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Abstract—In previous work, we presented GenoMetric Query
Language (GMQL), an algebraic language for querying ge-
nomic datasets, supported by Genomic Data Management System
(GDMS), an open-source big data engine implemented on top
of Apache Spark. GMQL datasets are represented as genomic
regions (i.e. intervals of the genome, included within a start
and stop position) with an associated value, representing the
signal associated to that region (the most typical signals represent
gene expressions, peaks of expressions, and variants relative to
a reference genome.) GMQL can process queries over billions of
regions, organized within distinct datasets.

In this paper, we focus on the efficient execution of region-
preserving GMQL operations, in which the regions of the result
are a subset of the regions of one of the operands; most GMQL
operations are region-preserving. Chains of region-preserving op-
erations can be efficiently executed by taking advantage of an
array-based data organization, where region management can be
separated from value management. We discuss this optimization
in the context of the current GDMS system which has a row-based
(relational) organization, and therefore requires dynamic data
transformations. A similar approach applies to other application
domains with interval-based data organization.

Index Terms—Big data processing, data management, cloud
computing, genomic computing.

I. INTRODUCTION

Thanks to Next Generation Sequencing (NGS), the new tech-

nology for reading the DNA, data production for genomics has

exploded; by 2025, genomic data will exceed in size (by about

two orders of magnitude) data available on YouTube or other

Web-based video sources [23]. Most bio-informatic efforts are

concerned with primary and secondary data analysis, focused

on processing raw data from DNA sequencing machines and

on extracting signals from them. Typical signals describe DNA

regions which show variants from the reference genome (e.g.,

germline or somatic mutations) or which are most expressed

in specific experimental conditions (i.e., where RNA is mostly

produced or where proteins bind to the DNA). Genomic signals

in such region-based format are also called processed datasets
and are collected within huge repositories, open to the public

for secondary research.

With the growth and diversity of available genomic signals,

bio-informatics is now also targeting tertiary data analysis,
concerned with data analysis and mining for processed datasets

(see Fig. 1). Along this trend, we are currently developing a new,

holistic approach to genomic data modelling and querying. Our

approach is based on GenoMetric Query Language (GMQL)

[14], [15], a high-level query language for tertiary data analysis,

concerned with filtering, aggregating and joining heterogeneous

genomic signals in order to answer biological and clinical

queries over large repositories of tertiary data. GMQL data

model assumes a region-based data organization, where the

Fig. 1. Phases of genomic data analysis

elementary genomic information is the signal associated to a

given region. Regions produced by the same experiment share

the same data format and are assembled in a GMQL sample;
several samples are assembled in a GMQL dataset.
GMQL has been designed with two objectives. The first one

is to improve the expression of biological queries, by means

of new abstractions for tertiary data management; examples of

typical queries concern the search for regions of the genome

(e.g. genes) with high number of mutations, or of genes that are

under- or over-expressed in specific conditions, e.g. in normal

and tumor cells; Section V-E shows a complete example of

use of GMQL1. The second one is the efficient management of

massive data volumes which are required to cope with the explo-

sion of processed data. For this second reason, we implemented

GDMS, a Genometric Query Management System, which trans-

lates GMQL queries to operations of general-purpose cloud-

based engines [11]. GDMS was initially implemented on top of

Apache Spark [26], Apache Flink [5] and SciDB [2] - Spark and

Flink are classic data engines for Hadoop-based clouds with a

row-based data model, SciDB is a multi-dimensional database

designed for scientific data analysis. After an initial evaluation

of these engines, we focused on one of them: the current GDMS

implementation, described in [11], uses Spark. Our choice was

influenced by our domain-specific comparative analysis of Flink

and Spark [7] and of Spark and SciDB [8].

1For an account of biological queries supported by GMQL, see the Biological
Examples in the Documentation Section at http://www.bioinformatics.deib.
polimi.it/geco/?try.
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In this work, we present an important improvement of GDMS

in light of a distinctive property of genomic operations, which

is of general nature - and as such is applicable also to other

interval-based application domains. Specifically, we observe that

most GMQL operations are regions preserving; by this term,
we denote the operations in which all the regions of the result

are a subset of the regions of one of the operands. Of course,

this property does not hold in general, as the number of result

regions can grow quadratically with the number of regions of

the operands.
For executing region-preserving operations, we adopt an

array-based structure which is quite popular in Spark libraries

managing big datasets in preparation for machine learning -

where a specific dimension is used for partitioning big data into

subsets, organized in the format of large matrices, so that the di-

mension entries can be efficiently selected/compared/clustered.
While the adoption of an array engine for GDMS was

discarded [8] (due to lack of performance in many operations

over classic row-based engines) in this paper we demonstrate

that an array-based approach implemented in Spark is com-

mended for executing chains of region-preserving operations.
In such condition, the benefits of the optimization pays off

the cost of transforming some specific datasets from a row-

based model to an array-based model and back. Therefore, our

approach consists of detecting suitable parts of a query where

the optimization is applicable, and then apply an improved Spark

implementation to them.
Overall, we make the following contributions:

• We introduce a new multi-dimensional data model for

GMQL, which uses regions, samples and attributes as

dimensions and considers in the cells the values of each

attribute.

