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The neurons of the olivocerebellar circuit exhibit complex electroresponsive dynamics,
which are thought to play a fundamental role for network entraining, plasticity induction,
signal processing, and noise filtering. In order to reproduce these properties in
single-point neuron models, we have optimized the Extended-Generalized Leaky
Integrate and Fire (E-GLIF) neuron through a multi-objective gradient-based algorithm
targeting the desired input–output relationships. In this way, E-GLIF was tuned toward
the unique input–output properties of Golgi cells, granule cells, Purkinje cells, molecular
layer interneurons, deep cerebellar nuclei cells, and inferior olivary cells. E-GLIF proved
able to simulate the complex cell-specific electroresponsive dynamics of the main
olivocerebellar neurons including pacemaking, adaptation, bursting, post-inhibitory
rebound excitation, subthreshold oscillations, resonance, and phase reset. The
integration of these E-GLIF point-neuron models into olivocerebellar Spiking Neural
Networks will allow to evaluate the impact of complex electroresponsive dynamics at the
higher scales, up to motor behavior, in closed-loop simulations of sensorimotor tasks.

Keywords: neuronal modeling, point neuron, neuron model simplification, neuronal electroresponsiveness,
olivocerebellar neurons

INTRODUCTION

The variety of neuron types and spiking patterns is thought to play a fundamental role for
cerebellar signal processing (Llinás, 1988, 2014) and eventually for motor learning and control.
By exploiting pacemaking, bursting, adaptation and more complex properties like oscillation and
resonance, cerebellar neurons can precisely encode sensorimotor signals, induce plasticity, filter
noise, and efficiently communicate with different cerebellar layers and extra-cerebellar circuits
(D’Angelo et al., 2016a).

The electroresponsiveness of cerebellar neurons has been deeply characterized in vitro and
in vivo, allowing to identify, for each neuron type, a set of electrophysiological properties, which
can be used as a reference for tuning single neuron models (Table 1). All cerebellar cortical neurons
except granule cells show autorhythmic activity that becomes irregular in vivo due to synaptic
inputs. All cerebellar neurons show an almost linear relationship between input current and
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firing rate, although with different slopes. In addition, the
different cerebellar neurons show specific properties. The Golgi
Cells (GoCs) show spike-frequency adaptation (SFA) when
depolarized by prolonged currents, post-inhibitory rebound
bursts, phase reset, sub-threshold oscillations (STO), and
resonance in theta band (Solinas et al., 2007a,b). The granule
cells (GRs) exhibit near-threshold oscillations and resonance in
theta band (D’Angelo et al., 1998, 2001). The Purkinje Cells
(PCs) show a discontinuous f-Istim curve, hysteresis following
current ramp stimulation and bistability emerging with high
stimulus currents (intrinsic bursting) (McKay and Turner, 2005;
Masoli et al., 2015; Buchin et al., 2016). Intrinsic bursting is
characterized by a sequence of bursts (depolarized spiking states)
and pauses (hyperpolarized quiescent states), which correlate
with burst-pause responses observed in vivo during behavior
(Loewenstein et al., 2005). PC responses consist of simple
and complex spikes: simple spikes are high-frequency regular
spikes, generated spontaneously or following Parallel Fiber (PF)
activation. Complex spikes consist of a burst of action potentials
or spikelets, followed by a pause, resulting from Climbing
Fiber (CF) excitation (Miall et al., 1998; Rokni et al., 2009).
Molecular Layer Interneurons (MLIs) fire spontaneously with
an increased firing irregularity in vivo (Lachamp et al., 2009;
Jörntell et al., 2010) and have no significant SFA (Galliano
et al., 2013). These properties derive from the specific set
of ionic channels and from their localization on neuronal
dendrites, soma and axons, as well as from the specific nature of
synaptic inputs.

The deep cerebellar nuclei cells (DCNs) express SFA and
post-inhibitory rebound bursting, which is fundamental in vivo to
modulate the motor output (Hoebeek et al., 2010; Uusisaari and
Knöpfel, 2011; Ten Brinke et al., 2017). Based on the expression
of marker proteins, two major types of DCN neurons have
been identified, with different morphologies, electrophysiological
properties, and connectivity patterns (Uusisaari et al., 2007).
Large non-GABAergic DCNs (DCNnL) mainly project to
pre-motor areas, adapting motor commands during learning
tasks, while small GABAergic DCNs (DCNp) are connected to
the Inferior Olive, providing feedback on the learning process
(Uusisaari and Knöpfel, 2011).

