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Graphical abstract 

 

 

Highlights: 

 The quality assessment of AM materials containing defects is a complex topic; 

 Multiple defect types were characterised by X-ray CT and metallographic analysis; 

 The critical defects in fatigue samples were compared to the statistical estimates; 

 Quality correctly assessed by both methods for material obtained by three processes; 

 Better precision and lower cost by CT when similar volumes are investigated. 

 

Abstract 

While the adoption of metal additive manufacturing (AM) is growing exponentially owing to its wide range of 

potential applications, its application to safety-critical and structural parts is significantly impeded by the lack of 
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standards. Quality assessment of AM products is a crucial requirement, as the AM process induces internal 

defects that can have detrimental effects on the fatigue resistance. 

By evaluating the defect distribution, it is possible to perform a fracture mechanics assessment to estimate the 

fatigue strength and service lifetime of AM materials. This strategy has been successfully applied to selective 

laser-melted AlSi10Mg by performing X-ray micro-computed tomography (µCT) and applying suitable statistical 

methods (i.e., statistics of extremes). However, it remains unclear whether complex and expensive 

nondestructive inspection methods (e.g., µCT) are necessary and whether simpler and more conventional 

approaches (i.e., microscopy of polished sections (PSs), as prescribed by ASTM E2283) would provide equivalent 

information for the estimation of internal defects. 

In this study, the size of the most detrimental defect was estimated by performing both light microscopy on PSs 

and µCT on three batches of fatigue specimens characterized by different internal porosities. The results showed 

that both techniques were able to pinpoint a significant difference in the prospective largest defect in a material 

volume corresponding to the gauge section of a specimen. However, extrapolation of the critical defect size for 

fatigue failure using PS data was less accurate and less conservative than that using CT data. An evaluation of the 

techniques with regard to time and cost indicated that µCT allowed the investigation of larger sample volumes 

and the reduction of both man hours and cost. 

 

Keywords: 

AlSi10Mg; material quality; defect; computed tomography; metallography 

 

Nomenclature 
Acronyms: 

AM  additive manufacturing 

BM  block maxima 

(µ)CT  (micro-)computed tomography 

FS  fracture surface 

LEVD  largest extreme value distribution 

LoF  lack of fusion 

POT  peaks-over-threshold 

PS  polished section 

SEM  scanning electron microscopy 

SIF  stress intensity factor 

SLM  selective laser melting 

Symbols: 

𝐹  cumulative distribution function 

𝐹exc  cumulative distribution function of the exceedances over u 

ℎmean  average defect size recorded in 𝑆0 
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𝐾  SIF 

𝑛  number of extractions of a variable 

Nu  number of exceedances over u 

𝑅sphere  radius of the sphere equivalent to a defect in terms of volume 

𝑆  applied stress 

𝑆def  defect surface 

𝑆0  control area for 2D BM sampling 

T  return period 

u  threshold for POT maxima sampling 

V  volume of material 

𝑉𝑐  prospective component volume 

𝑉def  defect volume 

𝑉𝐹𝑆  volume associated with FS analyses 

𝑉𝑃𝑆  volume associated with PS analyses 

𝑉surf  surface gauge volume of a fatigue sample 

𝑉0  control volume for 3D BM sampling 

𝑥𝑝  p-percentile of a distribution 

𝑥𝑇  maximum characteristic value with a return period T 

𝑋, 𝑍  variables 

𝑍𝑛  maximum value over n extractions 

σ  parameter of a negative exponential distribution function 

λ, δ  parameters of an LEVD 

ρ  density of the exceedances over u 

√area  Murakami’s defect size parameter 

1. Introduction 

Additive manufacturing (AM) has been studied intensively in academia as well as in various industries for well 

over two decades. The very first laser powder bed-based machines were only able to fuse a low-melting point 

binder of a metallic, two-phase feedstock, but development quickly enabled the melting of pure, pre-alloyed 

powders. After industries discovered the potential of the emerging technology, the rate of development and 

applications steadily increased. Since then, the AM industry is undergoing exponential growth [1]. Almost every 

major stakeholder in the aerospace industry is assessing the disruptive potential of AM to enhance the 

performance of products [1–10]. 

Despite the vast application potential arising from the almost unlimited geometrical freedom, the current 

production speeds, i.e., the produced volume per unit time, are lower than those of traditional manufacturing 

techniques. Nevertheless, the space industry, which involves small production series and single-item 

fabrications, has been able to transform products through AM, resulting in sound business cases [4, 5, 7]. Many 

of the current flight applications are structures with low criticality, the designs of which are mostly driven by 

stiffness. 
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AM is increasingly used for highly critical applications, including primary, mission-critical structures and rocket 

propulsion elements [9–11]. Assessing the structural integrity of these parts is important, and requires strict 

control of the manufacturing process as well as testing of the produced material. The latter involves a variety of 

application-oriented mechanical tests, as well as tests of the physical properties, including the relative density. 

Defects, which reduce the relative density, are typically pores, a lack of fusion (LoF), and irregularly shaped key-

hole defects [12, 13]. These defects are typically associated with gaseous trace elements such as O [14] or H [15] 

or the energy input per volume unit (LoF and key-hole defects) [13]. In some cases, inclusions may also be 

present, although usually being less detrimental than pores and LoF [16]. Finally, clustering issues may randomly 

occur when the number of defect per unit volume is large [17,18], or in the sub-surface regions due to non-

optimal process conditions [19,20]. 

Phenomenological approaches to examine the fatigue properties of AM materials have shown that fatigue life 

[21], as well as other mechanical properties [22], can be significantly affected by an increase in porosity. 

