecting the process different
from zero. This condition is more realistic in view of applica-
tions in real environments, where the real crack evolutions ob-
viously do not follow the exact mathematical model because
of the different sources of uncertainties. In this type of simu-
lation, the MH algorithm produces a biased estimation of the
noise affecting the measures as well as of the parameters de-
scribing the crack growth process due to its inability to account
for the random noise of the process. However, the developed
prognostic unit remains capable of predicting the Residual Life-
time if the data from the (simulated) measurement systems are
properly fit. Both simulation results are compared with the re-
sults of the particle filter built with the deterministic DSS model
applied to the same crack simulations. The differences between
the two algorithms are discussed at the end of each section in
terms of RL prediction capability.
1) Simulation With Null Process Noise: As explained above,

the linear damage accumulation model without random noise
(13) drives the simulated crack growth. Obviously, the process
noise is always used in the particle filter formulation (14)
to correctly approximate the posterior probability of the state
given the observations.3 The process noise adopted in particle
filtering, and the measurement uncertainty are reported in (16),
and (17) respectively. Fig. 2 shows the simulated crack with re-
spect to the measures obtained through (15). A crack growth
model (13) produces a theoretic crack growth, to appreciate
the parameter estimation capabilities of the MH algorithm. The
NASGRO parameters used to simulate the crack growth are
different from the expected values for the aluminum alloy Al
2024-T6. In particular, ( ),
instead of the averages of the alloy Al 2024-T6; that is,

( ), and . The distributions
associated to these parameters come from Virkler's data [29],
and have been regularly used for FCG analyses of the Al 2024
alloys (see for instance [4], [15], and references therein). Be-
cause Virkler's data are related to the alloyAl 2024-T3, while the
alloy under discussion is Al 2024-T6, the variance of the param-
eters is modified, keeping the Coefficient of Variation (CoV),
defined as , constant. The distributions of the two
parameters become , and

, for the logarithm of , and , respectively.
Moreover, the two parameters are highly correlated, as clearly
demonstrated in statistical analyses of FCG data. The correla-

3For the sake of clarity, we stress the fact that no process noise is introduced
in the simulated crack propagation that has to be prognosticated, while the noise
in (14) and (16) is used to generate the SDSS.

Fig. 2. Crack growth simulation according to null process noise and measures
with non-zero random noise.

tion coefficient is close to ( ) [30], thus
the covariance becomes . The noise used to
create the SDSS implemented in the particle filter is ,
while the noise affecting the measures is set to .

(13)

(14)

(15)

(16)

(17)

The incongruity among the expected parameters , ,
and , with respect to the parameters used to simulate the
crack, initially produces incorrect Residual Lifetime predictions
that are subsequently corrected during the crack propagation
due to the estimation performed by the MCMC algorithm. Be-
cause the particle filter with a deterministic DSSmodel is unable
to take into account these discrepancies, better performance is
expected from the proposed prognostic unit with respect to the
standard formulation of the algorithm. To produce an unbiased
swarm of crack evolutions via the particle filter method, the log-
normal distribution in (16) must have a unitary expected value
. The noise parameters are more easily defined by means of

the relationship between the normal and the lognormal distribu-
tion. Let us consider a random variable such
that . Because the noise multiplies the FCG rate (13),
(14), the expected value of must be one to produce an unbiased
estimation of the crack growth evolution. This unitary mean of
the lognormal process is guaranteed if (18) is satisfied. Con-
sequently, once the variance of the Gaussian random process
has been selected, the mean of the Gaussian random process is
driven by the formulation in (18).
The estimation of the parameters performed by the MH algo-

rithm is presented afterwards (Fig. 3). Fig. 3(a) shows the MH
output when included in a SIS algorithm, with resampling acti-
vated when the number of particles with non-zero weights drops
below 70% of the total (equal to 1000). Every time resampling



Fig. 3. Parameter estimation using (a) SIS, and (b) SIR.

is performed, the MH algorithm estimates a new PDF of the
quantities of interest. Fig. 3(b) shows the case of SIR in which
the MH algorithm is run every time a new measure becomes
available.