• We introduce the property of region-preservation and then
classify the GMQL operations according to how they

manage the dimensions. In this way, we analyze orthogonal

algebraic transformations from the point of view of the

multi-dimensional model.

• We identify chains of region-preserving operations and
we describe the invariant properties of queries over such

chains.

• We define a method for computing chains of region-
preserving operations which consists of an operation-

independent workflow pattern which embeds operation-

specific tasks, with suitable abstractions for taking advan-

tage of region-preserving operations in terms of large-scale

map-reduce steps.

• We provide an Apache Spark implementation of the

method that exploits classical Spark structures contiguous

to machine learning.

• We present an experimental evaluation which shows the
advantages of our solution.

The organization of this paper is as follows: Section II

describes the two data models used in this paper, the background

GMQL data model (with associated row-based physical model)

and the multi-dimensional Genomic data model (with asso-

ciated array-based physical model). Section III analyzes how

the significant subset of region-preserving GMQL operations

can be seen from a multi-dimensional perspective. Section IV

describes the algorithm for the efficient execution of chains of

multi-dimensional operations; its main aspect is the ability of

performing a reduction by regions that substitutes more complex
tasks. Section V shows that the new approach outperforms our

reference implementations by factors that increases significantly

with the depth of iterations and are not too influenced by region

sparsity; it also compares our SPARK implementation with a

native array-based implementation using SciDB. Section VI

presents a complexity analysis, Section VII describes related

work and Section VIII concludes.

II. MODEL

A. Background: Genomic Data Model (GDM)

The genome can be considered as a long sequence of posi-

tions, divided into sub-sequences or chromosomes; thus, each

region belongs to a chromosome, starts at a specific position
and stops at a specific position; strand denotes the reading

direction of the chromosome and can be missing. GMQL has

a domain-specific Genomic Data Model (GDM). Each dataset

consists of several samples, which describe genomic regions

extracted after a specific process (e.g., RNA expression of given

genes or variants of a given donor). Regions of the same dataset

have the same structure: all regions have coordinates, denoted by

attributes chr, start, stop and strand. Each region is
further characterized by a signal, consisting of an array of typed

values. Regions of the same dataset have the same signature,

also called the dataset schema.
Fig. 2 shows a small dataset with two samples, each region

schema has the coordinates and then three attributes pvalue,
qvalue, denoting the accuracy of the process used for pro-
ducing the regions, and score, denoting the read accuracy
from the sequencing machine. Note that two regions can have

identical coordinates, e.g. in Fig. 2 the second sample has 2

regions with the same coordinates. Each sample is separately

stored in hadoop distributed file system (HDFS) as a separate

file; its format is compatible with classical tab-delimited or BED

formats used by bio-informaticians.

SAMPLE1.BED

chr, start, stop, strand, pvalue, qvalue, score

chr1, 100, 200, +, 0.0002, 0.01, 500

chr1, 200, 300, -, 0.0003, 0.02, 300

chr2, 300, 400, +, 0.002, 0.03, 400

chr2, 400, 500, -, 0.0001, 0.01, 500

SAMPLE2.BED

chr, start, stop, strand, pvalue, qvalue, score

chr1, 100, 200, +, 0.002, 0.02, 300

chr2, 300, 400, +, 0.0002, 0.01, 100

chr2, 400, 500, -, 0.0002, 0.015, 600

chr2, 400, 500, -, 0.0002, 0.015, 300

chr3, 600, 700, +, 0.0002, 0.005, 300

Fig. 2. Dataset with 2 samples in GMQL format.

In addition to regions, each GMQL sample has also metadata,

in the form of semi-structured attribute-value pairs. They are

smaller in size and describe the experimental conditions; in

this paper, which is focused on region management, we omit

to deal with metadata and their processing (which is unchanged

as effect of the optimization).