Therefore, the determination of the density has become a key element in assessing the quality of produced AM 

materials. For this, various techniques are currently applied or under investigation, including ultrasonic methods 

[23], the Archimedean method, microsectioning, and X-ray micro-computed tomography (µCT). While the first 

two methods only allow conclusions to be drawn regarding the relative density, microsectioning and X-ray µCT 

also provide insight into the nature and distribution of defects [21–25] (e.g., LoF, key-hole porosity, and 

inclusions). 

The fatigue properties of AM materials are always associated with large scattering due to several factors, 

including heat treatment, surface finishing, and the microstructure (see the review concerning Ti-6Al-4V in [26]). 

Among the factors reported, a large part of the scattering observed in the fatigue properties is attributed to 

process-dependent defects [20]. The fatigue resistance in the absence of defects is comparable to or better than 

that for traditional manufacturing processes like casting or forging [25–27]. 

Defects can be analyzed in terms of stress raisers [28, 29] or by treating them as short cracks. From this viewpoint, 

a review conducted by Beretta and Romano showed that most of the scattering of the fatigue properties of Al 

alloys and Ti-6Al-4V obtained via AM is controlled by the variability of inhomogeneities at the origin of failures 

and that the sensitivity of the fatigue strength to the defect size is similar for AM and traditional processes [19]. 

One of the possible ways for estimating the fatigue strength is by considering the defects as short cracks and 

employing models (Murakami-Endo, Tanaka and Akiniwa, El-Haddad et al. [32]) that describe the relationship 

between the fatigue strength and the defect size (Kitagawa–Takahashi diagram [33]) or the dependence of the 

crack-propagation threshold on the crack size [33, 34]. This approach was examined in a study performed by 

Politecnico di Milano in collaboration with ESA and RUAG Space, in which an AlSi10Mg alloy produced via 

selective laser melting (SLM) according to three processes (P1–P3) with different porosity content was 

investigated [16]. The specifications of the processes are reported in Sec. 2. The results shown in Figure 1a 

indicate the different fatigue resistance among the processes and the large scattering. Measuring the size of the 

defects found at the origin of failure on the fracture surfaces (FSs) in terms of the root-area parameter [36] 

clearly reveals that the differences and scattering are mainly caused by the variability in the size of the killer 

defects, i.e., the defects at the origin of fatigue failures (see Figure 1b). For the three processes investigated, 

fractographic analyses highlighted that the root causes of fatigue crack initiation were LoF defects. 

According to this defect-crack similarity, the fatigue life for the high-cycle fatigue and low-cycle fatigue regimes 

can be evaluated via fatigue crack growth simulations by adopting suitable formulations for the driving force at 
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the defect tip [35, 37, 38]. Similar conclusions regarding the effect of defects in AM materials and their analysis 

using the Kitagawa-Takahashi diagram were drawn in [39–41]. 

 

Figure 1: Results of the fatigue tests performed on three batches of material (R = -1) (adapted from [16]): S-N curve and average estimates 
obtained by fracture mechanics approaches; (b) size of the critical defects and estimate based on µCT measurements (average plus 90% 
scatter band). 

One of the major consequences of the crack-defect similitude is that the fatigue strength of a given material 

volume is controlled by the size of the maximum defect [36] (in probabilistic terms, this corresponds to the widely 

adopted weakest-link concept [42, 43]). Therefore, it is vital to estimate the size of the largest material defect 

that can occur in a material volume.  

This analysis employs the “statistics of extremes” [44, 45], which were extensively applied at the end of the 1990s 

for determining the maximum inclusions in steel. This was mainly achieved by considering observations from 

two-dimensional (2D) polished sections (PSs) or combining them with measurements of the inclusions at the 

origin of failure in fatigue specimens. The lessons learned from these studies, which are incorporated into the 

ASTM E2283 standard [45], are as follows: i) the specimen could be conventionally prepared according to ASTM 

E45 [46] and scanned using image analysis systems; ii) the “control areas” for PSs (ranging from 0.384 to 100 

mm2 in previous studies) had to be as large as possible (typically on the order of 100 mm2) in order to detect 

rare particles at the origin of fatigue failure in clean steels; and iii) the largest inclusions in each control area had 

to be recorded and analyzed with a Gumbel distribution. Quality comparisons of different steels were performed 

by considering the maximum characteristic value (the modal value for the maximum defect) for a prospective 

area of 150.000 mm2 [47]. 

The measurements prescribed by ASTM E2283 are based on block maxima (BM) sampling. An alternative method 

for applying the statistics of extremes is the peaks-over-threshold (POT) method [44, 45, 49], which takes into 

account only the measurements above a threshold value. The POT method was extensively applied by 

researchers from Sheffield University. It is simple to apply in cases of a large amount of data from automatic 

measurement systems (no division in blocks/areas is needed) and yields very similar results to the BM method 

when the assumptions for the underlying parent distribution are compatible with the Gumbel distribution [49]. 

In a previous study, the concept of “extreme value” statistics for estimating the size of the killer defects in 

additive manufacturing was applied to data obtained via X-ray µCT [50]. The results showed that the methods 

developed for inclusions in steels could be successfully applied to three-dimensional (3D) CT scan data by 

ACCEPTED M
ANUSCRIP

T



6 
 

evaluating the size using Murakami’s parameter √area (i.e., the defect area projected onto a plane perpendicular 

to the applied stress) and that the POT method could be used instead of BM sampling to simplify the analysis 

and improve the confidence and robustness of the results. 

The objective of the present study was to compare the results obtained via complex and expensive 

nondestructive inspection methods (i.e., µCT) with those attained using simpler and more conventional 

approaches (i.e., microscopy of PSs, as prescribed by ASTM E2283 [45]), in view of a simple and robust quality 

assessment of the material. This is done considering the three processes P1-P3 presented in Figure 1. The data 

quality [51,52] and the prospective cost for analyzing a significant material volume were evaluated for the 

different techniques. 