(18)

The algorithm requires a relatively large number of measures
to assess the discrepancies between the expected values of the
parameters and the real one.
The RL prediction of the prognostic algorithm is shown in

Fig. 4, in which the prediction of the RL converges to the cor-
rect number of residual load cycles during the crack evolution
using both the SIS and the SIR algorithms. The bar on the right
indicates a normalized PDF with its unitary peak. On first ap-
proximation, the high computational time required from the SIR
algorithm seems excessive. However, the results are compa-
rable in these simulations, where a high number of measures
are available (simulating, for instance, an automatic measure-
ment system). The SIR algorithm is considerably more accurate
if only a few observations of the crack are available, as is the
case for manual measurement systems.
Fig. 5 highlights the poor performances of the standard par-

ticle filter. As expected, the inability to account for the different
model parameters produces incorrect RL predictions, both for
the SIS and the SIR algorithms. The better accuracy of the re-
sults of the suggested algorithm are proven by the absolute error
between the expected and the target Residual Lifetimes in Fig. 6.

Fig. 4. RL prediction via (a) SIS, and (b) SIR algorithms with zero process
noise on the target crack growth.

The algorithms start from the same error due to the discrep-
ancy between the actual parameters of the simulation and the ex-
pected parameters for the Al 2024-T6; however, the prognostic
system composed of the particle filter method and the MH algo-
rithm recognizes the bias affecting the model parameters, and
converges to the correct prediction. The standard particle filter
remains unable to predict the correct RL for the entire life of the
plate.
The robustness of the algorithm should be proved, intro-

ducing additional performance indices rather than the simple
error between the actual RL and the estimation, according to the
literature on prognostic performance [32]. Here, the average
bias B is selected as a performance index for the proposed
algorithm. According to [32], the average bias is calculated
through (19).

(19)

where is the time index at which the algorithm starts, and
represents the -th estimation of the RL. The average bias of a
perfect prediction approaches 0; the higher the error of the pre-
diction, the higher the value of B (towards or ). Ac-
cording to (19), a RL prediction with equal alternate errors with
respect to the target is considered good, as the system is able to
describe the target evolution without biases (for this reason, (19)
does not consider the absolute value of the error at each step).



Fig. 5. RL prediction of a standard particle filter using (a) SIS, and (b) SIR
algorithms with zero process noise.

The average biases related to the crack growth simulations are
presented in Table III. As visible, the proposed algorithm with
adaptation of the model parameters has a considerable reduction
of the B index with respect to the standard particle filter.
Of course, this preliminary analysis of the algorithm perfor-

mances is not exhaustive, and further investigation on other per-
formance indices is mandatory. However, it could be considered
a good starting point to highlight the importance of parameter
adaptation in the framework of FCG, although the model pa-
rameters are well studied, and a large number of propagation
models are available in literature.
2) Simulation With Non-Zero Process Noise: This paragraph

highlights the performance of the algorithm in the presence
of a non-zero process noise in the simulated crack evolution.
According to the formulation of the previous paragraph, the
crack simulation accounts for a process noise
which alters the crack growth simulation in (13) that has to
be prognosticated. Two different random noises affect the
process: the process noise u modifying the crack simulation
that should be included in the random noise v defined in the
particle filtering algorithm, and the noise affecting the mea-
sures that should be estimated by the MH algorithm during
the resampling step.
Equation (20), together with (14) through (17) governs the

crack growth simulation and the RL prediction. Fig. 7 shows

Fig. 6. Error between the target and the expected RLs; comparison between
standard particle filter and proposed algorithm in case of null process noise for
(a) the SIS, and (b) the SIR algorithms.

TABLE III
AVERAGE BIAS B.

the simulation of the crack according to (20), and the measures
obtained through (15).

(20)

As visible, the simplified crack evolution obtained by means
of the linear damage accumulation model is modified by
random values driven by the process noise characteristics. This
procedure approaches the real case in which the crack growth
evolution is clearly altered by several sources of uncertainties.
Fig. 8 shows the parameter estimation of this case using a SIS
algorithm (a), and a SIR algorithm (b). As clearly visible, the
MH produces biased estimations of the parameters, particularly
in the case of the SIS technique. The bias slightly decreases
using the SIR algorithm; however, the standard deviation
associated to the measure clearly differs from the correct



Fig. 7. Crack propagation simulation with non-zero process noise.