The olivocerebellar circuit functioning strongly relies on
the complex dynamics of Inferior Olive (IO) neurons. They
exhibit a stereotyped response with slow STO undergoing
phase-reset after impulse currents (Long et al., 2002; Kazantsev
et al., 2004; Choi et al., 2010; Lefler et al., 2013). Following
hyperpolarization, IO neurons generate rebound spikes (De
Zeeuw et al., 2003), while when a depolarizing input is
applied, single somatic action potentials are translated into
bursts of axonal spikes at instantaneous frequency that can
exceed 400 Hz (Maruta et al., 2007; Mathy et al., 2009). IO
bursts elicit PC complex spikes and promote plasticity in the
cerebellar cortex.

In this scenario, single neuron properties have been described
in detailed models based on multi-compartment neurons for
the different cerebellar layers (Solinas et al., 2007b; Steuber
et al., 2011; De Gruijl et al., 2012; D’Angelo et al., 2013;
Masoli and D’Angelo, 2017). However, representing this rich

set of electroresponsive patterns through simplified neuron
models is fundamental to develop realistic multiscale Spiking
Neural Networks (SNNs). To tackle this issue, we here
exploited the Extended-Generalized Leaky Integrate and Fire
(E-GLIF) point neuron that allows to model single-point
neurons while keeping a realistic picture of multiple essential
electrophysiological features such as autorhythm, bursting,
adaptation, oscillations, and resonance (Geminiani et al.,
2018). The E-GLIF, which was originally used to reproduce
the GoC electroresponsiveness (Geminiani et al., 2018), was
used here to optimize and test the other cerebellar neurons:
GRs, PCs, MLIs, DCNs, and IO. The results shown here
are fundamental in view of SNNs simulations where the
impact of complex single neuron dynamics will be evaluated
at the network and, eventually, at the behavioral level
(D’Angelo et al., 2016a).

MATERIALS AND METHODS

Single Neuron Model
To reproduce the firing patterns described in the Section
“Introduction,” single neurons were modeled as E-GLIF point
neurons. In previous work, E-GLIF proved able to generate the
complete set of GoC spiking responses to different inputs, with
a minimum number of equations and free parameters. This
makes it the best candidate to be used in SNNs to optimize the
compromise between biological plausibility and computational
load (Geminiani et al., 2018).

Extended-Generalized Leaky Integrate and Fire couples time-
dependent with event-driven algorithmic components and
includes three linear Ordinary Differential Equations describing
the time evolution of membrane potential (Vm) and of two
intrinsic currents (Iadapt and Idep). These three state variables
are updated at spike events, which are generated according to a
probabilistic threshold crossing.

The model is defined as follows:
d Vm(t)

dt = 1
Cm

(
Cm
τm

(Vm (t)− EL)− Iadap (t)+ Idep (t)+ Ie + Istim
)

d Iadap(t)
dt = kadap (Vm (t)− EL)− k2Iadap (t)

d Idep(t)
dt = −k1Idep (t)

Where:
Istim = external stimulation current;
Cm = membrane capacitance;
τm = membrane time constant;
EL = resting potential;
Ie = endogenous current;
kadap, k2 = adaptation constants;
k1 = Idep decay rate.

If the neuron is in the refractory period tref , spikes cannot
be emitted. Otherwise, a spike is generated stochastically at time
tspk, according to an escape rate noise: the nearer Vm is to the
threshold potential Vth, the higher the probability to have a spike,
depending on an exponential function (Gerstner and Kistler,
2002; Jolivet et al., 2006).
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TABLE 1 | Electroresponsive properties of cerebellar neurons.

Auto-rhythm
(Hz)

CVISI

(in vitro)
f-Istim slope

(Hz/pA)
SFA Post-

inhibitory
rebound

Phase
reset

Resonance STO

GoC
Forti et al., 2006; Solinas et al.,
2007b; D’Angelo et al., 2013

5–15 0.03 ∼0.2 X X X X
(ϑ band)

X
(ϑ band)

GR
D’Angelo et al., 2001; Masoli
et al., 2017

– – ∼4 ÷ 10 – – – X
(ϑ band)

X
(ϑ band)