 

2. Materials and methods 

For this study, AM AlSi10Mg samples were produced via a laser powder-bed fusion process. The chemical 
composition of the base alloy powder corresponds to DIN EN 1706. A virgin powder was adopted. SLM was 
performed using an EOS M400 powder-bed machine for manufacturing vertical round bars, which were later 
machined to form cylindrical fatigue samples without additional heat treatment. No stress-relief was performed, 
as residual stresses resulted limited owing to the platform pre-heating [17]. Among three batches prepared with 
varying processes (denoted as P1, P2, and P3), all samples produced in the vertical orientation were considered. 
The major dimensions of the samples are presented in Table 1. The round bars for P1 and P2 are twice as tall as 
those for P3; thus, fatigue samples from two different build heights could be extracted. P1 and P2 were produced 
using the process parameters prescribed by EOS; the only difference was that an improved inert gas recirculation 
system was used in the powder-bed machine for P2. P3 differed from P2 with regard to two process parameters: 
the layer thickness (30 µm vs. 60 µm) and the platform pre-heating temperature (165 ℃ vs. 200 ℃ as in [53]). 
The details of the manufacturing parameters adopted are reported in Table 2, together with porosity values 
evaluated by X-ray micro-CT [17]. Additional information on the materials and processes is presented in previous 
reports [35, 51]. 

Defect analysis for the three sample batches was conducted, and the defects were compared among the batches, 
as shown in Figure 2. The following observations were performed: i) X-ray µCT of gauge sections prior to fatigue 
testing, ii) scanning electron microscopy (SEM) of the FS after fatigue testing, and iii) optical microscopy of the 
PSs from the grips after fatigue testing. The number of samples considered for each batch in each observation 

method is presented in Table 1. The defect size was described by the √area parameter, which allowed the impact 
of the defects on the fatigue to be simply described regardless of the defect shape [36]. 

 

Figure 2: Schematics of the defect investigation methods employed. 
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Table 1: Main dimensions of the samples investigated. 

Process Number of samples considered Gauge length 
(mm) 

Gauge diameter 
(mm) 

Grip diameter 
(mm) CT FS PS 

P1 3 9 4 13 5.1 11.5 
P2 3 8 4 16 6.0 12.0 
P3 2 4 4 11 5.5 10.0 

 

 

 

Table 2: Processing parameters adopted for the three LB-PBF processes (∗ data not disclosed due to confidentiality agreement with the 
manufacturer) and porosity values associated. 

Process parameter P1 P2 P3 

Laser beam power (W) 1000 1000 * 
Energy input (J mm-3) * * 50 

Laser beam focus diameter (µm) 90 90 90 
Layer thickness (µm) 60 60 30 

Pre-heating temperature of the platform (°C) 200 200 165 
Porosity in the samples (%) 0.12 – 0.28 0.15 – 0.38 0.02 – 0.04 

 

2.1. X-ray µCT 

X-ray µCT was performed on the gauge sections using a Phoenix V|tome|X m (General Electric). Table 3 presents 
the main scan parameters. Reconstruction of the scanned volumes was performed using the Phoenix datos|x 
software (General Electric) to optimize the correction methods for smoothing, beam hardening, ring artefacts, 
and post-alignment. Defect analysis was conducted using the VG Studio Max 2.2.1 software (Volume Graphics 
GmbH) using the custom method VGDefX with automatic settings. The defect population was resolved with 

respect to the position and volume, and √area data (i.e., the square root of the area projections along the loading 
direction, which is a standard size parameter provided by the defect analysis software) were derived. These data 
were then analyzed using appropriate statistical methods for estimating the size of the defects at the fracture 
origin (see Sec. 4.2). 
 
Table 3: Process parameters employed for µCT (from [50]). 

µCT process parameter Value 

Voltage (kV) 230 
Current (µA) 100 

Size of voxel side (µm) 15 
Exposure time (ms) 1000 
Number of images 1000 

Focus–object distance (mm) 67.8 
Focus–detector distance (mm) 815 
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2.2. Fractography 

The samples were tested using an Instron E10000 machine in the high-cycle fatigue [16] and low-cycle fatigue 
regimes [17]. The specimen orientation can influence the distribution of the defects. To avoid this effect, only 
samples produced in the vertical direction were considered in this study. After the fatigue testing, the fractured 
samples were prepared for fractography via SEM. The size of the killer defects, which indicated the origin of 
fatigue failure, was measured and referred to as the critical defect size. The measurements were performed by 
manually selecting the visible LoF area as in the example of Figure 3b and evaluating the area of the selection 
using the ImageJ software. The effective equivalent crack size was measured according to the empirical rules 
commonly adopted for such problems [36]. 
 

2.3. Metallography 

For optical microscopy, 24 cross sections per batch (four fatigue samples per batch, two grips per sample, three 
sections per grip) were cut from the grips and prepared via a standard metallographic procedure according to 
ASTM E2283 [45]. Then, 2D images were obtained using a Leica DMI 5000 M optical light microscope and 
processed using the Leica Application Suite V5 software. Stitched images were created to record the complete 
cross section. As the defect detection was performed manually, only the largest visible defects for each cross 
section were identified and recorded (3–8 defects per cross section). The maximum defect size for each cross 
section was determined via the Leica software measuring tools and image processing. The same hypotheses 
about the effective crack size determination reported in Sec. 2.2 were adopted. 
 