Fig. 8. Parameter estimation using (a) SIS, and (b) SIR technique.

deviation, as confirmed by several simulations each obtaining
very similar results. The reason behind the incorrect parameter
estimation is the inability of the MH algorithm to account for
two sources of uncertainty: the process, and the measurement
noises. The Markov chain associates to the crack measures
a combination of noise from the actual noise of the measures
and the process noise u.
Nonetheless, a quantitative analysis of the estimated noise

should be made to prove the incapacity of the method to pre-
dict the correct noise. Despite the bias in the parameter esti-
mation provided by the MH method, the RL predictions asso-

Fig. 9. RL prediction using (a) SIS, and (b) SIR algorithms with a non-zero
process noise on the target crack growth.

ciated to this kind of simulations are accurate, as highlighted
in Fig. 9.
The RL predictions of this case are comparable with the pre-

dictions of the previous case made without the process noise
in the crack growth simulation. The RL estimation capabilities
are preserved due to the particle filter formulation, containing
the intrinsic uncertainties of the process , and the uncertainties
of the measures . According to these results, the prognostic
system appears to be able to estimate the correct Residual Life-
time of a structure subjected to FCG, even when the estimation
of the underlying model parameters and the noise associated to
the measures are affected by some bias.
The standard particle filter, in which the model parameters re-

main constants, continues to produce incorrect RL estimations
(Fig. 10). The comparison of the results points out the higher
performance of the proposed system, confirmed by the absolute
error affecting the lifetime prediction shown in Fig. 11. As vis-
ible, the suggested algorithm quickly converges to the correct
RL.
The average bias B introduced in the previous section as

a performance index of the prognostic algorithm is visible in
Table IV. These results verify the outcome of the previous
simulation without the process noise on the target crack propa-
gation. Therefore, the proposed algorithm is tested hereafter on
real portions of aeronautical structures to validate the method.



Fig. 10. RL prediction of a standard particle filter using (a) SIS, and (b) SIR
algorithms with non-zero process noise on the target crack growth.

V. EXTENSION TO REAL APPLICATIONS

In this section, the prognostic unit developed via particle fil-
tering and MCMC algorithms is used to monitor real Fatigue
Crack Growth within a real helicopter panel structure subjected
to sinusoidal fatigue load in a laboratory environment.

A. Specimen and Test Rig
A helicopter panel with a central artificially induced crack

is used as a test structure. The panel skin is made of the same
aluminum alloy as previously selected for the simulated plate
(Al 2024-T6), while the four stringers used to stiffen the struc-
ture are made of Al 7075. Thus, the parameter PDFs assume
the same shape and values of Section IV.D. The panel has been
rigidly grounded to its lower end, and is connected to the ac-
tuator through its upper end (Fig. 12). The crack is artificially
initiated in the center of the skin to guarantee the repeatability
of the test. The initial length of the notch is 16 mm. A sinu-
soidal load is applied in the vertical direction with a maximum
peak of 35 kN, and a load ratio . More details about the
experimental set up are reported in [1], and [33]. The relevant
features of the test are reported in Table V. Four different tests
have been performed to evaluate the robustness, and the relia-
bility of the prognostic system. The sensors applied on the panel
visible in Fig. 8 are Fiber Bragg Gratings for strain field mea-
surements. Though the data acquired from these sensors have
not been directly adopted in the prognostic framework, strain

Fig. 11. Error between the target RL and the expected RL; comparison between
standard particle filter and proposed algorithm in case of non-zero process noise
for(a) the SIS, and (b) the SIR algorithms.

TABLE IV
AVERAGE BIAS B

measures have been used to validate the numerical model [33]
introduced in Section V.C below, which is used to simulate SIFs
as a function of crack length and position. The experimental
crack propagation obtained during the four FCG tests are shown
in Fig. 13. The crack length data have been used as an input to
the prognostic unit to monitor the crack, and predict the RL of
the panels. Also, in this case the critical crack length is assumed
to be 120 mm, which is less than the distance between two sub-
sequent stringers.