MLI
Lachamp et al., 2009; Galliano
et al., 2013

∼8.5 0.36 ∼2.5 – – – – –

PC
McKay and Turner, 2005;
Molineux et al., 2006; Lennon
et al., 2014; Masoli et al., 2015

40–80 0.04 ∼0.08 X X – – –

DCNnL
Llinás, 1988; Aizenman and
Linden, 1999; Uusisaari et al.,
2007; De Schutter and
Steuber, 2009

∼30 0.06 ∼0.2 X X – – –

DCNp
Uusisaari et al., 2007

∼10 N.A. ∼0.18 X X – – –

IO
De Gruijl et al., 2012; Lefler
et al., 2013

∼1 – – – X X X X
(1–7 Hz)

CVISI, coefficient of variation of inter-spike intervals; SFA, spike-frequency adaptation; STO, sub-threshold oscillations. Reference literature studies are reported in
the first column.

At each spike event, the state variables are updated according
to the rules: 

Vm

(
t+spk
)

=Vr

Iadap
(
t+spk
)

=Iadap
(
tspk
)
+ A2

Idep
(
t+spk
)

=A1

Where:
t+spk = time instant immediately following the spike time tspk;
Vr = reset potential;
A2, A1 = update constants of Iadap and Idep, respectively.

Based on k2 and kadap values, the model exhibits exponential
or oscillatory responses (Figure 1A). Elements in the model can
be associated to different mechanisms that contribute to the spike
patterns. The endogenous current, Ie, accounts for autorhythm
and regulation of the intrinsic steady-state membrane potential;
the adaptive current, Iadap, coupled with Vm accounts for
intrinsic sub-threshold oscillations of the membrane potential
and represents the slow hyperpolarizing sub-cellular currents,
e.g., the K+ channel currents; the spike-triggered current, Idep,
accounts for fast depolarizing mechanisms, e.g., the Na+ and
low threshold voltage activated Ca2+ channel currents. For
neuron connections within SNNs, conductance-based synapses
are used, with spike-triggered change of synaptic conductance,
gsyn, according to an alpha function (Cavallari et al., 2014;
Geminiani et al., 2018):

gsyn (t) = Gsyn
t − tspk

τsyn
e1 −

t−tspk
τsyn

where Gsyn is the maximum conductance change and τsyn the
synaptic time constant.

Neuron Model Optimization
Analogously to the GoC E-GLIF optimization, for each cerebellar
neuron we derived the parameters related to neurophysiological
quantities (i.e., Cm, τm, EL, 1tref , Vth, Vr) from literature in vitro
experiments (Table 2). For the remaining parameters (i.e., kadap,
k2, k1, A2, A1, Ie), we used the optimization strategy described
in Geminiani et al. (2018), developed in MATLAB, where the
cost and constraint functions were adapted to consider the
electroresponsive properties of each neuron type as in Table 1.

Optimization Stimulation Protocol
Exploiting the analytical solution of the model, the optimization
algorithm aimed at minimizing the error on spike times during
three sub-intervals of a current step stimulation period, where
the Vm solution could be computed: the time to the first
spike, the time between first and second spike and the time
between two steady-state spikes (Figure 1B). A multi-step
stimulation protocol was considered for optimization, including:
a zero-current phase, three phases with increasing depolarizing
currents (exc1 < exc2 < exc3), and a zero-current phase following
a stimulation interval with a negative current, inh.

Cost Function
The cost function evaluated the error on the desired spike
times (computed from desired output frequency), in order
to fit cell-specific quantitative input–output relationships
(Supplementary Table S1): (i) autorhythm frequency, when
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FIGURE 1 | Optimization methods. (A) Parameter space for different solution
regimes in E-GLIF neuron model, depending on values of parameters kadap

and k2. The red line corresponds to not-damped oscillatory solutions, the red
region to oscillatory damped solutions, while the green area corresponds to
exponential stable solutions. Adapted from Geminiani et al. (2018). (B)
Stimulation protocol for evaluation of model analytical solution used for
optimization in specific sub-intervals: time to first spike and between first and
second spike, at the beginning of zero-/depolarizing current steps and
following a hyperpolarizing step (double white arrows); time between two
spikes at steady-state (white arrow); time to first spike (pause) at the end of a
strong depolarizing current step, exc3, only for PC E-GLIF optimization, to fit
the burst-pause response (black arrow).

