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We investigate asset management in a regime switching framework when the fund man-

ager aims to beat a certain target for the assets under management over an infinite
horizon or over a finite horizon. We consider both a full information and a partial infor-
mation setting. In a full information setting, the asset manager tends to take more risk

in the good state and less risk in the bad state with respect to the constant parameter
environment. Confidence risk induces the agent to increase his risk exposure.
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1. Introduction

The recent financial crisis has shed some light on risk incentives and remuneration

schemes. While the academic literature has investigated the issue mostly in a con-

stant investment opportunity environment, the financial crisis has suggested the

possibility that a non convex remuneration scheme may induce excess risk seeking

when financial markets are bubbling. In other words, bonus compensation and ir-

rational exuberance may create a dangerous mix. Charles Prince (the former CEO

of Citi) said it explicitly: “As long as the music is playing, you have got to get up

and dance”.a

In this paper we investigate this claim analyzing asset management in a regime

switching framework when the fund manager aims to beat a given target for the

assets under management (wealth) that coincide with the fund performance. We

consider several different remuneration schemes: i) fixed bonus when a target is

reached, ii) fixed bonus if the target is reached over a finite horizon, iii) fixed bonus

when the manager outperforms a benchmark by a given threshold, iv) high water

marks contract. The first two schemes are motivated by absolute return performance

fees, i.e., the manager is remunerated according to the absolute performance of the

fund. The third one mimics a remuneration based on the performance of the fund

relative to a benchmark. Finally, high water marks contracts are widely used in

aFinancial Times, “Citigroup chief stays bullish on buy-outs”, July 9, 2007.
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the hedge fund industry. The analysis of these four reward fee schemes allows us

to conduct a comprehensive analysis on the effects of non convex remuneration

schemes in a regime switching environment.

Regime switching is modeled assuming that the drift and the volatility of the

geometric Brownian motion of the asset price evolve as a continuous time Markov

chain with two states. We consider both a full information and a partial information

setting. In the first case the manager observes the state of the Markov chain, in the

second one he does not observe the state of the Markov chain but forms his beliefs

on it through the observation of the asset price. The regime switching setting is

interesting because it allows us to model in a simple way a mean reverting dynamics

addressing some regularities observed in the asset pricing-management literature,

see Ang & Timmermann (2012), Cecchetti et al. (1990), Guidolin & Timmermann

(2007), and in the option pricing literature, see Buffington & Elliot (2002), Eliot et

al. (2005), Guo & Zhang (2004).

The main goal of the paper is to analyze how a target driven asset allocation is

affected by the risk of a switch in the state of the economy and by the estimation

risk about the state. The first issue is addressed considering the full information

setting, the second one considering the partial information setting.

There are no transaction costs, therefore in a full information setting the man-

ager can redefine the strategy promptly as the state of the economy changes. How-

ever, this possibility does not imply that the optimal portfolio coincides with the

one obtained in a constant parameter environment. As a matter of fact, in a good

(bad) state the manager may decide to overweight or underweight the risky asset

position exploiting the momentum and fearing (waiting) a switch to the bad (good)

state. This consideration does not affect the optimal portfolio of an agent maximiz-

ing the expected utility from terminal wealth. In fact, in Sotomayor & Cadenillas

(2009) authors showed that in case of a utility function with constant relative risk

aversion, the optimal portfolio is the constant weight obtained in the constant pa-

rameter environment with state dependent parameters (drift and variance matrix).

Therefore, the regime switching environment does not affect the optimal policy ob-

tained in case of constant parameters, simply the agent switches as the state changes

always adopting the investment policy obtained in the state as if the parameters

were constant.

Considering a target driven remuneration scheme we show that the risk of a

regime switch affects the optimal investment policy obtained in the case of constant

parameters. Differently from what is observed in the constant parameter setting,

see Browne (1995, 1997), when the agent is rewarded with a constant bonus as

the assets under management touch the target, the solution is no more a constant

weight. When the assets under management are low and the target is far away, the

agent overweights the risky asset in a good state (high Sharpe ratio) compared to

the constant parameter solution, and he takes less risk in a bad state underweighting

the risky asset. The effect is reversed when the value of the assets approaches the

target. Instead, when the target has to be reached over a finite horizon, the asset
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manager always takes more risk in the good state and less risk in the bad state with

respect to the constant parameter environment. The rationale for this behavior is

that in the good state the manager exploits the momentum and takes more risk

fearing a switch to the bad state. On the other hand, in the bad state, the manager

expects a switch to the good state and therefore he takes less risk.

In a constant parameter environment, the investment strategy is not monotone

in the Sharpe ratio and therefore the investment in the risky asset in the bad state

can be higher than the investment in the good state. If this happens, we demonstrate

that the ranking is reversed when the probability of having a switch is large enough.

This is due to the above attitude of the manager to exploit the momentum in a

good state fearing a switch to the bad state or to wait for a switch in case of a bad

state. When the switching probability is high, the above effect becomes significant

and the rank obtained in a constant parameter environment is reversed. Therefore,

with a high enough switching probability, the agent always takes more risk in the

state with the higher Sharpe ratio.

In a partial information setting, the agent faces a confidence risk, i.e., the change

of his beliefs about the state of the economy. It is worthwhile to observe that in a

two regime switching model beliefs update and asset returns are positively corre-

lated. In other words confidence risk is positively correlated with market risk. As

a consequence, an agent more risk averse than a logarithmic utility would attempt

to hedge the confidence risk buying less of the risky asset with respect to the con-

stant parameter optimal investment strategy, i.e., the hedging demand is negative,

see David (1997), Honda (2003). In our setting we show that the agent’s attitude

towards confidence risk is similar to what we observe in a full information setting:

the agent tends to overweight (underweight) the risky asset when he believes that

the good state is more (less) likely. Over an infinite horizon this phenomenon is

observed for a low wealth and the reverse occurs when the wealth approaches the

target. When the horizon is fixed the effect is observed for every level of wealth.

Moreover, we observe that the agent takes a long position in the risky asset also

when he assigns a small probability to the favorable state (the one with a positive

risk premium).

When we consider the case of a manager who is remunerated as the benchmark

is beaten over an infinite or a finite horizon, the above results under full and partial

information are confirmed. The high water mark contract case renders an analysis

similar to what is observed in the infinite horizon setting. In both cases, the manager

takes more (less) risk in the good (bad) state.