B. Measurement System

The crackmeasures have been obtained bymeans of a manual
caliper. As just explained above, these measures constitute the
input of the prognostic unit, that is the values . These mea-
sures contain the uncertainties represented by the intrinsic un-
certainty of the caliper plus the uncertainty related to the human



Fig. 12. Complete test rig. The vertical arrow indicates the applied load, while
the zoom shows the notch used to artificially-induce crack propagation.

Fig. 13. Experimental crack propagations obtained from four different heli-
copter panels.

TABLE V
PARAMETERS OF CRACK PROPAGATION TESTS

error during the measure reading. Every time a measure is pro-
vided to the algorithm, a RL prediction is performed. In this con-
text, the measurement system is described by a -normal PDF
with a standard deviation of 3 mm within the particle filter unit.
The value remains the same for the whole crack evolution up to
the critical crack length. This simplifying hypothesis is required
by the MH algorithm to correctly evaluate the variance associ-
ated to the measures; in fact, the common MCMC algorithms
are unable to account for time-varying noise variance.

C. Numerical Estimation

This section focuses on the problem of estimating the SIFs
at the crack tips. Most of the studies reported in the literature
about FCG prognosis methodologies are applied to simplified
(though sometimes realistic) structures. In realistic scenarios,
the analytical closed form solution for the SIF calculation is
not always available. Equation (11) was used before to provide
an indication about the SIFs for an infinite thin plate subject
to FCG. If complex structures are considered, as in the case
under examination, numerical models can be adopted to fit the
complex non-linear function that relates the damage parameters
(crack length and position) and the load to the SIFs. A database
of SIFs relative to various crack lengths over the considered
structure is provided here as an input during the training of an
ANN structure. The description of the Finite Element model
used to calculate SIFs, the database of numerical SIFs, and the
ANN structure used to estimate SIF parameters as a function of
crack position and length are reported in detail below.
1) Finite Element Model: The commercial software

ABAQUS 6.9 was used to model the real structure behavior,
and to calculate the strain distribution as well as the SIFs at the
crack tip. The FEM is shown in Fig. 14. Structural components
have been modeled with quadratic shell elements. Three-axes
springs have been used to model all the riveted connections
among the skin, the stringers, and the reinforcing elements.
To provide a realistic simulation of the experiments, also the
connection elements to the ground and to the actuator have
been modeled. Load is applied vertically, and the upper region
of the panel is designed to transfer this load to both the stringers
and the skin, reproducing the real structure behavior. The
model has been experimentally verified in the area shown in
Fig. 14(b), where cracks have been simulated by introducing
a discontinuity between adjacent elements along the direction
perpendicular to the stringers. Crack direction has been kept
constant and perpendicular to the maximum principal direc-
tion, thus assuming mode I propagation. An array of singular
elements has been used to more accurately estimate the stress
field singularity that is present at the crack tips. Two SIFs have
been calculated for each simulated damage case, producing a
database dependent on the damage position and the length used
in the prognosis evaluation. The interested reader can refer to
[1] and [33] for a detailed description of the verification and
validation procedure of the FEM, both in damaged and healthy
conditions.
2) Database Generation: The same database of damages

previously used by the authors in [1] to perform damage diag-
nosis based on strain field is used here for the prognosis based
on numerical SIFs. The numerical results are used in this study
to approximate the function that relates the crack parameters
(center position and length) and the load to the SIFs at its tips.
In particular, the database contains a total of 1700 damage cases.
Crack lengths from 20 mm to 100 mm, with a 5 mm step, have
been simulated. 100 crack center positions have been consid-
ered at each crack length level, randomly locating the crack
center within the validated region in Fig. 14(b). The two SIFs
corresponding to the two crack tips used for the prognosis of
the crack evolution have been numerically calculated for each
damage case while a static 35 kN load has been applied verti-
cally (corresponding to the peak of the sinusoidal fatigue load),



Fig. 14. FE model for SIF calculation: (a) FE model details to reproduce the
entire test rig, and (b) simulated strain field distribution (vertical direction) cor-
responding to a crack in the center of the panel.