Istim = 0, (ii) response rates (freq1 < freq2 < freq3), with increasing
amplitudes of Istim (exc1 < exc2 < exc3), and (iii) rebound burst
latency and initial frequency, following an inhibitory current step,
inh. To take into account SFA during depolarizing current steps,
the desired steady-state firing rate was obtained from desired
frequencies (freq1 < freq2 < freq3) multiplied by an attenuating
factor (factor1, factor2, factor3) based on experimental values.

In addition, only PCs exhibit the burst-pause response (Masoli
et al., 2015): to account for this specific property, the PC cost
function evaluated also the time to the first spike (i.e., the pause),
just after the turning off of Istim = exc3 (Figure 1B).

Optimization Constraints
The cell-specific constraints (Supplementary Table S2) were
customized to obtain:

• Neurophysiological ranges of currents in the model;
• Neurophysiological steady-state value of the membrane

potential during inhibition (Vm_inh);
• Oscillatory damped or not (red area in Figure 1A) or

exponential (green area in Figure 1A) Vm dynamics
(Geminiani et al., 2018), based on k2 and kadap ranges as
in Figure 1A;
• Neurophysiological values of oscillation frequency, in case

of oscillatory neurons, i.e., GRs and IOs;
• Sub-threshold value of the steady-state membrane

potential (Vm_ss_tonic) and limited amplitude of oscillations
(Aosc_tonic) to prevent spontaneous firing in oscillatory
neurons without autorhythm – GRs and IOs, in case of
zero external input.

The mathematical expression of the cost function, the
fitted input-output quantitative patterns and the values
of the constraints are reported with proper details in
Supplementary Material.

Optimization Implementation
For each neuron type, we ran five optimizations with different
random initializations of parameters within their ranges, to test
the robustness of results with respect to initialization. We chose
the optimal parameter set as the median of the final parameters
in each optimization run.

Neuron Model Validation
To validate the outcome of optimization and test the effective
proper functioning of the model based on literature data, we
simulated the E-GLIF responses during a continuous stimulation
protocol with current steps in PyNEST (Diesmann and Gewaltig,
2002). This validation was fundamental to assess the result
of optimization that was based on the evaluation of the
neuron response only in sub-sampled intervals of a continuous
simulation. In order to evaluate all the electroresponsive
properties in Table 1, the stimulation protocol included a first
phase with zero external current, where to measure autorhythm
and irregular firing, followed by three depolarizing phases
lasting 1 s and interleaved with 1-s zero-current intervals, to
measure intrinsic excitability and adaptation. Afterward, a 1-s
inhibitory current was applied and turned off in the subsequent
step, to test rebound bursting (Figure 2A, left panel). The
amplitudes of current steps in each phase were the same used
during optimization, but the whole continuous response was
here assessed, and not just the sub-intervals included in the
optimization. The stimulation protocol was then customized
with additional or modified phases for neurons with specific
electroresponsive patterns:

• For PCs, we reduced the third depolarizing interval from
1 to 0.01 s (Figure 2A, right panel) to test the burst-pause
response with high input currents (McKay and Turner,
2005) and evaluate the effect of current pulses (analogous
to CF bursts);
• For GRs, we included an additional phase with input

current step trains at increasing frequencies (0.3-3-6-9-12-
15 Hz), to evaluate resonance (Figure 2B);
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TABLE 2 | Electrophysiological passive properties chosen from literature for the different cerebellar neurons.

Cm (pF) τ m (ms) EL (mV) tref (ms) Vr (mV) Vth (mV)

GoC
Forti et al., 2006; Solinas et al.,
2007a; Tripathy et al., 2014

145
(145 ± 73)

44
(44 ± 22)

−62
(−62)

2
(2 ± 0.4)

−75
(−75)

−55
(−55 ± 1)

GR
D’Angelo et al., 1998, 2001;
Tripathy et al., 2014; Houston
et al., 2017

7
(5.5 ± 0.5)

24.15
(24.15 ± 2)

−62
(−62 ± 11)

1.5
(1.5 ± 0.4)

−70
(−70)

−41
(−41 ± 3)

MLI
Lennon et al., 2014

14.6
(14.6)

9.125
(9.125)

−68
(−68)

1.59
(1.59)

−78
(−78)

−53
(−53)

PC
Hourez et al., 2011; Hoxha
et al., 2012

334
(334 ± 106)

47
(47 ± 32)

−59
(−59 ± 6)

0.5
(0.5 ± 0.1)

−69
(−69)

−43
(−43 ± 2)