This paper adds to the literature on incentive fees and asset management show-

ing that a non convex remuneration scheme leads to excess risk seeking, see Car-

penter (2000), Goetzmann et al. (2003), Grinblatt & Titman (1989), Panageas &

Westerfield (2009), Ross (2004). We can conclude that the regime switching environ-

ment induces excess risk taking in the favorable state when the horizon is fixed or

is infinite and the target is far away. This confirms that a bubble may be reinforced

by a non convex remuneration.
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The paper is organized as follows. In Section 2 we introduce the regime switching

model in a full and in a partial information environment. In Section 3 we analyze

the asset management problem when the manager goal is provided by a fixed bonus

when the target for the assets under management is reached. In Section 4 we analyze

the case in which the manager goal is provided by maximizing the probability of

reaching a given target over a finite horizon. In Section 5 we extend the analysis

to the case of a manager who wants to beat a benchmark. In Section 6 we analyze

portfolio choices of a manager remunerated through a high water marks contract.

2. The Model

Let (Ω,F , P ) be a probability space on which a standard Brownian motion Z and

an independent two state continuous-time Markov chain Y are defined. The process

Y is right-continuous with values in {0, 1} and represents the regime of the economy.

In t = 0, Y (0) has outcome 1 with probability π and 0 with probability 1 − π.

The process Y (t) starting in state i remains in the same state for an exponentially

distributed length of time and jumps to state j 6= i with intensity λij . In what

follows we consider the symmetric case and we set λ01 = λ10 = λ.

The jump times are independent and independent of Z. The regime switching

and the Brownian motion generate the information filtration F = {FZ,Y
t } where

FZ,Y
t = σ(Z(s), Y (s), s ≤ t), i.e., FZ,Y

t is the augmented σ-algebra on Ω generated

by the observation of Z and Y up to t.

The agent can trade a riskless bond and a risky asset paying no dividend. The

riskless bond price B(t) satisfies

dB(t) = rB(t)dt, B(0) = 1

with a positive constant r, the risky asset price evolves as

dS(t) = S(t)µ(Y (t))dt+ S(t)σdZ(t), S(0) = S0.

As far as the information set is concerned, we consider two different information

environments: the full information, and the partial information one.

In the partial information setting, the volatility of the asset price is constant σ

and the drift is a function of the state Y (t). More precisely, we assume µ(0) = µ0

and µ(1) = µ1. Instead, under full information, we will also consider the case of

switching volatility, i.e., σ = σ(Y (t)). In the following, we denote by w(t) the wealth

fraction invested in the risky asset.

In the full information setting, the investor observes Y (t), Z(t), and S(t). In

this case, w(t) is adapted to FZ,Y
t . In the partial information setting, the agent

only observes the asset price S(t), he does not observe Y (t) and µ(Y (t)). In this

case, the investor’s information is defined by the filtration FS = {FS
t } where FS

t =

σ(S(s), s ≤ t). The investment policy w(t) is adapted to FS
t . In both cases, the

parameters σ, π, λ, µ0, µ1 are known constants.
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Let X(t) be the assets under management (wealth) of the manager. In the full

information setting, X(t) evolves as follows:

dX(t) = X(t)(w(t)(µ(Y (t))− r) + r)dt+ w(t)σX(t)dZ(t), X(0) = x. (2.1)

In the partial information case, we can identify a σ-algebra equivalent economy with

filtered probability

π(t) = P (Y (t) = 1|FS
t ), π(0) = π.

π(t) is the probability that the current regime is state 1 given the observation

S(s), s ≤ t. As shown in Honda (2003), filtering techniques yield that π(t) satisfies

the stochastic differential equation

dπ(t) = λ(1− 2π(t))dt+ π(t)(1− π(t))
µ1 − µ0

σ
dZ(t) (2.2)

where Z(t) is the standard Brownian motion defined as

Z(t) :=

∫ t

0

1

S(s)σ
dS(s)−

∫ t

0

µ̂(π(s))

σ
ds

with µ̂(π(s)) = π(s)µ1 + (1− π(s))µ0.

A σ-algebra equivalent is described by the risk-free asset, the filtered probability

space and the risky price process S(t) satisfying

dS(t) = S(t)µ̂(π(t))dt+ S(t)σdZ(t)

and the filtration FS generated by S.

A trading strategy w(t) is an adapted process and X(t) evolves as follows

dX(t) = X(t)(w(t)(µ̂(π(t))− r) + r)dt+ w(t)σX(t)dZ(t), X(0) = x. (2.3)

Note the following features of the stochastic differential equation (2.2) governing

agent’s beliefs: a) the larger the difference between the two states (µ1 and µ0),

the larger the volatility of beliefs, b) the larger the volatility of asset returns, the

smaller the volatility of beliefs, c) the process {π(t)}t≥0 is mean reverting, the mean

reversion speed is high when the switching probability λ is large. These features

imply that the degree of confidence on a state is mean reverting and the convergence

rate is proportional to the switching probability. Confidence on the state of the

economy is extremely volatile when the mean returns in the two states are different

and the return volatility is low.

3. Fixed bonus from reaching a target

Let us analyze the asset allocation problem for a manager who is rewarded with a

fixed amount of money (normalized to one) when the assets under managementX(t)

reach a certain target b provided that bankruptcy does not occur before (X(t) = 0).

Let us denote by

τb = inf{t > 0 : X(t) = b}
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the first hitting time of the target b of the assets under management, and by δ the

discount factor of the manager, then the asset allocation problem can be formulated

defining the optimal value function as

V (x) := sup
w

E
[
e−δτb |X(0) = x

]
(3.1)

subject to (2.1) under full information and (2.3) under partial information. In the

first case w(t) is adapted to FZ,Y
t , in the second case to FS

t . Notice that the manager

goes bankrupt when the assets under management reach the zero level, i.e., the

manager cannot leverage his position.

In Browne (1995, 1997) the problem has been analyzed in a no switching setting

(constant parameters). As a benchmark for our analysis, we report the main results.