as shown in Fig. 14(a). Nevertheless, under the assumption of
model linearity, the SIF magnitude for different loads can be
simply obtained via multiplication by a factor dependent on the
load level.
It is important to consider that, though the position of the

crack center is constant in all four experimental FCG tests, the
methodology under study remains valid and applicable for any
crack center position within the validated region.
3) Artificial Neural Network for : A machine learning

approach based on ANNs is used in this work to provide esti-
mates of SIFs at the crack tips. In particular, the ANN used here
is the Multi-Layer Perceptron (MLP), which uses a multi-layer
feed-forward structure. It consists of a collection of connected
nodes, namely the input layer nodes, hidden layer nodes, and
finally the output nodes. In this present work, the input nodes

correspond to the crack parameters (namely crack center posi-
tion, and crack length), one hidden layer is used for computa-
tion, and the outputs are the prediction of the SIFs at the left and
right tips of the crack. It is not our intent to enter into the details
of the theory of ANNs and their mathematical formulation, as
it is widely discussed in the relative literature [34]. It is how-
ever important to specify the shape of the activation functions
that have been used. In the hidden layer nodes, it is restricted to

, while the linear activation function should be
considered for the output nodes, as SIF estimation a mainly a
regression problem. The first stage of using a network to model
an input-output system is to establish the appropriate values for
the connection weights. This stage is the training or learning
phase. The type of training adopted here is a form of supervised
learning, and makes use of a set of network inputs for which the
desired network outputs are known from numerical simulations.
At each training step, a set of inputs is passed forward through
the network yielding trial outputs that can be compared with the
desired outputs. The Scaled Conjugate Gradient algorithm [35]
has been used here to minimize the comparison error, thus op-
timizing the network synapses weights. Once the comparison
error is reduced to an acceptable level over the whole training
set, the training phase ends, and the network is established. The
networks used for this study have been designed and trained
using NETLAB [35] functions, based on MATLAB code. Var-
ious regularization techniques are available to guarantee suffi-
cient generalization capabilities for the ANN. Early-stopping
based on a validation set [34] has been used here. In fact, the
entire dataset has been randomly split into two subsets, namely
training, and validation, containing 80%, and 20% of the data
respectively. The use of a committee of ANNs has also been
considered here as an aid to generalization. The simplest com-
mittee consists of averaging the output of a set of individual
ANN models.
Different ANN models can be created by maintaining the

ANN structure unchanged but training it with different datasets.
However, in practice, only one single dataset is available (the
numerical database), and a way to introduce variability between
the different models is to use bootstrap datasets [34]. Each ANN
belonging to the committee is trained and validated with a dif-
ferent dataset, randomly selecting those test cases that fall into
the training and validation sets, however using all the data avail-
able inside the initial domain. This technique has been adopted
here to train 50 ANNs for SIF estimation. Each ANN has the
same structure, optimized as described in the following, but it is
trained and validated with a different dataset. Defining the op-
timal structure of an ANN is complex because of the number of
variables involved during training, often correlated with each
other. Some early trials with different numbers of hidden layers
were performed to test for an improved algorithm performance.
However, no significant improvement was found, and one single
hidden layer will be considered from now on. ANalysis Of VAri-
ance (ANOVA) has been used to optimize the number of nodes
inside one single hidden layer. The Root Mean Square Error
(RMSE) based on the validation set has been calculated for
50 ANNs trained on different subsets. Increasing the number
of hidden nodes has been considered, and a PDF of RMSE is
available at different levels of hidden layer node number. No
benefit has been obtained from increasing the number of the



Fig. 15. ANN committee output comparison with target output.

TABLE VI
PARAMETERS FOR ANN STRUCTURE OPTIMIZATION AND TRAINING

hidden nodes above 15, and thus the optimized ANN structure
contains one hidden layer with 15 computational nodes. A de-
tailed explanation of the procedure adopted for ANN optimiza-
tion is available in [36]. A summary of the parameters associated
to the ANN structure and the training procedure is reported in
Table VI. The algorithm performance on the numerical database
can be appreciated in Fig. 15. Each mark indicates the output
of the ANN committee, which is the average of the 50 outputs
from 50ANNswith the same optimized structure when the same
input is provided. The target reference line is also indicated. The
RMSE of the committee output with respect to the target was
found to be equal to . Fig. 15 shows that a good
fit was obtained for the largest portion of the database. How-
ever, some variance in the estimation of the SIFs associated to
the cracks at the boundaries of the domain, and in some cases
for the crack tips below the stringers, is visible. This result is
due to the higher complexity of the relation between SIFs and
crack parameters.