3. Results 

Table 4 presents the volume of material analyzed, the number of defects sampled, the size of the average and 

largest defects detected for the three techniques, and the standard deviation of the measurements. Examples 

of the visual results for the µCT, fractography, and metallographic analysis are shown in Figure 3. The definition 

of the volumes examined using the metallographic analyses and fractography is not trivial and is discussed in 

Sec. 3.2. 
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Figure 3: Example of the defects detected by the three analyses: (a) slice obtained via µCT; (b) FS after fatigue testing; (c) PS of one grip 
cross section.  
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Table 4: Results of the three analyses for the three processes. 

Process Analysis 
Sampled volume 

(mm3) 
Number of 

defects 
Average defect 

size (mm) 
Largest defect 

size (mm) 
Standard 

deviation (mm) 

P1 
CT 3.49 × 103 56738 0.066 0.572 0.030 
PS 2.77 × 102 24 0.111 0.267 0.049 
FS 4.69 × 102 9 0.250 0.361 0.047 

P2 
CT 4.19 × 103 160609 0.057 0.382 0.014 
PS 1.84 × 102 24 0.068 0.111 0.021 
FS 5.50 × 102 8 0.228 0.307 0.045 

P3 
CT 2.03 × 103 8940 0.052 0.157 0.010 
PS 6.42 × 101 24 0.034 0.062 0.014 
FS 5.85 × 101 4 0.077 0.110 0.032 

 

3.1. Defect types 

The optical investigation of the PSs indicated the presence of three major defect types: porosity, LoF, and pore 

clustering. In the following, two or more pores are regarded as a cluster if the distance between each other is 

smaller than the radius of the smallest [36]. Example images are shown in Figure 4. Although infrequent, pore 

clustering was detected analysing P1, while no clusters were detected considering P2 and P3. 
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Figure 4: Examples of the defects observed via optical microscopy of the PSs for P1: (a) porosity; (b) LoF; (c) pore cluster. 

The gas pores exhibit a typical spherical shape, whereas the LoF is more irregular and is typically elongated in a 

horizontal plane. Being composed by two or more pores, a cluster also shows some elongation along the building 

plane. Automatic distinction of the defect types during the analysis of µCT data is not trivial. Therefore, no 

distinction was made regarding the defects detected via tomography in the present investigation. However, a 

qualitative distinction based on the defect shape is exploited in Sec. 4.2 to support the choice of the threshold 

for POT maxima sampling. Regarding the fatigue failures, analysis of the FSs indicated that all failures originated 

from the LoF at the surface. 

 

3.2. Comparison of measurement methods and inspected volumes 

Table 4 shows that the maximum defect size detected via µCT is always larger than those measured via the other 

two methods. This result is reasonable for the metallographic analyses, but finding defects larger than the killer 

defects detected on the FS is counterintuitive. 

The differences in the size of the maximum defects detected were due to the different material volumes 

sampled. The volume sampled via µCT corresponds to the total material volume scanned, while this quantity in 

the metallographic investigation and fractography was approximated by multiplying the control area S0 for the 

average defect diameter measured, as shown in Figure 5. Note that pores detected on PSs are more likely sliced 
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not in the middle of the cross-sections, which causes a systematic underestimation of the defect size. Further 

discussion is presented in the following subsections. Accordingly, it is important to extrapolate the 

measurements to the same prospective volume, as explained in Sec. 4. 

 

Figure 5: Schematics of the volume analyzed, considering the (a) PSs and (b) investigation of the FSs after fatigue tests (surface gauge 
volume). 

 

3.2.1 Polished sections 

The inference of the distribution of 3D defects from 2D sections is a classical problem in stereology and statistics 

[54, 55]. The estimation of the distribution of the maximum defect in a volume 𝑉𝑐 from data on PSs with a control 

area 𝑆0 involves the description of the “corpuscle problem” in the statistical analysis [56]. 

A simple solution to this problem was proposed by Uemura and Murakami [57], who performed numerical 

simulations of random cuts in a volume containing exponentially distributed spherical defects, as shown in Figure 

5a. They defined a conventional control volume 𝑉𝑃𝑆, which is calculated as follows:  

𝑉𝑃𝑆 = 𝑆0 ⋅ ℎmean, (1) 

where ℎmean is the average size of the defect sections recorded in the 2D analysis (see the schematic in Figure 

5a). The overall volume investigated using the PS, as shown in Table 4, was calculated by multiplying 𝑉𝑃𝑆 by the 

number of maximum defects sampled (i.e., 24). Takahashi and Shibuya analyzed a theoretical model of Wicksell's 

problem under the hypothesis that the size distribution of random spheres follows a generalized gamma 

distribution [58] and reported a reasonable approximation of an equivalent volume (see Eq. (1)) compared to 

theoretical results. This approximation was adopted for the present analysis, although more complex models 

accounting for the non-spherical shape of LoF defects (the most detrimental ones for the three processes 

investigated as highlighted by fractographies [16]) can slightly improve the volume evaluation. 

 

3.2.2 Fracture surfaces 

Considering fatigue, failure occurs at the largest defect or inhomogeneity present in the most stressed volume 

[36]. In reality, knowing the defect size and applied stress is not sufficient to describe the fatigue strength of 

parts. Defects located at or close to the surface are more detrimental than internal ones, which is why most 

fatigue failures in AM materials start from surface defects [24, 29, 35, 60]. A robust assessment of the criticality 
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of a defect can be performed by determining the stress intensity factor (SIF). The simplest formulation of the SIF 

due to defects is that based on the √area parameter, which was proposed by Murakami [60]: 

𝐾 = 𝑌 𝑆 √𝜋 √area. (2) 

According to this formulation, the SIF for a surface defect is 30% higher than that for an internal one of the same 

size and subjected to the same stress 𝑆, as the boundary correction factor is 𝑌 = 0.65 for surface defects and 

𝑌 = 0.5 for internal defects. 