Let λ = 0 and denote by µ the constant drift of the asset price. In this environment

the Hamilton Jacobi Bellman (HJB) equation becomes

sup
w

−δV + (w(µ− r) + r)xVx +
σ2w2

2
x2Vxx = 0, 0 ≤ x ≤ b, (3.2)

where we denote with Vx and Vxx the first and second order derivative of V with

respect to the variable x. The HJB equation is coupled with the boundary conditions

V (0) = 0, V (b) = 1.

The above problem can be solved analytically, providing a solution which satisfies

Vxx < 0, and therefore the optimal investment strategy is given by

w =
r − µ

σ2

Vx(x)

xVxx(x)
,

and the HJB equation can be rewritten as

−δV − 1

2

(r − µ)2

σ2

Vx(x)
2

Vxx(x)
+ rxVx(x) = 0, 0 < x < b. (3.3)

More precisely, simple computations lead to the value function given by

V (x) =
xC

bC
(3.4)

with

C =
δ + 1

2
(r−µ)2

σ2 + r −
√
(δ + 1

2
(r−µ)2

σ2 + r)2 − 4δr

2r
. (3.5)

Since 0 < C < 1, it holds Vxx < 0, and thus (3.4) is the solution of equations (3.2)

and (3.3), and the optimal strategy is given by

w =
1

C − 1

r − µ

σ2
. (3.6)

Note that the strategy is a constant weight as the one observed maximizing a

logarithmic or a power utility function from terminal wealth. So, the portfolio is

the golden rule (the strategy maximizing the expected logarithmic growth of rate)
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multiplied by the constant 1/(C− 1) that depends on the parameters of the model.

Note that the parameter C depends on the Sharpe ratio of the risky asset. It is easy

to show that the relationship between the Sharpe ratio and the fraction of wealth

invested in the risky asset is not monotonic.

3.1. Regime Switching with full information

We denote by V 0, V 1 and w0, w1 the value function and the optimal strategy in

state 0 and 1, respectively. The HJB equation for problem (3.1) becomes

sup
w0

−δV 0 + (w0(µ0 − r) + r)xV 0
x +

σ2(w0)2

2
x2V 0

xx − λV 0 + λV 1 = 0, (3.7)

sup
w1

−δV 1 + (w1(µ1 − r) + r)xV 1
x +

σ2(w1)2

2
x2V 1

xx − λV 1 + λV 0 = 0, (3.8)

x ∈ [0, b], and the boundary conditions are

V i(0) = 0, V i(b) = 1.

An explicit solution for the value function is not available. Existence of the

solution and uniqueness can be addressed via viscosity solution methods, see for

example Ceci & Bassan (2004), Chevalier et al. (2013), Pham (2009).

In order to compare the optimal investment strategy with the one obtained in the

no switching case, we solve the above problem numerically considering a finite dif-

ference technique to discretize the partial differential equation, coupled with the

Picard iterative scheme. The Picard iteration is an easy way of handling non-linear

ordinary differential equations (ODEs): it belongs to the class of fixed point algo-

rithms, and it is based on the idea of considering a known, previously computed

solution in the non-linear term so that this term becomes linear in the unknown.

The strategy is also known as the method of successive substitutions.

In the Appendix we describe in details our numerical technique. We would like to

stress that, considering as guess function the solution obtained in the no switch-

ing setting, our numerical scheme provides a sequence of functions {V i
m}m≥0 which

satisfy (V i
m)xx < 0 in all grid points and which converge to the solution V i. This

allows us to establish that the optimal strategies are given by the formula

wi =
r − µi

σ2

V i
x

xV i
xx

, i = 0, 1.

In what follows, we set b = 5, µ0 = 0.04, µ1 = 0.08, r = 0.05, δ = 0.04 and σ =

0.3. Note that there are no transaction costs, short selling is allowed, and volatility

is constant in the two states, then what is relevant in the asset allocation problem

is the absolute value of the expected excess return in the two states: |µ0− r| = 0.01

and |µ1 − r| = 0.03. For this set of parameters, state 1 is the good one not because

of a higher expected return but because the absolute value of the expected excess

return is higher than the one observed in state 0. In Figure 1 we represent the

fraction of the wealth invested in the risky asset also assuming µ0 = 0.06. Note
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Figure 1. Fixed bonus when a target is reached. No Switching and Switching with Full Information:
b = 5, δ = 0.04, r = 0.05, µ0 = 0.04 (left) and µ0 = 0.06 (right), µ1 = 0.08, σ = 0.3.

that in both cases the risky asset is more appealing in state 1 than in state 0, the

difference is that the manager short sells the risky asset in state 0 when µ0 = 0.04

and, instead, he invests a positive amount of wealth in both states when µ0 = 0.06.

Figure 1 shows that the optimal investment strategy is not of a constant weight

type: the exposure to the risky asset (|w|) decreases (increases) in the good (bad)

state as wealth increases. If we compare the optimal portfolio obtained in the regime

switching setting with full information with the one obtained in a setting with

constant weights (no regime switching, λ = 0 in Figure 1), we notice that when the

wealth is low the manager invests more (less or sells short less) in the risky asset

in state 1 (state 0) with respect to the no regime switching case. This attitude is

reversed when the reward target is approaching. The departure from the constant

weight strategy increases as the switching probability increases (λ goes up). So the

bias in the investment policy due to the switching probability is asymmetric with

more risk in the good state and less risk in the bad state when the wealth is low.

The opposite effect is observed when the wealth is next to the target barrier.

It seems that a reward through a fixed bonus as the target is reached induces

the agent to excess (less) risk taking in the good (bad) state with respect to his

investment strategy in the no switching setting when the barrier is far away. The

rationale is that in the good state the manager exploits the momentum and takes

more risk fearing a switch to the bad state. On the other hand, in case of the bad

state, when the target is far away the manager expects a switch to the good state

and therefore he takes less risk. Instead, when the wealth is close to the target, the

probability that the target is reached before a switch increases and therefore the

agent’s investment attitude is reversed in both states. Notice that when |µ1 − r| =
|µ0 − r| the optimal investment does not depend on λ, the investment weights are

constant and coincide with those obtained in case of constant parameters. This

interpretation is confirmed by the fact that the above phenomenon is magnified by

an increase in the switching probability λ. A similar result is obtained in Panageas



September 19, 2014 14:41 WSPC/INSTRUCTION FILE
Barucci˙Marazzina

9

Figure 2. Fixed bonus when a target is reached. No Switching and Switching with Full Information
(λ = 0.1): b = 5, δ = 0.04, r = 0.05, µ0 = 0.06, µ1 = 0.08, σ0 = 0.3, sr0 = 0.0333, σ1 = 0.5, sr1 =

0.06 (left) and σ1 = 0.4, sr1 = 0.075 (right).