When files are loaded by GDMS to the Spark engine,

typically after a selection used to filter only few samples out

of a larger dataset, they are stored with a row-based schema,

shown in Fig. 3.

B. Multi-dimensional Genomic Data Model (MGDM)

Conceptually, we organize the multi-dimensional genomic

data model (MGDM) along three dimensions.
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sid, chr, start, stop, strand, pvalue, qvalue, score

1, chr1, 100, 200, +, 0.0002, 0.01, 500

1, chr1, 200, 300, -, 0.0003, 0.02, 300

1, chr2, 300, 400, +, 0.002, 0.03, 400

1, chr2, 400, 500, -, 0.0001, 0.01, 500

2, chr1, 100, 200, +, 0.002, 0.02, 300

2, chr2, 300, 400, +, 0.0002, 0.01, 100

2, chr2, 400, 500, -, 0.0002, 0.015, 600

2, chr2, 400, 500, -, 0.0002, 0.015, 300

2, chr3, 600, 700, +, 0.0002, 0.005, 300

Fig. 3. Samples in row-based format supported by GDMS.

• The first dimension is associated to genomic coordinates
C; it is obtained by considering all the regions of a dataset.

• The second dimension is associated to samples Sx.

• The third dimension is associated to attributes V .
• Cells include attribute values.

Regions may be duplicates inside a sample; therefore, each cell

is an array having as many values as the replicas of each region.

The conceptual multi-dimensional model is described in Fig. 4.

Fig. 4. Multi-dimensional genomic data model

In Spark, we represent the multi-dimensional model as an

array structure <K, S>, where:

• The key K represents a quadruple<chr, start, stop, strand>
of region coordinates; each key is unique.

• S is a table collecting all the features related to the same
region coordinates. Rows of S correspond to attributes,

columns of S correspond to samples. Cells in this matrix
can be missing, when a given region is not present in a

sample, or can be represented by arrays, when the region

is replicated within the sample.

Fig. 5 shows the array structure for the dataset illustrated in

Fig. 4. Note that the tables can be sparse, as many cells may
be empty.

Two simple transformations τ1 and τ2 produce the conversion
from row-based format (GDM in Fig. 3) to array-based format

(MGDM in Fig. 5) and back. Informally, the former requires

first to extract all unique regions K and then build the table

S associated to K by suitable nesting. The latter flattens all

internal tables and adds a sample identifier to each row.

The advantage of array-based storage is that algebraic oper-

ations can be separated into a first part which applies to keys

and a second part which applies to tables; this separation is

particularly useful with region-preserving operations, as no new

key can be generated during the operation execution.

Fig. 5. Array-based representation of 3 samples in MGDM model

III. LANGUAGE

A GMQL query (or program) is expressed as a sequence of

GMQL operations with the following structure:

<var> = operation(<parameters>) <vars>

where each variable stands for a GMQL dataset. Most GMQL

operations are extension of classic relational algebra opera-

tions, twisted to the needs of genomics: SELECT, PROJECT,

UNION, DIFFERENCE, GROUP, ORDER, MERGE and EX-

TRACT. Three domain-specific operations, called Genometric-

JOIN, MAP and COVER, significantly extend the expressive

power of classic relational algebra, as they perform region

manipulations that are typically used in biology2. All GMQL

operations are region-preserving except UNION and COVER;

operations PROJECT and JOIN are region-preserving in most

cases, but are not region-preserving when they use certain

options, that are next discussed. These operations have a limited

use, therefore most of GMQL queries are region-preserving3.
We next characterize region-preserving operations by showing

their effect upon the operands directly with the multidimensional

model; new attributes are represented using the green color. The

main features of region-preserving operations from the point of

view of the multi-dimensional model are summarized in Table 6.

The table describes the effects of each operation on the regions,

samples, and attributes; column SAME indicates that the output

is identical to the input, REDUCE indicates that the output

may include less samples and attributes than the input, ADD

indicates that the output may include new attributes.

A. Unary operations

1) PROJECT: The operator creates, from the input dataset, a
new dataset with all the samples (with their regions and region

values) in the input one, but keeping for each sample in the input

dataset only those region attributes expressed in the operator

parameter list. Therefore it filters attributes, as illustrated in Fig.