Romano et al. [16] demonstrated that, in the majority of cases, the killer defect of a cylindrical fatigue sample is 

the largest defect inside a surface volume 𝑉surf. Using a calculation similar to that presented in Eq. (1), this 

volume can be approximated by multiplying the outer surface area of the gauge section by a constant depth, 

which is estimated according to the average size of the killer defects within this batch (see Figure 5b). The overall 

volume investigated via FS analysis presented in Table 4 was therefore calculated by multiplying the number of 

specimens investigated (see Table 1) by the volume 𝑉𝐹𝑆 = 𝑉surf. 

 

 

4. Data analysis and extrapolation 

The distribution of the maximum value 𝑍𝑛 from a set of 𝑛 individual values 𝑍 described by a cumulative 

distribution function 𝐹𝑍 is [61] 

𝐹𝑍𝑛
= [𝐹𝑍]𝑛. (3) 

The modal value of 𝐹𝑍𝑛
 is called the characteristic maximum value over 𝑛 extractions (i.e., the value that, on 

average, is most frequently exceeded every 𝑛 extractions) and is the value of Z associated with a return period 

𝑇 = 𝑛. The cumulative probability of this quantity is described as follows: 

𝐹 = 1 −
1

𝑇
= 1 −

1

𝑛
. 

(4) 

There are two different approaches for addressing the statistics of extremes with appropriate sampling 

strategies—POT and BM—as schematically shown in Figure 6. On the one hand, BM is the most common and 

simple approach, which consists in dividing the specimen into several equivalent sub-volumes and selecting the 

maximum value contained in each sub-volume. On the other hand, POT is naturally applied to automatic 

measurements as those obtained by μCT and consists in considering all the values above a given threshold u, so 

that no important information is lost. In general, POT estimates are more precise than those obtained by BM 

[49]. The application of these approaches to the data collected is described in the following subsections. 
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Figure 6: Schematics of the BM and POT maxima sampling strategies (adapted from [50]). 

 

4.1. Analysis of PS data—BM approach 

The distribution of the extreme values 𝑋 ≡ 𝑍𝑛 (𝑛 → +∞) can be well approximated by a generalized extreme 

value distribution [44]. The X data can be sampled by recording the maximum defects in a given material volume 

𝑉0. If the distribution 𝐹𝑍 has an exponential tail, the distribution of 𝑋 = 𝑍𝑛 is described by the largest extreme 

value distribution (LEVD) [61]: 

𝐹max,𝑉0
(𝑥) = exp (− exp (−

𝑥 − 𝜆

𝛿
)), (5) 

where the parameters 𝜆 and 𝛿 (called the location and scale parameters, respectively) can be estimated using 

various data analysis methods [62]. The 𝑝-percentile of the distribution is 

𝑥𝑝 = 𝜆 − 𝛿 ⋅ log[− log(𝑝)]. (6) 

Given a prospective component volume (or, in general, a material volume) of interest, the return period of the 

characteristic maximum defect is 

𝑇 = 𝑉𝑐/𝑉0. (7) 

By exploiting the relationship between the cumulative probability and the return period (Eq. (4)), the 

characteristic maximum value �̂�𝑇 can be obtained as follows: 

𝑥𝑇 = �̂� − 𝛿 ⋅ log [− log (1 −
1

𝑇
)] ≈ �̂� + 𝛿 ⋅ log(𝑇), (8) 

where �̂� and 𝛿 are the estimates for the two distribution parameters. 

Figure 7a shows the LEVD probability plot for P1, which compares the distributions of the pores and LoF detected 

in the PSs. The image shows that the two defect types belong to different LEVDs, and the LoF distribution appears 

to be more critical with regard to size. The size of the pore clusters is similar to that of the LoF but, because of 

the small number of measurements, a reliable statistical description cannot be derived. Figure 7b indicates that 

a unique LEVD cannot provide a good description of various defect types. 

This observation is contradictory to the requirements of the defect assessment guidelines of ASTM 2283, which 

can only be applied to a single defect type. A competing risk model can be adopted for describing the prospective 

distribution of the maximum defect if different types of particles/inhomogeneities are present and recognized 
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[63]. Moreover, the data fitting with multiple defect types requires a suitable model description and additional 

data points, as in the approach presented in [63, 64]. 

 
Figure 7: LEVD of the PS data determined for P1 depicted in a Gumbel probability plot: (a) distinction according to the type of the maximum 
defect; (b) 24 maxima measured with no defect-type distinction. 

Therefore, the analysis of the PSs was performed by separating the pores from the LoF. Despite the different 

layer thickness and platform pre-heating temperature adopted, the largest defects on each PS were mainly the 

LOF for both P2 and P3. The evidence of LoF showing the largest size for all processes explains why this defect 

type was found at the origin of all fatigue failures. A separate LEVD was then fitted to the 24 maxima for both 

processes, and the most detrimental defect type (LOFs for the three series) was considered for the extrapolation. 

The LEVD parameters and the characteristic maximum values are presented in Table 5. The extrapolations were 

performed with respect to the surface gauge volumes 𝑉𝑐 = 𝑉FS, and the return period was calculated by 

substituting 𝑉𝑃𝑆 = 𝑉0 into Eq. (7) (the volume 𝑉𝑃𝑆 corresponds to the control volume of each of the 24 maximum 

defects considered). In Sec. 5, these results are compared to the measurements performed on the FSs to evaluate 

the effectiveness of PS analysis for critical defect size estimation. 

Table 5: Parameters of the LEVD distribution of defects from the PS data for the BM approach (see Eqs. (5) and (8)). 