& Westerfield (2009) in case of a high water mark fee, where it is shown that the

portfolio weight is increasing in the density of the jump determining the termination

of the fund.

In the full information setting, we can easily extend the analysis to the case with

both the drift and the volatility of the risky asset switching as the state changes

(µi, σi, i = 0, 1). As both the drift and the volatility change in the two states, the

risk-return profile can be evaluated according to the Sharpe ratio sri =
µi−r
σi

, i =

0, 1. In Figure 2 we consider two different sets of parameters, in both cases the

Sharpe ratio in state 1 is higher than the one in state 0. First of all, it is worthwhile

to notice that in a constant parameter environment the relationship between the

Sharpe ratio and the fraction of wealth invested in the risky asset is not monotone:

while in Figure 2-(right) the agent invests more in the risky asset in the higher

Sharpe ratio state (state 1) as it happens in Figure 1, the reverse behavior is shown

in Figure 2-(left). The figure also shows that when the wealth is low the manager

overinvests (underinvests) in the risky asset in the state with the higher (lower)

Sharpe ratio (state 1 and state 0, respectively) with respect to the strategy obtained

in the constant parameter setting. The reverse occurs when the wealth approaches

the target. This result confirms that when the target is far away the asset manager

invests more (with respect to the constant parameter setting) in the risky asset in

the favorable state fearing the switch to the bad state. This attitude is reversed

when the target is approaching.

Comparing the investment strategies in the two states in a switching environ-

ment for a low level of wealth, we observe that when a larger investment is obtained

in the good state with respect to the bad state for a constant parameter environ-

ment (Figure 2-(right)) the order is confirmed in a switching environment. When

a smaller investment is obtained in the good state for a constant parameter en-

vironment (Figure 2-(left)), the rank between the strategy in the good state and
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Figure 3. Fixed bonus when a target is reached. No Switching and Switching with Full Information

and different values of λ: b = 5, δ = 0.04, r = 0.05, µ0 = 0.06, σ0 = 0.3, sr0 = 0.0333, µ1 = 0.08,
σ1 = 0.5, sr1 = 0.06.

the one in the bad state is not univocally defined. To better understand this point,

in Figure 3 we deal with the parameter set analyzed in Figure 2-(left) considering

different values of the switching probability λ: the order obtained in the constant

parameter environment (lower investment in the state with the higher Sharpe ra-

tio) is confirmed in a switching parameter setting for a small wealth and a small

switching probability (e.g. λ = 0.005); instead if λ is large enough and the target is

far away, then the asset manager invests more in the risky asset in the state with

the higher Sharpe ratio with respect to the state with the lower Sharpe ratio. This

result confirms the interpretation provided above. In a good state, the fear of a

switch to the bad state induces always the agent to take more risk. The opposite

holds true in case of the bad state. When the switching probability is significant,

this attitude may even reverse the rank obtained in a constant parameter setting

yielding always an investment in the risky asset in the good state higher than in

the bad state.

3.2. Regime Switching with partial information

Considering the stochastic differential equation for beliefs (2.2), for a control pro-

cesses w the generator of a generic process g = g(t, x, π) is

Awg(t, x, π) = gt + (w(µ̂(π)− r) + r)xgx + λ(1− 2π)gπ

+
1

2
σ2w2x2gxx +

1

2
π2(1− π)2

(µ1 − µ0)
2

σ2
gππ + wπ(1− π)(µ1 − µ0)xgxπ (3.9)

where gt, gx, · · · , denote the derivatives of the function g.

Defining the optimal value function as

V (x, π) := sup
w

E
[
e−δτb |X(0) = x, π(0) = π

]
,
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Figure 4. Fixed bonus when a target is reached. Switching with Partial Information, no Switching,
Switching with Full Information: b = 5, δ = 0.04, λ = 0.1, r = 0.05, µ0 = 0.04, µ1 = 0.08, σ = 0.3.

the HJB equation becomes

sup
w

−δV + (w(µ̂(π)− r) + r)xVx + λ(1− 2π)Vπ +
σ2w2

2
x2Vxx (3.10)

+
π2(1− π)2

2

(µ1 − µ0)
2

σ2
Vππ + wπ(1− π)(µ1 − µ0)xVxπ = 0, 0 ≤ x ≤ b, 0 ≤ π ≤ 1

where µ̂(π) = µ0(1− π) + µ1π, with boundary conditions

V (0, π) = 0, V (b, π) = 1,

for 0 ≤ π ≤ 1.

The partial differential equation (3.10) is solved again with our numerical pro-

cedure.b More precisely, considering as guess function V0(x, π) = (1 − π)V 0(x) +

πV 1(x), where V i, i = 0, 1, is the solution of the corresponding problem with full

information described in Section 3.1, our numerical scheme provides a sequence of

solutions which satisfy Vxx < 0, and therefore the optimal strategy is given by

w =
−(µ̂(π)− r)Vx − π(1− π)(µ1 − µ0)Vxπ

σ2xVxx

.

In Figure 4-(left) we plot the optimal investment strategy for different values of

π assuming b = 5, δ = 0.04, λ = 0.1, r = 0.05, µ0 = 0.04, µ1 = 0.08, σ = 0.3. First

of all we notice that the optimal strategy is not of a constant weight type. For a

given level of wealth x, the investment weight is increasing in the initial probability

π that the agent assigns to the state with the higher expected return. Note that

also for a low level of confidence in the favorable state (e.g. π = 0.25) the agent is

long in the risky asset and not short as we would expect being µ0 < r. It seems that

the agent aiming to reach the target takes a high risk investing in the risky asset

bIn all our numerical experiments related to the partial information case we discretize the domain
(x, π) ∈ [0, b]× [0, 1] with a Cartesian grid of 200× 100 points.