D. Algorithm Performance

The Residual Lifetime predictions of the algorithm for all the
tests are shown next. As for the simulated case, the predicted RL
is shown in terms of normalized probability density functions,
and the real RL.

Figs. 16(a)–(d) and 17(a)–(d) show the results of the SIS,
and SIR algorithms, respectively. The prognostic unit pro-
duces some inaccurate estimations of the RL, as shown in
Figs. 16(b) and 17(b), close to 180,000 load cycles. The crack
measures after 180,000 load cycles help the algorithm to
approach the correct RL. The poor predictions are caused by
the trend of the crack propagation visible in Fig. 13 (dashed
black line, experiment 2). This trend is related to experi-
ment 2, and is affected by a sudden slope change close to

. Therefore, the fitted parameters up to that
point produce a swarm of possible crack evolutions markedly
different from the future crack evolution, when the crack
seems to slow down. Considering test 4, in which harsh slope
changes in the crack propagation are absent, the prediction is
more robust. Despite some of the discrepancies between the
expected and the real RL, the prognostic unit shows an overall
good, robust behavior. The predictions of the algorithm with
deterministic DSS are shown in Figs. 18 and 19 for the SIS,
and SIR algorithms respectively. As expected, the results of
the standard particle filter are distant from the target RL for
the majority of the tests. The RL confidence boundaries do
not include the target lifetime in most of the algorithm oper-
ations, sometimes producing unexpected shapes of the PDFs
because of the high discrepancy between the expected trends
of the crack growth (driven by the deterministic values of the
model parameters) and the observed measures. Nevertheless,
a sufficiently accurate result is provided by the particle filter
with deterministic DSS for experiment 4 (Fig. 13, dotted black
line). In this case, a good RL prediction is obtained at the first
operation of the algorithm, and the PDF of the RL includes the
actual RL for the entire crack propagation. This good behavior
is driven by the proximity of the first prediction to the actual
RL, meaning that the average parameters of the Al 2024-T6
produce a swarm of possible crack propagations close to that
particular experimental propagation.
However, this coincidence does not happen in other tests. As

a matter of fact, the inability of the standard DSSmodel to adjust
the possible crack evolutions strongly reduces the robustness of
the system, compared with the suggested prognostic unit com-
posed of a particle filter with a Stochastic DSS, sequentially up-
dated via the MH algorithm. The absolute error of the two algo-
rithms (standard particle filter, and proposed particle filter with
MH) is visible in Fig. 20. The comparison of the absolute errors
shows the highest performance of the proposed method. The
values of the average bias B for each panel, and of the global
average bias (calculated as the mean for all the panels), high-
light that the adaptation of model parameters is fundamental to
produce a reliable, robust lifetime prediction for real structures
(Table VII).

VI. CONCLUSIONS
The presented work analyzes a prognostic unit composed by

a Sequential Monte Carlo algorithm combined with a Markov
chain Monte Carlo technique. The Dynamic State-Space model
usually implemented in a particle filtering framework becomes
an adaptive Dynamic State-Space model; it is built on the PDFs
of the FCG parameters and , producing the Stochastic DSS
presented in [15], and it is updated through the MH algorithm.
The adaptive DSS forms the particle filtering framework for



Fig. 16. RL prediction for the 4 tests using a SIS algorithm.

TTF and RL prediction. The measure and the environmental
uncertainties have been taken into account inside the random

Fig. 17. RL prediction for the 4 tests using a SIR algorithm.

noises commonly implemented in the particle filter, and divided
into process noise and observation noise. The MH algorithm



Fig. 18. RL predictions for the 4 tests using a SIS algorithm with deterministic
DSS (standard particle filter formulation).

updates the parameter PDF during the resampling stage of the
particle filter, in both the SIS algorithm (when the safe parti-
cles drops below a certain threshold), and in the SIR algorithm.