Process VPS (mm3) 𝜆 (mm) 𝛿 (mm) 𝑥𝑇 (mm) 

P1 1.16 × 101 0.089 0.038 0.147 
P2 7.68 × 100 0.058 0.016 0.094 
P3 2.67 × 100 0.028 0.011 0.047 

 

4.2. Analysis of µCT data—POT approach 

An alternative approach to BM is the POT method, in which only the data above a sufficiently high threshold 𝑢 

are analyzed [48]. If the values 𝑧 > 𝑢 are considered (i.e., the values exceeding the threshold 𝑢), the data are 

described by a truncated distribution: 

𝐹𝑍(𝑧)[𝑢] =
𝐹𝑍(𝑧) − 𝐹𝑍(𝑢)

1 − 𝐹𝑍(𝑢)
. (9) 
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The distribution of the exceedances 𝑋 ≡ 𝑍: 𝑋 > 𝑢 can be approximated as a generalized Pareto distribution [44, 

45]. In most practical cases, the tail of the original distribution is exponential; therefore, the exceedances 𝑋 can 

be described by a negative exponential distribution 𝐹exc: 

𝐹exc(𝑥) = 1 − exp (−
𝑥 − 𝑢

𝜎
), (10) 

where 𝜎 is the mean value of the exceedances (𝑋 − 𝑢). The 𝑝-percentile is 

𝑥𝑝 = 𝑢 − 𝜎 ⋅ log(1 − 𝑝). (11) 

If 𝑁𝑢 defects larger than 𝑢 are collected in a volume 𝑉0, the return period of the maximum defect in a volume 𝑉𝑐 

is 

𝑇 = 𝑁𝑢 ⋅
𝑉𝑐

𝑉0
= 𝜌 ⋅ 𝑉𝑐 , (12) 

where 𝜌 is the volumetric density of the defects larger than 𝑢. The characteristic size of the maximum defect in 

𝑉𝑐 is then 

𝑥𝑇 = 𝑢 + �̂� ⋅ log(𝑇), (13) 

where �̂� is the estimate for the mean value of the exceedances. 

This method is suitable for analyzing CT measurements, as it allows small defects (which have a small influence 

on the material properties) to be neglected and a precise and robust fit of the upper tail of the data with high 

confidence to be obtained [50, 65]. Moreover, problems related to multiple defect types can be easily avoided 

by choosing a value 𝑢 that is only exceeded by the most detrimental defect type. 

This is clearly observed in Figure 8a, which illustrates the defect shape according to the µCT data for P1. Regarding 

the sphericity of the defects, it is clear that the small measurements are pores (sphericity above an empirical 

value of approximately 0.5), whereas the values above 150 µm (whose position is depicted in Figure 8b) have a 

more elongated shape because of the LoF. Here, the sphericity indicates the ratio between the surface area of a 

sphere with the same volume as the defect (𝑉def) and the surface of the defect (𝑆def): 

sphericity =
3

𝑅sphere
 
𝑉def

𝑆def
. (14) 

A negative exponential probability plot of the data clearly reveals that, above this threshold, the data become 

almost linear (Figure 9a) and can be described by an exponential distribution (Figure 9b), as previously reported 

[50]. 

The same procedure was conducted for the defect data from P2 and P3. The exceedances were fitted by a 

negative exponential distribution, as shown in Figure 9b. The characteristic maximum defect size 𝑥𝑇 was 

estimated using the POT approach (Eqs. (12) and (13)) considering a material volume of 𝑉𝑐 = 𝑉surf, as shown in 
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Figure 8: µCT results for P1: (a) decrease of the sphericity with respect to the defect size, considering all the data measured; (b) 
homogeneous distributions of the defects (left) and exceedances (right) detected in one of the specimens. 

 

 
Figure 9: Distributions of the defect sizes measured via µCT and evaluated using a negative exponential probability plot: (a) comparison of 
all the data; (b) fits for the exponential distributions of exceedances above the selected threshold. 

Table 6: Parameters of the negative exponential distribution of defects from µCT data based on the POT approach (see Eqs. (10), (12), 
and (13)). 

Process VCT (mm3) u (mm) 𝑁𝑢 𝜌 (defects/mm3) 𝜎 (mm) 𝑥𝑇 (mm) 

P1 3.49 × 103 0.150 1334 0.383 0.049 0.297 
P2 4.19 × 103 0.100 1319 0.315 0.021 0.187 
P3 2.03 × 103 0.100 21 0.010 0.014 0.074 
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5. Discussion 

5.1. Comparison and estimation of critical defect size 

The characteristic maximum defect sizes for the volume 𝑉surf estimated using the PS and CT methods are 

presented in Table 5 and Table 6, respectively. To investigate the quality of the extrapolation, it is important to 

compare the predictions with the defects at the origin of failure with regard to the distribution. 

Using Eq. (3), the distribution of the maximum defect size in 𝑉surf can be estimated as shown in Eqs. (15) and 

(16) for the BM and POT methods, respectively: 

𝐹max,𝑉surf,𝑃𝑆(𝑥) = [𝐹max,𝑉PS
]

𝑇
 (15) 

 

𝐹max,𝑉surf,𝐶𝑇(𝑥) = [𝐹exc(𝑥)]𝑇 , (16) 

where T is calculated using Eq. (7) for BM and Eq. (12) POT. 

Figure 10a presents a comparison of the results obtained for P1 in the LEVD probability plot. As shown, both the 

PS and CT estimates are close to the experimental distribution of the killer defects, and the slope of the data is 

correctly determined. However, the analysis of the µCT data provides a conservative estimation of the critical 

defect size, whereas the analysis of the PS data yields non-conservative values. Moreover, µCT has the further 

advantage of being a non-destructive technique. 

Figure 10b presents the defect sizes obtained via all the methods for the three processes. The characteristic 

maximum defect and 90% scatter band reported for the PS and CT estimates refer to the volume 𝑉𝐹𝑆 for the 

respective process (see Table 4). 