September 19, 2014 14:41 WSPC/INSTRUCTION FILE
Barucci˙Marazzina

12

Figure 5. Fixed bonus when a target is reached. Switching with Partial Information (PI), compari-
son with a certainty equivalent drift strategy: b = 5, δ = 0.04, r = 0.05, µ0 = 0.04, µ1 = 0.08, σ =
0.3, λ = 0.01.

also when the probability guess would suggest to sell it short. Again, the rationale

is that |µ1 − r| = 0.03 > |µ0 − r| = 0.01 and therefore the agent aiming to reach

the target as soon as possible “bets” on the most favorable state (1) also when the

probability of being in that state is small. We can conclude that confidence risk

induces the agent to take a long position hoping to be in the good state.

For π = 0 and π = 1 we can compare the optimal investment strategies obtained

under partial information with those obtained under full information (see the previ-

ous subsection) and with those obtained with a constant investment opportunities

set. The comparison is provided in Figure 4-(right). When the wealth is low, in

the good (bad) state, confidence risk induces the agent to invest in the risky asset

more (less) than in the full information setting with regime switching and therefore

than in the constant parameter setting, when the wealth approaches the target the

phenomenon is reversed.

According to these results, confidence risk leads to a higher (lower) risk expo-

sure when the wealth is low (high) with respect to the full information setting.

Remember that confidence and market risk are positively correlated, therefore an

agent maximizing the expected utility in a partial information setting should take

less risk, see David (1997), Honda (2003), instead a pure target bonus induces the

agent to take excess risk when the target is far away. We can conclude that a re-

ward through a fixed bonus induces the agent to act as a risk lover with respect to

confidence risk. When the target approaches, the attitude changes for arguments

similar to those introduced in a full information world.

The interpretation is confirmed looking at Figure 5 where, for different values of π,

we compare the optimal investment strategy with partial information with the no

switching strategy with a drift equal to the expected drift according to the agent’s
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initial beliefs, i.e., µ̂(π) = µ0(1−π)+µ1π (certainty equivalent drift strategy). The

analysis confirms that the strategy obtained in the partial information setting is

riskier than the no switching one if the agent’s wealth is low, the reverse occurs

when the wealth approaches the target.

4. Reaching a target by a deadline

In this section we analyze the optimal investment strategy for an agent maximizing

the probability of reaching a certain target for the assets under management by the

end of the horizon [0, T ]. Set b the target, the optimal value function becomes

V (t, x) = E [P (X(T ))|X(t) = x] .

where P (x) := 1x≥b. We assume that reaching a zero wealth corresponds to

bankruptcy. Notice that for 0 ≤ t < T and for any wealth level x ≥ xmax =

xmax(t) := be−r(T−t), the value function V (t, x) = 1, and the optimal policy con-

sists in investing all the wealth in the risk-free asset to reach the target level at the

terminal time with probability 1.

This problem in a constant parameter setting has been addressed in Browne

(1999a). The author shows that the problem corresponds to solve the HJB equation

sup
w

Vt + (w(µ0 − r) + r)xVx +
σ2w2

2
x2Vxx = 0, (4.1)

on [0, T )× [0, xmax], with boundary condition V (t, 0) = 0 and V (t, xmax(t)) = 1 for

any t ∈ [0, T ) and terminal condition V (T, x) = P (x). The author proves that the

optimal solution is

V (t, x) = Φ

(
Φ−1

(
x

xmax

)
+ (T − t)

(
µ− r

σ

)2
)
,

w = w(t, x) =
µ− r

σ|µ− r|
√
T − t

xmax

x
φ

(
Φ−1

(
x

xmax

))
,

where we denote by φ (Φ) the density (cumulative) distribution function of a

standard normal random variable, respectively. Notice that the terminal condition

causes a discontinuity, since limt→T V (t, x) = x
xmax

6= P (x). The solution is not a

constant weight, it is time dependent and is affected through the normal density by

the distance of x from xmax.

4.1. Regime Switching with full information

In a regime switching environment with full information, the HJB equation becomes

sup
w0

V 0
t + (w0(µ0 − r) + r)xV 0

x +
σ2(w0)2

2
x2V 0

xx − λV 0 + λV 1 = 0,

sup
w1

V 1
t + (w1(µ1 − r) + r)xV 1

x +
σ2(w1)2

2
x2V 1

xx − λV 1 + λV 0 = 0,
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Figure 6. Fixed bonus if the target is reached over a finite horizon. No Switching, Switching with
Full Information: t = 0, b = 20, T = 1, µ0 = 0.04, µ1 = 0.08, r = 0.05, σ = 0.3. Right: zoom of

the state 1 case.

for 0 ≤ t < T, 0 ≤ x ≤ xmax = xmax(t) with terminal condition V i(T, x) = P (x),

i = 0, 1. Due to the bankruptcy condition, it must also hold V i(t, 0) = 0 for 0 ≤
t ≤ T, i = 0, 1. Moreover, V i(t, xmax) = 1 for 0 ≤ t < T, i = 0, 1. We also assume

that limt→T V i(t, x) = x
xmax

for i = 0, 1, to avoid the numerical problems related to

the discontinuity of the terminal function.

We solve this problem with our numerical procedure, coupling the finite differ-

ence scheme with the Picard fixed-point algorithm and using the solution of the

no switching case as guess solution at each time step tl = T − lδ, l = 1, · · ·M ,

with δ = T/M ,c obtaining a sequence of concave solutions, i.e., V i
xx < 0, i = 0, 1;

therefore the optimal policy is given by

wi =
r − µi

σ2

V i
x

xV i
xx

.

In Figure 6 we plot the optimal investment strategy in a full information en-

vironment in t = 0 for different values of λ together with the optimal investment

strategy obtained in case of no regime switching (λ = 0). First of all, we notice that

the agent takes less risk (absolute value of the portfolio weight invested in the risky

asset) as the wealth increases. As a general result, we have that the agent takes

more risk in state 1 (the most favorable one) for all level of wealth and less risk in

state 0 (the less favorable one) with respect to the no switching setting. Increasing

λ, the departure is amplified.

The interpretation of these results is similar to the one provided in case of a

fixed reward as the target is reached. Reaching a goal over a finite horizon induces

the agent to take excess (less) risk in the good (bad) state. The manager exploits

the fact that the state is good and takes more risk fearing a switch to the bad state.