DCNnL
Uusisaari et al., 2007

142
(142 ± 31)

33
(33 ± 18)

−45
(−45 ± 13)

1.5
(1.5 ± 0.2)

−55
(−55)

−36
(−36 ± 7)

DCNp
Uusisaari et al., 2007

56
(56 ± 26)

56
(56 ± 30)

−40
(−40 ± 13)

3.02
(3.02 ± 0.3)

−55
(−55)

−39
(−39 ± 8)

IO
Long et al., 2002; De Zeeuw
et al., 2003; Van Der Giessen
et al., 2008

189
(189 ± 12)

11
(11 ± 4)

−45
(−45)

1
(1)

−45
(−45)

−35
(−35)

Experimental reference values are reported in brackets as mean ± SD (Standard Deviation – when available), from literature reference studies reported in the first column.

FIGURE 2 | Stimulation protocol for E-GLIF model validation in PyNEST simulations. (A) General in vitro protocol with the three depolarizing current steps (exc1,2,3)
and the inhibitory step (inh) used for PyNEST simulations of MLI and DCN E-GLIF (left panel); a shorter exc3 current step is used for PCs to test the burst-pause
response (right panel). The current amplitude values are the same used in the optimization process, where only sub-intervals of each stimulation phase were
considered. (B) Customized protocol for GR E-GLIF to test resonance through a stimulation phase with periodic spike trains at increasing frequencies. (C)
Customized protocol for IO E-GLIF with one shorter depolarizing step and an impulse stimulus to evaluate phase reset of membrane potential oscillations.

TABLE 3 | Optimized parameter sets of E-GLIF models for each neuron type.

kadap (MH−1) k2 (ms−1) A2 (pA) k1 (ms−1) A1 (pA) Ie (pA)

GoC (Geminiani et al., 2018) 0.217 0.023 178.01 0.031 259.988 16.214

GR 0.022 0.041 −0.94 0.311 0.01 −0.888

MLI 2.025 1.096 5.863 1.887 5.953 3.711

PC 1.491 0.041 172.622 0.195 157.622 742.534

DCNnL 0.408 0.047 3.477 0.697 13.857 75.385

DCNp 0.079 0.044 176.358 0.041 176.358 2.384

IO 1.928 0.091 1358.197 0.191 1810.923 −18.101

• For IOs, we considered only one depolarizing phase
lasting 0.05 s, to adapt to literature reference protocols
for in vitro experiments. Then, we tested the effect
of different current amplitudes on burst response

properties and we evaluated phase reset of STO,
following a current impulse (amplitude = 1 nA,
duration = 5 ms), during a zero-current interval lasting
1.5 s (Figure 2C).
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We ran 10 simulations for each neuron and computed the
mean ± Standard Deviation (SD) of activity parameters (see
section “Validation Data Analysis”).

Validation Data Analysis
Significant parameters were extracted from spiking time instants
to evaluate single neuron firing patterns in validation protocols:

• The tonic firing rate, ftonic, as the inverse of the mean
inter-spike interval (ISI), and the coefficient of variation of
inter-spike intervals (CVISI) to quantify the irregularity of
firing, during the zero-current phase;
• The firing rate, f, as the inverse of the mean ISI, during the

first three spikes of each depolarizing phase;
• The steady-state firing rate, fss, as the inverse of the mean

ISI, during the last six spikes of each 1-s depolarizing phase;
• The f-Istim slope derived from initial responses to the

excitatory step currents;
• The SFA gain, computed as the ratio between f and fss;
• Latency and initial frequency (i.e., inverse of the

first burst ISI), measured in the rebound burst after
hyperpolarization (lat_rebound and rebound_freq,
respectively). Post-inhibitory activity was considered
a rebound burst if lat_rebound and rebound_freq were
lower than the autorhythm ISI and higher than the
autorhythm frequency, respectively.

To quantify resonance in GRs, we also computed the response
speed as the inverse of the mean spike latency in each resonance
step; the values from multiple simulation tests and frequencies
were fitted through a smoothing spline in order to obtain the
resonance curve (Gandolfi et al., 2013).