The results show that the extrapolation to 𝑉surf allows the prediction of the progressive improvement of the 

fatigue properties from P1 to P3 (see Figure 10b) based on both metallographic investigation and µCT. The sizes 

of the critical defects estimated according to the µCT data appear consistent and robust, with a slight but 

conservative overestimation for P1. The estimation of a critical defect size larger than the experimental one 

allows a smaller applicable load to be used in the Kitagawa-Takahashi diagram or the estimation of a shorter 

fatigue life via fatigue crack growth simulations. In contrast, the estimates obtained from PSs are less robust and 

generally non-conservative. 

Underestimation of the critical defect sizes could also arise from considering defect types that do not correspond 

to killer defects. Even though multiple defect types were detected, all the fatigue failures were caused by the 

LoF in the surface volume. On one hand, it was difficult to automatically distinguish pores from LoF via µCT 

analysis. On the other hand, Figure 7 clearly shows that a proper choice of the threshold for POT maxima 

sampling (i.e., 150 µm for P1) ensures that defect sizes that do not correspond to the killer defect type are nearly 

completely ignored. Considering clusters of pores, it is possible that small gaps between the defects are not 

recognised as base material and therefore a unique large pore is detected. This must be evaluated on a case-by-

case basis. Considering P1, the probability of measuring non-LoF defects with a size larger than 150 µm is 

expected to be small. In fact, the largest pore cluster detected on PSs having a gap smaller than two times the 

voxel size used for µCT measured approximately 100 µm. Moreover, a few incorrect measurements do not 

sensibly affect the statistical analysis performed on all LoF data. This issue is even less likely considering P2 and 

P3, as no clusters of pores were detected. 
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Figure 10: Experimental critical defect size (FS) compared with extreme value estimates based on CT or PS data: (a) LEVD probability plot 
for P1; (b) overview of the three processes. 

 

5.2. Cost and efficiency 

Another focal point of this study is the comparison of the costs and efficiency of X-ray µCT and metallography, 

which are the most frequently used methods for defect analysis. For this, the time required to perform both 

investigations in this study was estimated according to the laboratory infrastructure available. The estimates are 

based on an experienced operator using fully functional equipment. Table 7 presents the time needed for all the 

analysis steps of the respective methods. All the data are based on the procedure, equipment, and material 

adopted for the present investigation. The time includes both man hours (i.e., time needed for an operator to 

conduct or actively supervise the job) and analysis time/waiting time (i.e., process time that does not require the 

attendance or supervision of the operator). 

Table 7: Comparison of X-ray µCT and PS microscopy with regard to man hours and analysis time needed to complete the defect analysis 
of one sample and a batch of four samples. X-ray µCT analyzes the gauge section, while PS microscopy considers six cross sections from 
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the grips per sample. Regarding defect analysis, X-ray µCT considers all defects above a predefined threshold, while PS microscopy only 
considers the three largest defects per cross section. 

X-ray µCT PS microscopy 
Step Man 

hours 
(h) 

Analysis/
waiting 
time (h) 

Step Man 
hours 

(h) 

Analysis/
waiting 
time (h) 

Preparation 0.33 0.00 Cutting of six microsections 0.60 0.00 
Scanning process 0.00 2.50 Cold embedding (three 

microsections per embedded 
sample) 

0.08 0.00 

Reconstruction 0.20 0.50 Curing time of resin 0.00 8.00 (only 
once) 

File opening 0.20 0.50 Manual mechanical grinding 1.00 0.00 
Software detection and 
calculation of defect sizes 

0.00 1.50 Semiautomatic mechanical 
polishing 

0.25 0.00 

   Optical light microscopy – image 
capture 

1.50 0.00 

   Optical light microscopy – 
Interpretation and calculation of 
defect sizes 

0.60 0.00 

Total per sample 0.73 5.00 Total per sample 4.03 8.00 
Total per batch (i.e., three 
samples) 

2.19 15.00 Total per batch (i.e., four samples) 16.12 8.00 

 

As discussed in Section 4, the most convenient data-acquisition method was adopted for each investigation 

technique, i.e., POT maxima sampling for the µCT data and BM sampling for the PS. This led to a significant 

difference in the number of sampled defects between the CT and PS, as shown in Table 4. 

The larger number of defects sampled by µCT is also indicated by the longer analysis time (15 h per batch). Apart 

from this, the amount of man hours needed (usually for initiating the processing) is small overall (2.19 h per 

batch) compared with that for PS microscopy (16.12 h per batch). This is mainly due to the lack of automation of 

the metallographic preparation and the use of light microscopes. 

With regard to financial expenses, a simple cost assessment was performed for the analysis conducted in an 

internal facility or contracted externally. Quotation of investment and maintenance for CT refer to the specific 

lab location (i.e., Europe) and machine. Although limited variations may be expected, the results and comments 

are not expected to be sensibly affected. Although the costs reported herein are only applicable for this study, 

they showcase various aspects and focal points to consider for the selection of a reliable and profitable method 

in an industrial setting. 

For an internal laboratory, the costs for investment 𝐶𝑖 and maintenance/consumables 𝐶𝑐 are evenly distributed 

along the lifetime 𝐿, which is assumed to be 10 years in both cases. The internal cost per batch 𝐶𝑏 was calculated 

as follows: 

𝐶𝑏 = (
𝐶𝑖

𝐿
+ 𝐶𝑐) ⋅

𝑇𝑏

𝑁ℎ
 + 𝐶𝑚 ⋅ 𝑇𝑚, 

(17) 
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where 𝑇𝑏 is the time needed to analyze one batch of material, 𝑁ℎ is the availability of the machines per year, 𝐶𝑚 

is the hourly wage of an experienced technician, and 𝑇𝑚 is the amount of man hours needed for the analyses, as 

reported in Table 7. The values of 𝐶𝑚 serve as a reference and assume a CT technician wage 25% higher than the 

industry standard owing to the additional training needed. The availability 𝑁ℎ was assumed to be higher for CT 

scanning than for PS microscopy, as an important part of the tomography, reconstruction, and defect analysis 

can be performed at night without the presence of a technician. 