On the other hand, in the bad state, the manager expects a switch to the good

cIn all our numerical experiments we set M = 50.
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Figure 7. Fixed bonus if the target is reached over a finite horizon. No Switching (λ = 0) and
Switching with Full Information (λ = 0.3): t = 0, b = 20, T = 1, r = 0.05, µ0 = 0.06, µ1 = 0.08,

σ0 = 0.3, sr0 = 0.0333, σ1 = 0.5, sr1 = 0.06 (left) and σ1 = 0.4, sr1 = 0.075 (right).

state and therefore he takes less risk. This interpretation is confirmed by the fact

that this phenomenon is magnified by an increase in the switching probability λ.

Differently from what has been observed in case of a reward for reaching a given

target over an infinite horizon, a reward over a finite horizon induces excess (less)

risk in the good (bad) state for all levels of wealth.

The analysis is confirmed considering the more general case where both the drift

and the volatility of the risky asset switch in the two states. In Figure 7 we consider

the case where the Sharpe ratio (volatility) in state 1 is higher (lower) than the one

in state 0. From this figure it is evident that in a regime switching environment the

agent performs a riskier strategy in the state characterized by the higher Sharpe

ratio with respect to the strategy obtained in a constant parameter setting, the

reverse holds true in the state with the lower Sharpe ratio. Note that in a constant

parameter environment the relationship between the Sharpe ratio and the fraction

of wealth invested in the risky asset is not monotone as the first depends (inversely)

only on the volatility, actually for our parameter sets the agent invests more in the

risky asset in the state with the lower Sharpe ratio (state 0). Numerical experiments

here not reported show that the rank is reversed as λ is increased: for the parameter

set considered in Figure 7-(right), the agent invests more in the risky asset in state

1 (the good state) than in state 0 (the bad one) if λ > 0.5. Again the explanation

of this phenomenon is that in the good state the agent is fearing a switch to the

bad state.
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Figure 8. Fixed bonus if the target is reached over a finite horizon. Switching with Partial Infor-
mation: t = 0, b = 20, T = 1, µ0 = 0.04, µ1 = 0.08, r = 0.05, σ = 0.3 and λ = 0.1

4.2. Regime Switching with partial information

In this case the HJB equation becomes

sup
w

Vt + (w(µ̂(π)− r) + r)xVx + λ(1− 2π)Vπ (4.2)

+
σ2w2

2
x2Vxx +

π2(1− π)2

2

(µ1 − µ0)
2

σ2
Vππ + wπ(1− π)(µ1 − µ0)xVxπ = 0,

for 0 ≤ t < T, 0 ≤ x ≤ xmax and 0 ≤ π ≤ 1, with boundary condition V (t, 0, π) = 0

and V (t, xmax, π) = 1 for 0 ≤ π ≤ 1.

We use our numerical procedure to solve the above problem, obtaining a se-

quence of solutions which satisfy Vxx < 0. Therefore, differentiating equation (4.2)

with respect to w, the optimal investment strategy is given by

w =
−(µ̂(π)− r)Vx − π(1− π)(µ1 − µ0)Vxπ

σ2xVxx

.

In Figure 8 we plot the optimal investment strategy in t = 0 for different beliefs

π assuming b = 20, T = 1, λ = 0.1, r = 0.05, µ0 = 0.04, µ1 = 0.08, σ = 0.3.

First of all, we notice that the agent takes less risk (absolute value of the portfolio

weight invested in the risky asset) as the wealth increases. The optimal strategies for

π = 1, π = 0.75 and π = 0.5 are very close one another with a positive investment

in the risky asset. Considering the case π = 0.25 (a small probability guess of being

in the favorable state 1), the agent invests a positive fraction of wealth in the risky

asset when the wealth is low. This behavior contrasts with the likelihood that he

assigns to a favorable regime and therefore the agent assumes a very risky position

betting against his beliefs. On the other hand, when the wealth is large enough, the

agent invests a small negative amount of wealth in the risky asset.

To conclude, in Figure 9 we compare the no switching setting, the regime switch-

ing setting with full information and with partial information. Considering π = 0 or
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Figure 9. Fixed bonus if the target is reached over a finite horizon. No Switching, Switching with
Full and Partial Information: t = 0, b = 20, T = 1, µ0 = 0.04, µ1 = 0.08, r = 0.05, σ = 0.3 and

λ = 0.1. Right: zoom of the state 1 case.

π = 1, we observe that the optimal investment strategies in the partial information

setting are riskier than those obtained in the full information and in the constant

parameter setting in the bad and in the good state. Note that also the strategy for

π = 0.5 is riskier than the one obtained with constant parameters in the good state.

We can conclude that confidence risk affects the strategy of the agent inducing

him to take excess risk overinvesting in the favorable state and underinvesting in

the bad state. The phenomenon is observed for all levels of wealth. Moreover, the

agent may decide to invest a positive amount of wealth in the risky asset also when

the likelihood that he assigns to a favorable state (positive risk premium) is low.

Summing up, the goal to reach a target over a fixed horizon induces a risky

strategy in a regime switching environment with full information (in the good state)

and partial information reinforces the excessive risk taking attitude. This effect

contrasts with what is obtained when the agent maximizes expected utility.

5. Relative performance bonus

The analysis can be extended to a remuneration scheme based on beating a bench-

mark over an infinite or a finite horizon. The main results on regime switching and

risk seeking are confirmed. Let us assume that the benchmark is driven by a geo-

metric Brownian motion with a drift switching at the same time as the asset price

does. The Brownian motion of the benchmark is correlated with the one of the asset

price. Note that we are in an incomplete market setting, i.e., the manager cannot

use the stock to replicate the benchmark.

The benchmark dynamics is provided by

dP (t) = P (t)α(Y (t))dt+ P (t)βdZ(t) + P (t)γdẐ(t) P (0) = P0.

with zero correlation between the Brownian motions Z and Ẑ. The drift is a function

of the state Y (t). More precisely, we assume α(0) = α0 and α(1) = α1. We follow
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Browne (1999b) assuming that the asset manager receives a fixed bonus (normalized

to one) the first time that the assets under management outperform the benchmark

by a multiplicative constant η.