7. PROJECT can be used also to create new regions (update
option), in such case it is not region-preserving.

2For the syntax and semantics of GMQL, see the Introduction to the Language
at http://www.bioinformatics.deib.polimi.it/geco/?try.
3In the Biological Examples of GMQL, available at http://www.

bioinformatics.deib.polimi.it/geco/?try and collected in the last two years,
queries Q1, Q2, Q3, Q7, Q8 are region-preserving; query Q4 is partially region-
preserving; queries Q5, Q6 and Q9 are not region-preserving, as they use the
COVER operation.
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OPERATIONS
REGIONS SAMPLES ATTRIBUTES

SAME REDUCE SAME REDUCE SAME ADD REDUCE

PROJECT � � �

SELECT � � �

ORDER � � �

GROUP � � � �

MERGE � � �

EXTEND � � �

DIFFERENCE � � �

MAP � � �

JOIN � � �

Fig. 6. Effect of region-preserving operations upon regions, samples and
attributes.

Fig. 7. PROJECT

2) SELECT: The operation extracts a subset of regions and
values from the input dataset. A selection may create empty

samples, i.e. samples without regions; during the evaluation of

an operation chain, such empty samples are recognized just at

the time of the row structure reconstruction.
3) ORDER: The operator is used to order regions of a

sample according to some of their attributes; these may include

the whole list of region coordinates, when the query asks for

producing regions in the natural genome ordering. Ordering

may be followed by a TOP clause restricting regions to be in
a limited number. Ordering is rendered by adding a specific

value that indicates, for each region, its position in the ordering,

as illustrated in Fig. 8; cell positions of regions which do not

satisfy the TOP clause are left empty. During the evaluation of
a region-preserving chain, region ordering is left as final step

when reconstructing the row-based model.

Fig. 8. ORDER

4) MERGE: The operator merges all samples into one. It
builds a new dataset consisting of a single sample having as

regions, all the regions of all the input samples, with the same

attributes and values. It reduces the samples dimension to one,

as shown in Fig. 9.

Fig. 9. MERGE

5) GROUP: When the group operator applies to region

coordinates, it is implicitly managed by the multi-dimensional

model, that groups together regions with the same coordinates;

possible aggregate functions evaluated for each group are added

within a new attribute, in a way which is similar to ORDER.
When it applies to regions and to other additional attributes A,
it changes the attribute structure of samples, by dropping all

existing attributes, creating new attributes A, and creating one
cell for each distinct combination of values of attributes A; this
is illustrated in Fig. 10.

Fig. 10. GROUP

6) EXTEND: deals only with metadata - can therefore be
considered as region-preserving.

B. BINARY operations

1) DIFFERENCE: It is a non-symmetric operator that pro-
duces one sample in the result for each sample of the first (left)

operand, by keeping only those regions (with their attributes

and values) of the first operand which do not intersect with any

region in the second operand (also known as negative regions)

(fig. 11).

REF EXP

Fig. 11. DIFFERENCE

2) MAP: It is a non-symmetric operator over two datasets,
respectively called REFERENCE and EXPERIMENT. It com-

putes, for each region R of each sample in the reference dataset

and for each sample in the experiment dataset, aggregates over

the values of the experiment regions that intersect with R; we

say that experiment regions are mapped to the reference regions

R. The number of generated output samples is the Cartesian

product of the samples in the two input datasets, but the output

has the same regions as the input reference dataset, with
their original attributes and values, plus the attributes computed

as aggregates over experiment region values (Fig. 12).

3) JOIN: The operation applies to two datasets, respectively
called REFERENCE and EXPERIMENT; the operation pro-

duces a result sample for every pair of samples of the operand

datasets. The regions within each result sample are built from

either REFERENCE, or the EXPERIMENT, or from both of

them:
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REF EXP

Fig. 12. MAP

• With the Left option, the JOIN result keeps only those

regions from the left operand that intersect with regions

of the right operand (Fig. 13(a)) 4.

• With the Right option, the JOIN result keeps only those

regions from the right operand that intersect with regions

of the left operand (Fig. 13(b)).

With the intersect and contig options, the JOIN result

creates new regions composed respectively by the concatenation

or the intersection of regions from the operands; with such

options, JOIN is not region-preserving.

REF EXP REF EXP

(a) JOIN left (b) JOIN right

Fig. 13. JOIN

C. Other Operations

The other GMQL operations include the COVER, which

creates a single sample having new regions built by contiguous

intersections of at least min and at most max operand regions,
where min and max are suitable parameters; and the UNION,
which by unifying all the samples includes regions from both

left and right datasets. These operations, which generate new

regions, are not further considered.

4Note that the MAP and JOIN LEFT operations are similar as they both
use region intersection with the REFERENCE, however the former operation
computes aggregate functions over the intersecting EXPERIMENT regions,
while the latter generates one result region for each intersecting EXPERIMENT
region. These operations are widely used in GMQL queries.