The investment cost and the maintenance/consumables cost for metallography were estimated by considering 

the standard equipment needed, i.e., the cutting machine, grinder, polisher, cold mounting equipment, optical 

microscope, workstation, and application software. For µCT, the costs are based on the Phoenix V|tome|X m 

(General Electric), workstation, and VG Studio Max 3.2 software. The cost for outsourcing was estimated 

according to the typical prices of specialized labs on the market in 2018 (costs excluding value added tax). 

As both methods consider significantly differing volumes, which can be investigated to a reasonable extent of 

experimental time and effort, the cost per unit volume 𝐶𝑣 was also determined. 𝐶𝑣 was calculated by dividing 𝐶𝑏 

by the overall volume investigated (see Table 4). The cost assessment of µCT for P3 was performed by increasing 

the volume investigated by 50%, i.e., considering the analysis of three samples, as for P1 and P2. Table 8 

compares the aforementioned costs. 

Table 8: Estimated costs for defect analysis via PS microscopy and CT scanning, either performed by an internal laboratory or outsourced 
to a third party. 

 Internal lab Outsourced contract 
 PS CT PS CT 

Investment 𝐶𝑖 (€) 131k 650k - - 
Maintenance + consumables 𝐶𝑐 (€/year) 8.9k 20.0k - - 
Machine availability 𝑁ℎ (h/year) 1500 2000   
Time per batch 𝑇𝑏 (h) 24.12 17.19 - - 
Technician wage 𝐶𝑚 (€/h) 80 100   
Man hours 𝑇𝑚 (h) 16.12 2.19 - - 

Cost per batch 𝐶𝑏 (€) 1643 950 4500–6500 1800–2700 

Cost per unit volume 𝐶𝑣 (€/mm3) – P1 5.93 0.27 16.25–23.47 0.52–0.77 
Cost per unit volume 𝐶𝑣 (€/mm3) – P2 8.93 0.22 24.46–35.33 0.43–0.64 
Cost per unit volume 𝐶𝑣 (€/mm3) – P3 25.59 0.31 46.73–67.50 0.89–1.33 

Although the estimated costs per batch significantly vary with respect to the technician wage, the results show 

a relatively small difference in the costs for internal labs between the two procedures adopted. The estimated 

cost for analyzing 24 PSs is approximately twice that for performing µCT on three samples. 

The estimates for the PS case can be improved by investigating a larger volume, i.e., a volume on the order of 

that evaluated via µCT. Nevertheless, the cost comparison per unit volume reveals that, when the volume to be 

investigated increases, PS becomes less profitable, whereas µCT remains cost-effective. These results agree with 

those previously reported for SLM Ti-6Al-4V [51] and contradict the conclusion of P. Wang et al. [52], who stated 

that PS microscopy observations are cheaper and more accurate than µCT scans. 

With the improvement of the material quality, the cost per unit volume for PS increases to a greater degree than 

that for µCT. This is because the average defect size—and therefore the equivalent volume investigated via 2D 

analysis—decreases. For this reason, a larger sectional area has to be investigated via PSs. Finally, it is worth 

noting that inspection via X-ray µCT becomes less effective when applied to high-density materials or in the 

presence of very small defect sizes. For this reason, a larger sectional area has to be investigated via PSs. Finally, 
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it is worth noting that inspection via X-ray µCT becomes less effective when applied to high-density materials or 

in the presence of very small defect sizes. These limits and others are well known and are described in detail 

specifically for additively manufactured materials in [24] and more generally for materials sciences in [66]. In 

these cases, PS analysis might result a simpler and more cost-effective process but with potentially useful 3D 

information lost. Similar considerations can be drawn regarding surface quality assessment for additively 

manufactured materials in the net-shape condition [67,68] , which is why standardized procedures are being 

presented, see for example [69]. 

 

6. Conclusions 

The quality of three batches of AlSi10Mg produced by SLM was investigated with regard to fatigue strength by 

evaluating the distribution of manufacturing defects. The defect distributions were investigated via optical 

microscopy of the PSs and X-ray µCT. The results thus obtained were then compared to the size of critical defects 

measured on FSs after applying statistics of extreme to evaluate consistent material volumes. 

The following conclusions are drawn. 

 Both methods were able to predict the variation in critical defect size between the three batches and can 

therefore be used for a qualitative comparison of fatigue strength. 

 The application of statistical methods to estimate the critical defect size of fatigue samples yielded robust 

results when based on µCT data, whereas non-conservative estimates were obtained via metallographic 

analyses. 

 To obtain precise estimates, it is necessary to investigate a sufficient material volume to correctly describe 

the distribution of the critical defect type. 

 µCT appears to be preferable over metallographic analysis because it allows the quick investigation of larger 

material volumes and the measurement of the defects in their most critical section. Moreover, µCT has the 

further advantage of being a non-destructive technique. 

 A comparison of the work and analysis effort between the methods revealed that metallographic inspection 

requires a larger amount of man hours, while the cost per batch is comparable to that of µCT. Moreover, 

µCT becomes more cost-effective with the increase of the investigated material volume. 

 The cost difference between PS and µCT becomes even larger in the case of outsourcing, with metallography 

being more expensive than µCT even for relatively small material volumes. 
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