The analysis can be developed considering the setting of Section 3: we look

for the optimal investment strategy to beat the benchmark by a fraction η before

bankruptcy that occurs for X(t) = 0. Let

τη = inf{t > 0 : X(t) ≥ (1 + η)P (t)} = inf{t > 0 : R(t) ≥ 1 + η},

and R := X
P

the process of the assets under management normalized by the bench-

mark, then the asset allocation problem can be formulated as follows

sup
w

E
[
e−δτη |R(0) = X(0)/P (0)

]
.

Assuming no switch and a drift for the risky asset S equal to µ0 and for the bench-

mark P equal to α0, the problem has been solved in Browne (1999b). In this setting,

the evolution of the process R(t) becomes

dR = R
(
r − α0 + β2 + γ2 + w(t) (µ0 − r − σβ)

)
dt+R(wσ − β)dZ(t)−RγdẐ(t).

The optimal investment strategy is a constant weight

w = −µ0 − r − σβ

Cσ2
+

β

σ
,

where C is the unique root which belongs to the interval (−1, 0) of the cubic equation

γ2

2
C3 +

(
Â+

γ2

2

)
C2 +

(
−δ + Â− B̂

)
C − B̂ = 0

with

Â = r − α0 + γ2 +
µ0 − r

σ
β, B̂ =

1

2

(
µ0 − r − σβ

σ

)2

;

see (Browne 1999b Section 6) for details.

Assuming a regime switching model with full information, and defining the value

function as

V i(z) = sup
w

E
[
e−δτη |R(0) = z, Y (0) = i

]
, i = 0, 1,

the HJB equation becomes

sup
w0

−(δ + λ)V 0 +
(
r−α0+β2+γ2+w0 (µ0−r−σβ)

)
zV 0

z

+
(w0σ − β)2 + γ2

2
z2V 0

zz + λV 1 = 0,

sup
w1

−(δ + λ)V 1 +
(
r−α1+β2+γ2+w1 (µ1−r−σβ)

)
zV 1

z

+
(w1σ − β)2 + γ2

2
z2V 1

zz + λV 0 = 0,

for z ∈ R
+.
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Figure 10. Fixed bonus when that manager outperforms a benchmark. Switching with Full Infor-
mation: η = 0.2, δ = 0.04, r = 0.03, µ0 = 0.06, µ1 = 0.08, σ = 0.3, α0 = 0.045, α1 = 0.085, β =
0.3, γ = 0.4. Zoom on z ∈ [0, 1 + η].

These equations can be solved concurrently with our fixed-point iterative method.

In Figure 10 we show the optimal strategies considering different values of λ and

η = 0.2, δ = 0.04, r = 0.03, µ0 = 0.06, µ1 = 0.08, σ = 0.3, α0 = 0.045, α1 =

0.085, β = 0.3, γ = 0.4. It can be observed that the optimal investment strategy

is similar to the one obtained in Section 3: it is not a constant weight, when the

wealth is low the agent invests more (less) in the risky asset in state 1 (0) with

respect to the case without regime switching. This attitude is reversed when the

reward target is approaching.

Under partial information, we obtain results similar to those shown in Section

3 (and therefore not reported for the sake of brevity), i.e., confidence risk induces

excess risk seeking with respect to the full information investment strategy. Instead,

considering the case of a fixed bonus if the manager beats the benchmark by a

fraction η by a terminal date T , we obtain results similar to those obtained in

Section 4.

6. High water marks remuneration scheme

In Panageas & Westerfield (2009) authors address the manager’s optimal invest-

ment problem when he is remunerated by a high water marks contract: the man-

ager receives a fraction of the increase in fund value in excess of the last recorded

maximum, the so-called high water mark, if such an increase took place. Mathe-

matically, assuming that the fund manager can invest in a risk-free and in a risky

asset, and that k is the fraction of the maximum increase that the manager receives
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Figure 11. High water marks contract. No Switching and Switching with Full Information and
different values of λ (left) and Switching with both Full and Partial Information (λ = 0.1) (right):

δ = 0.04, η = 0.1, r = 0.05, µ0 = 0.06, µ1 = 0.08, σ = 0.3, k = 0.2, h = 20.

as compensation, the asset management problem becomes

sup
w

E

[∫ τ

0

e−(δ+η)tkdH(t)

]
,

where τ is the (random) termination time of the fund, η is the constant intensity of

the Poisson process that models the termination time of the fund, and H(t) is the

running maximum of the wealth X(t), which evolves as follows

dX(t) = X(t)(w(t)(µ(Y (t))− r) + r)dt+ w(t)σX(t)dZ(t)− kdH(t), X(0) = x.

In Panageas & Westerfield (2009), the HJB equation is given by

sup
w

−(δ + η)V + (w(µ− r) + r)xVx +
σ2w2

2
x2Vxx = 0,

with V = V (x, h) for any 0 ≤ x ≤ h and h ≥ 0. The HJB equation is coupled with

boundary conditions V (0, h) = 0 for any h ≥ 0, i.e., for any value of the maximum

process, due to the bankruptcy condition, and Vx(h, h) = 1+ 1
k
Vh(h, h). In Panageas

& Westerfield (2009) authors provide a closed form solution for this problem. We

can provide a formulation of the problem in the full and in the partial information

case proceeding as above, solving it numerically. In Figure 11-(left) we compare the

no switching case with the full information one assuming δ = 0.04, η = 0.1, r =

0.05, µ0 = 0.06, µ1 = 0.08, σ = 0.3, k = 0.2, h = 20.

As obtained in Panageas & Westerfield (2009), we observe that in a constant

parameter environment the fraction of wealth invested in the risky asset in the good

state (state 1) is smaller than the one in the bad state (state 0). As expected, in the

good state, the agent invests in the risky asset more than in the no switching case

as λ increases, the reverse happens in the bad state. Moreover, if λ is large enough

(λ ≥ 0.3), the agent invests more in the risky asset in the good state than in the

bad one reverting the order obtained in a constant parameter environment.
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The results are similar to those obtained in case of a fixed bonus when the target

is reached. A reward related to the maximum dynamics induces the agent to excess

(less) risk taking in the good (bad) state for any level of wealth. In this case, in

the good state the manager exploits the momentum and takes more risk fearing a

switch to the bad state or the end of the fund. On the other hand, in case of the

bad state, the manager expects a switch to the good state and therefore he takes

less risk. As far as confidence risk concerns, in Figure 11-(right) we show that it

induces the agent to increase its exposure to the risky asset.