Fig. 19. RL predictions for the 4 tests using a SIR algorithm with deterministic
DSS (standard particle filter formulation).

The validation of the methodology is made first using simu-
lated crack propagationwith andwithout artificial process noise,



Fig. 20. Absolute error on the Residual Lifetime for each experimental test
(a)–(d).

highlighting the parameter identification. The methodology is
then applied to real crack propagations on helicopter fuselage
panels, estimating the RL of the structure. The comparison of

TABLE VII
AVERAGE BIAS B – EXPERIMENTAL DATA

the results obtained with the performances of a standard par-
ticle filtering algorithm (both on simulated cracks and on real
crack propagation data) proves the effectiveness of the method.
Moreover, the test on several portions of a helicopter fuselage
is a significant novelty in the field of real-time prognostics via
Bayesian filtering methods. Although the system produces good
results, the computational effort is still an open issue, especially
in real-time applications. The twomain causes for the high time-
consumption are the MH algorithm required to update the pa-
rameter PDF and the numerical simulation of FCG based on the
NASGRO law for RL updating. As a matter of fact, there is no
closed form solution for the NASGRO integration. Thus, crack
propagation must be simulated according to the linear damage
accumulation model in (14), or through numerical methods, to
calculate the integral of the NASGRO law. Moreover, the em-
ployment of special numerical methods for the SIF formula-
tion also increases the time-consumption. As a matter of fact,
high computational costs are associated in this work also to the
SIF calculation, here performed by an ANN regressor. Another
problem that has to be solved is the number ofmeasures required
by the algorithm to produce good results. The paper does not
face this problem, and it should be a matter of future research.
Of course, the proposed algorithm is suitable for advanced sys-
tems composed by diagnostic units able to provide continuous
information about the health state of the structure, so that the
number of measures would be sufficiently large to guarantee the
algorithm convergence. If the number of observations becomes
limited, the time steps required by the algorithm would become
another fundamental variable for the evaluation of the perfor-
mances. However, the results related to the experimental data
come from a relatively small number of crack measures, man-
ually collected during the tests. The numbers of measures are
11, 16, 19, and 19 for the four experiments presented here. Ac-
cording to the average bias B presented in Table VII, the higher
the number of measures, the better the overall performance of
the algorithm will be. As declared above, this intuitive out-
come should be investigated further. On the other hand, the pre-
sented work highlights the importance of the model parameters
to provide reliable RL predictions. Several papers related to the
topic proved the suitability of particle filter for prognostic prob-
lems. However, if the model parameters used in prediction al-
gorithms are wrong, then the prognosis on the system evolution
will also be wrong. Because of the uncertainties affecting real
structures, the employment of standard Sequential Monte Carlo
sampling requires the adjustment of the model parameters and



the process noise on data that are not available yet. The problem
appears even if the process noise artificially inserted in the al-
gorithm is able to cover the variability between two subsequent
time-steps of particle filtering (i.e., two subsequent measures).
In fact, the prognosis for the very far future is mainly driven
by the model parameters (governing the estimated system evo-
lution) rather than by the artificial process noise adopted in the
SIS and SIR formulation. This paper furthermore underlines the
capability of the adaptive algorithms to cover the inter-specimen
variability, to make the real-time prognostics feasible and reli-
able. Several suggestions for further developments towards the
prognosis of real structures arise from this work. First of all,
Bayesian filtering techniques accounting for the uncertainty of
model parameters should be used in these types of problems.
As an example, particle filters with an augmented state vector
or with particular modifications to estimate the model param-
eters have been studied in [37], [38], and other papers. More-
over, an in-depth investigation of Bayesian filtering capabilities
to deal with several time-varying variables should be assessed.
As a matter of fact, aeronautical structures (like the one pre-
sented in this work), civil structures, and several mechanical
structures are subjected to variable amplitude and random load
histories. Thus, the Dynamic State-Space model of the damage
evolution becomes a function of the future loading conditions,
which are in most cases unknown. Another important aspect to
be considered is the possibility to apply the methods described
in this work to a case of real-time damage diagnosis, such as the
one presented by the authors in [1], thus allowing us to filter the
uncertainties inevitably present in a real-time diagnostic frame-
work.
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