RESULTS

The single-point models of cerebellar neurons were generated
using E-GLIF protocol (Geminiani et al., 2018) and were
tuned toward their specific neurophysiological response patterns.
For GoCs, we used the same optimal parameters reported
in Geminiani et al. (2018). For the other neurons, after
fixing the passive properties from literature data (Table 2),
the optimization algorithm was used to tune the remaining
model parameters toward specific electrophysiological features.
In most cases, the algorithm converged to the same region
of the parameter space over the five optimization runs
(Supplementary Figures S1, S2). The resulting parameter
sets achieved the optimal compromise between minimum
cost function and constraint violation (below 1.0 and 0.1,
respectively), best reproducing the electroresponsiveness of each
neuron type (Table 3).

Tuned E-GLIF neurons were then tested in PyNEST
simulations with the stimulation protocol described in the
Section “Neuron Model Validation.” The model was able to
capture the intrinsic excitability of all neurons, generating
linearly increasing firing rates with depolarizing current steps.
As shown in Figure 3, frequencies values and f-Istim slope
were close to the target values for all neurons or within

FIGURE 3 | Plots of f-Istim relationships for GRs, PCs, MLIs, and DCNnL
neurons, comparing outcome of PyNEST simulations (black markers) with
literature target values used for optimization (blue markers), at the beginning
(circles), and after 1-s (squares) current step stimulation. Experimental data
taken from D’Angelo et al. (2001), McKay and Turner (2005), Uusisaari et al.
(2007), and Galliano et al. (2013).
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TABLE 4 | Intrinsic excitability properties of optimized E-GLIF neurons.

ftonic (Hz) CVISI (mean) f-Istim slope lat_rebound (ms) rebound_freq (Hz)

GR – – 3.70 – –

MLI 9.51 ± 0.17 0.13 2.16 (172.96 ± 11.07) (10.03 ± 1.54)

PC 60.96 ± 0.15 0.04 0.08 10.62 ± 0.15 183.01 ± 6.14

DCNnL 31.48 ± 0.16 0.06 0.28 23.95 ± 0.39 64.81 ± 4.49

DCNp 14.37 ± 0.1 0.09 0.4 69.32 ± 0.94 42.14 ± 3.54

IO – – – 59.22 ± 1.96 –

Values are reported as mean ± SD over the 10 PyNEST simulations for each neuron type.

acceptable ranges. For GRs the f-Istim slope was lower than in
the reference study (D’Angelo et al., 1998) but still consistent
with experimental ranges (Spanne et al., 2014; Masoli et al.,
2017). In DCNnL, depolarization frequencies were higher than
target values, but linearly increasing with an acceptable f-Istim
slope (Table 4). SFA was present for PCs and DCNnL with
average SFA gain of 1.1 at all Istim values, close to the target
values of adaptation gain from electrophysiological recordings
(1.1 and 1.2, respectively) (Uusisaari et al., 2007; Kim et al.,
2013). In DCNp, SFA was more pronounced, with an average
gain of 1.3 for Istim = exc2,3 (Uusisaari et al., 2007). In absence
of external stimuli, PC, MLI and both DCN E-GLIF produced
irregular autorhythm at physiological frequencies, while GRs and
IOs generated STO at 6 and 7 Hz, respectively (Figure 4). At the
end of a hyperpolarizing current step, PCs and DCNs exhibited
rebound excitation (doublets/bursts), which is fundamental for
efficient signal transmission (Figure 4). In IOs, post-inhibitory
rebound spikes were generated with 50% probability, as in
experiments (De Zeeuw et al., 2003; Mathy et al., 2009). When
stimulating PC with current pulses of 2.4 nA, the typical intrinsic
bursting (burst-pause response) was generated. This was achieved
thanks to the balance of model currents, Idep and Iadap that
accounted for subcellular mechanisms leading to PC complex
spikes (De Zeeuw et al., 2011). A 10-ms pulse caused a burst
at 254.58 ± 18.26 Hz followed by a pause of 23.47 ± 2.38 ms,
longer than the tonic ISI (Figure 5A); with a 50-ms current
step the neuron was silent for 32.46 ± 1.22 ms after a burst
at 234.87 ± 2.70 Hz (Figure 5B; Grasselli et al., 2016). This
spiking pattern well fits with the PC response to dendritic current
injection; however, the typical PC bistable regime caused by a
continuous high-amplitude stimulation could not be reproduced
in the model without losing other electroresponsive properties
(Masoli et al., 2015). Intrinsic STO in GRs lead to resonance
at 6 Hz, when stimulating the GR neuron model with periodic
spike trains at increasing frequencies (Figure 6A). Finally,
the optimized E-GLIF model was able to generate also the
typical IO bursting response (193.91 ± 24.58 Hz) in case of
current step input, thanks to the rapid effect of Idep at the
beginning of stimulation and the slower accumulation of Iadap
that blocked the firing (Figure 5B). Increased amplitudes of
the input current caused a non-linear increase of the burst
frequency, within physiological ranges; instead, lower currents
(i.e., 200 pA) were not sufficient to activate bursts, but they only
produced single spikes followed by a pause. Current pulses in
the IO E-GLIF induced a spike and a subsequent phase reset of