7. Conclusions

There are some anecdotes on how a non convex remuneration may affect man-

agement decisions in a non constant environment. The claim is that a manager

remunerated through a bonus when a target is reached will take risk in excess in a

bull market.

In this paper, considering several different target driven non convex remunera-

tion schemes, we have demonstrated this claim showing that in a two state regime

switching environment the manager’s risk exposure is high in a good state and is

low in a bad state. More precisely, in a full information setting, we have shown two

results.

In the good state (higher Sharpe ratio), the investment in the risky asset is higher

than the one obtained in the corresponding constant parameter environment. On the

other hand, in the bad state (lower Sharpe ratio) the investment in the risky asset is

lower than the one obtained in the corresponding constant parameter environment.

The effect is increasing in the switching probability. The rationale of this behavior

is that in the good state the manager exploits the momentum and takes more risk

fearing a switch to the bad state. On the other hand, in the bad state, the manager

expects a switch to the good state and therefore he takes less risk. The effect is

observed for all levels of wealth in case of a bonus over a finite horizon or a high

water marks remuneration, when the horizon is infinite this effect is observed only

when the target is far away.

In a constant parameter environment, the investment strategy is not monotone

in the Sharpe ratio and therefore the investment in the risky asset/risk exposure in

the bad state can be higher than those obtained for the good state. We have shown

that if the risk exposure in the good state without switching is higher than the risk

exposure in the bad state without switching, then the order is preserved when the

states switch. Otherwise, if the risk exposure in the bad state is higher than the

one obtained in the good state when no switching occurs, we have demonstrated

that this ranking is reversed in a regime switching environment if the probability of

having a switch is large enough. This is due to the above attitude of the manager to

exploit the momentum in a good state fearing a switch to the bad state or to wait

for a switch in case of a bad state. When the switching probability is high, this effect

can be so relevant that the rank obtained in a constant parameter environment is
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reversed when a regime switching setting is considered.

We have also shown that, contrary to what is observed in case of the maximiza-

tion of the expected utility, confidence risk induces the agent to take more risk in a

partial information environment.
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Appendix A. Numerical scheme

Let us consider the full information case and the ‘fixed bonus from reaching target

level’ problem (Section 3.1). In this case the Picard iteration scheme consists in

computing a sequence of solutions {V i
m}m≥0, and therefore a sequence of optimal

strategies {wi
m}m≥0, i = 0, 1, such that, given (w0

m, w1
m), V i

m+1 is the solution of

−δV 0
m+1+(w0

m(µ0 − r)+r)x(V 0
m+1)x+

σ2(w0
m)2

2
x2(V 0

m+1)xx−λV 0
m+1+λV 1

m+1=0,

(A.1)

−δV 1
m+1+(w1

m(µ1 − r)+r)x(V 1
m+1)x+

σ2(w1
m)2

2
x2(V 1

m+1)xx−λV 1
m+1+λV 0

m+1=0,

and the iteration scheme stops when the difference between two consecutive solu-

tions, max{||V 0
m+1 −V 0

m||, ||V 1
m+1 −V 1

m||}, computed in a suitable norm, falls below

a given tolerance level. Notice that, if the solution V i
m is concave, i.e., (V i

m)xx < 0,

then the related optimal portfolio strategy in state i can be computed asd

wi
m =

r − µi

σ2

(V i
m)x

x(V i
m)xx

, i = 0, 1. (A.2)

As already stressed above, given wi
m, equation (A.1) consists of two coupled

linear ODEs with respect to V i
m+1, and thus can be easily solved numerically con-

sidering a finite difference scheme. More precisely, we introduce a set of nodes, i.e.,

a mesh, {xj}Nj=0, with xj = j∆x, ∆x = b/N ; given the guess vector wi
0 defined

as {wi
0}j = wi

0(xj), i = 0, 1, j = 1, · · · , N − 1, for m = 0, · · · , we solve the linear

dThe couple (w0
m
, w1

m
) in equation (A.1), given (V 0

m
, V 1

m
), is the solution of

w0
m

= arg sup
w

−δV 0
m

+ (w(µ0 − r) + r)x(V 0
m
)x +

σ2w2

2
x2(V 0

m
)xx − λV 0

m
+ λV 1

m
,

w1
m

= arg sup
w

−δV 1
m

+ (w(µ1 − r) + r)x(V 1
m
)x +

σ2w2

2
x2(V 1

m
)xx − λV 1

m
+ λV 0

m
.
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system

−δV0
m+1+(w0

m(µ0 − r)+r)·x·TV0
m+1+

σ2(w0
m ·x)2
2

·DV0
m+1−λV0

m+1+λV1
m+1=0

−δV1
m+1+(w1

m(µ1 − r)+r)·x·TV1
m+1+

σ2(w1
m ·x)2
2

·DV1
m+1−λV1

m+1+λV0
m+1=0,

where the finite difference operator D is given by

{DV}j :=
V (xj−1)− 2V (xj) + V (xj+1)

∆x2
,

with V (x0) = 0 and V (xN ) = 1. Similarly T is the upwind finite difference operator

for the first order derivative, see Quarteroni et al. (2007) for further details. Notice

that in the above formulation f ·g and (f)2 represent the element-wise product and

square operators, respectively. The iterative procedure is repeated till the distances

V0
m − V0

m−1 and V1
m − V1

m−1, computed according to the l2 norm, fall below a

10−6 tolerance threshold. Finally, in all the numerical experiments related to the

full information case we set the number of grid points N + 1 equal to 2000.

It is well known that the Picard iterative scheme converges if the guess function

(V 0
0 , V

1
0 ) (and thus (w0

0, w
1
0)) is close enough to the solution of equations (3.7)-(3.8)

(and therefore to the optimal investment strategy). We refer to (McDonough 2008

Section 4.1.3) and Quarteroni et al. (2007) for details. In our numerical experiments,

we consider as guess function the solution obtained in the no switching setting,

and therefore wi
0, i = 0, 1, is computed according to (3.6). Our numerical scheme

provides a sequence of solutions {V i
m}m≥0 which satisfy (V i

m)xx < 0 in all grid

points: therefore the values {wi
m}m≥0 (and thus the vectors wi

m, with (wi
m)j =

wi
m(xj)) are computed according to (A.2).