STO, independent from the phase of the stimulus (Figure 6B).
Consistently with experimental results, post-impulse STO phase
in the model was (0.87 ± 0.02)·T for pre-stimulus phases
ranging from 0.06·T to 0.92·T, being T the period of oscillations
(Kazantsev et al., 2004; Lefler et al., 2013).

Therefore, the whole set of olivo-cerebellar cells could be
modeled with E-GLIF neurons, generating realistic spiking
patterns and capturing crucial electroresponsive properties for
cerebellar functioning.

DISCUSSION

In this paper, the E-GLIF model (Geminiani et al., 2018),
that was previously developed and validated for Golgi cells,
was tuned toward the unique electroresponsive properties of
granule cells, Purkinje cells, molecular layer interneurons, deep
cerebellar nuclei cells and inferior olivary cells. In these neurons,
E-GLIF effectively reproduced pacemaking, adaptation, bursting,
post-inhibitory rebound excitation, subthreshold oscillations,
resonance, and phase reset. Therefore, for the first time, a whole
set of single point neurons is made available to investigate the
functional dynamics of the olivocerebellar circuit (Voogd and
Glickstein, 1998; Ruigrok, 2011; D’Angelo et al., 2013; Witter
et al., 2013; Zhou et al., 2014). These include oscillations and
resonance, which are thought to play a critical role for network
entraining into large-scale brain oscillations (De Zeeuw et al.,
2011; Courtemanche et al., 2013; Llinás, 2014), and long-term
synaptic plasticity, which is considered the main mechanism
underlying the cerebellar role in motor control and learning (Ito
et al., 2014; D’Angelo et al., 2016b).

Modeled Single Neuron Dynamics
Extended-Generalized Leaky Integrate and Fire (Geminiani
et al., 2018) is a simplified point-neuron based on a system
of three linear ordinary differential equations and its analytical
tractability allows to define different solution regimes and to
tune model parameters through a generalizable optimization
algorithm. In the current work, E-GLIF was able to simulate
complex input-output relationships of cerebellar and IO neurons,
generating cell-specific intrinsic excitability and non-linear firing
properties that would not be possible using previous GLIF models
(Mihalaş and Niebur, 2009).

For neurons with oscillatory Vm, the second order dynamics
of the model allowed to simulate intrinsic self-sustained
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FIGURE 4 | E-GLIF responses to zero-input current (left column) and following a hyperpolarizing current step (right column) for the main olivo-cerebellar neurons.
Zero-current inputs cause STO in GR and IO neurons, and autorhythm in the others. Post-inhibitory rebound excitation (burst or spike) is highlighted in the blue
circle, where present.

STO. Second order dynamics allowed to reproduce also other
non-linear electroresponsive behaviors like resonance in GRs
and phase reset of STO in IO neurons. These properties
have been measured in single-neuron experiments and are

probably amplified at network level (D’Angelo et al., 2001).
Specifically, the feedback inhibitory loop from GoCs to GRs
is supposed to contribute to resonance and oscillations in
the Granular layer network, enhancing theta-band signals
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FIGURE 5 | Bursting responses in E-GLIF simulations. (A) Burst-pause in PC E-GLIF with a 10-ms input current step (left panel) and 50-ms input current step (right
panel). Vm and input current traces are reported in top panels, showing the burst during the stimulation phase and the subsequent pause (blue segment) when the
current goes back to 0 nA. Model current traces are reported in bottom panels, with respect to their steady-state value (1I). The Iadap current is reported in negative
values as it has a hyperpolarizing effect in the neuron model. At the end of the stimulation, the accumulated inhibitory effect of Iadap causes the pause, until it decays,
and the tonic balance of currents is restored. (B) Bursting response in IO E-GLIF during a 50-ms current step stimulus, showing a first doublet (zoom in the inset)
followed by a pause (blue segment); even in this case, the intrinsic model currents drive the Vm response (bottom panel).

FIGURE 6 | Oscillation-driven properties in E-GLIF simulations. (A) Resonance in GR E-GLIF following spike train stimulation at increasing frequencies. The
resonance curve was obtained fitting the data points from 10 simulations (black dots) with a smoothing spline. (B) Phase-reset of IO E-GLIF Vm during 10
simulations with the same current pulse, causing a spike and a subsequent reset of oscillation phase, independent from the phase before the stimulus.

coming from extra-cerebellar regions (D’Angelo and Casali,
2013; Gandolfi et al., 2013). Future simulations of the granular
layer network with E-GLIF neurons will help to elucidate the
different contribution of single cell and circuit properties on
network oscillations and resonance. This would extend the
results of previous studies where detailed microcircuit models
and SNNs with Leaky Integrate-and-Fire units were exploited

(D’Angelo et al., 2013; Casali et al., 2019). In the IO circuit,
phase reset of STO has been measured in single neurons
(Kazantsev et al., 2004), but synchronous stimulation of an
olivary area was shown to amplify this response (Lefler et al.,
2013). The IO E-GLIF could reproduce the first response
during simulation of in vitro protocols. In principle, adding
gap junctions to the neuron model would account also for the
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phase-reset amplification at network level, thanks to the intrinsic
communication within IO nuclei.

To simulate IO neurons, E-GLIF was optimized taking the
axonal bursting regime as the target behavior (Maruta et al.,
2007; Mathy et al., 2009). This aspect challenges the traditional
view of CFs as a low-frequency all-or-none signaling pathway:
indeed, bursting and rebound activity in IO is fundamental
for information encoding, as rebound excitation amplifies the
feedback from DCNp cells and olivary bursts elicit complex
spikes at PC level. PC E-GLIF successfully reproduced regular
firing and the burst-pause pattern following dendritic current
stimulation in vitro, which can be associated to simple and
complex spikes in vivo (Masoli et al., 2015). However, bistability
and spiking patterns with longer bursts and pauses could not
be obtained in the E-GLIF model without losing intrinsic
excitability properties. For simulations in SNNs, this is a
sufficient approximation since it allows to generate the typical
PC network spiking patterns, as shown in the Section “Results.”
However, for a more detailed representation even of axonal
responses, a multi-compartment version of the PC E-GLIF
could be implemented, where multiple E-GLIF neurons are
optimized to reproduce the electroresponsiveness of the main
PC compartments.

In cerebellar nuclei neurons, rebound excitation has been
widely proven in vitro but long debated in vivo (Alviña
et al., 2008). However, recent experimental findings demonstrate
that rebound bursting correlates with motor responses and is
fundamental for integrating synaptic inputs from PCs, MFs,
and IO neurons that all converge in the cerebellar nuclei
(Hoebeek et al., 2010; Manto and Oulad Ben Taib, 2010; Witter
et al., 2013; Sarnaik and Raman, 2018). Rebound excitation
also contributes to cerebellum-driven learning, as demonstrated
for associative learning (Ten Brinke et al., 2017). Single-neuron
rebound properties are thus crucial in SNNs aimed at multiscale
simulations of sensorimotor tasks.

This scenario shows the capability of the E-GLIF point neuron
to reproduce the variety of olivo-cerebellar spiking responses
following different input stimuli, through a single optimal set
of model parameters. Conversely, the traditional approach for
single neuron modeling aims at identifying different regions of
the parameter space corresponding to different spiking behaviors
(Izhikevich, 2003). This makes E-GLIF a best candidate for
simulations of SNNs, where neuron response needs to depend
on the received input, rather than on the parameter values,
achieving higher neurophysiological realism without increasing
computational load.

CONCLUSION

The E-GLIF single-point neuron models were able to
capture the complex non-linear dynamics of olivocerebellar
neurons including spontaneous firing, subthreshold oscillations,
bursting, phase-reset, and resonance. These ingredients,
coupled to algorithms accounting for synaptic integration
over dendrites (e.g., Marasco et al., 2012; Rössert et al.,
2016), will provide the fundamental ingredients to reconstruct
non-linear dynamics in extended spiking cerebellar networks.
Future work will include embedding these neuron models
into cerebellar SNNs to simulate cerebellum-driven motor
paradigms and evaluate the impact of single neuron
electroresponsiveness on network dynamics, plasticity and,
eventually, motor behavior.
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