D. Chains of region-preserving operations

Region-preserving operations are widely used within queries;

for maximizing efficiency, chains of region-preserving oper-

ations should be considered together, as they guarantee the

advantage of factoring regions from the first to the last operation

in the chain. Therefore, the method that will be discussed in

the next section is invoked when a chain of two or more

region-preserving operations is detected during the execution

of arbitrary queries. The region-preserving chain is illustrated

in Fig. 14; operations start with a transformation from the row-

based to the array-based structure, continues with the execution

of operations and ends with a transformation back to the row-

based structure. Binary operations have one operand which

adopts the array-based model and the other operand which

adopts the row-based model.

J

M

J

J

J

Convert data

to array

Convert data

to GDM

R
egion-preserving

operations

Arbitrary

operations

Fig. 14. Chain of region-preserving operations

IV. METHOD

We illustrate the region-preserving implementation of a chain

of operations. Unary operations are applied to region-preserving

chains one after the other, in essence by performing a reduce

operation over regions so as to assemble at one processing

node all the data items that allow reconstructing the ma-

trix corresponding to a given region. The central body of

the method is concerned with the Spark implementation of

three binary GMQL operations: MAP, GenoMetric-JOIN
and DIFFERENCE. The proposed method embodies a generic
algorithm for interval-based processing, which is applicable

whenever new intervals cannot be created by the computation.

A. Running Example

We consider two samples S1 and S2 for the Reference

dataset (Left operand) and two samples S3 and S4 for the

Experiment dataset (Right operand). The schema of samples S1

and S2 includes, in addition to coordinates, a pValue, denoting
the quality of region processing; samples S3 and S4 include

a score, denoting the accuracy of the sequencing process.
Note that samples S1 and S2 have two regions with the same

coordinates.

• The MAP result has four samples (one for each combination
of its input samples); each result region includes the regions

of its reference sample which overlap with some regions
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of its experiment input sample; result regions include the

counts of overlapping experiment regions.

• The JOIN result has also 4 samples and each result region
includes the regions of its reference samples that overlap

with some region of its experiment sample.

• The DIFFERENCE result has two samples that include

those regions of the reference sample with no overlap with

regions of the experiment sample; note that the second

sample has no regions.

Resulting regions after the MAP, JOIN, and DIFFERENCE

operations are shown in Fig. 15.

REF

EXP

MAP

JOIN

DIFFERENCE

s1

s2

s3

s4

(s1,s3)

(s2,s3)

(s1,s4)

(s2,s4)

0.30.7 0.1

0.50.4

300
500

225

1

1

0

0

2

0

2

1

0

0
0.30.7 0.1

0.50.4

0.30.7 0.1

0.50.4

0.30.7 (s1,s3)

0.50.4 (s2,s3)

(s1,s4)

0.4 (s2,s4)

0.1 s1

Fig. 15. Region manipulations produced by the three operations MAP, JOIN
and DIFFERENCE.

B. Binning

Genome binning refers to the subdivision of the genome

into small, identical partitions or bins; binning algorithms
partition operands in order to speed up binary operations whose

elementary operation is region intersection. The process of

binning splits every chromosome of the genome into several bins

of equal size b; for each chromosome, bins are progressively
numbered starting from 0; the i-th bin spans from b × i to
b × (i + 1) − 1 ; a genome position placed at i bases from
the chromosome start is assigned to the bin β(i) = �i/b�.
Binning was introduced in [19] in order to speed up spatial

joins, and is used in the UCSD genome browser to speed up

the loading of genomic regions to the browser [12]. Binning is

also used by the GenoMetric Query System in the row-based

implementation [11] and is also used by the algorithm which is

discussed next.

C. Algorithm

Fig. 16 illustrates the algorithm for implementing a chain of

binary operations, consisting of a workflow of steps of low-level

Spark operations. The algorithm preserves, after an arbitrary

number of iterations, the regions of its first Reference
dataset; white steps are common to all operations, while gray

steps are performed in a different way for each GMQL oper-

ation. The reference dataset is initially translated to the array-

based representation; the result of the last operation in the chain

is translated back to a row-based representation.

Chain Processing
Pattern

Reference Experiment

Array Creation

Extract

Coordinates

Reference

Binning

Experiment

Binning

Operation specific intersection

Reduction by samples

Aggregates computation

Reduction by regions

Value reconstruction

Is there next

iteration?

GDM model creation

Store

1

2

3-4

5

6

7

8

9

10

11

Yes

No

Fig. 16. Workflow of low-level Spark operations

In the step-by-step workflow description we focus on the MAP
operation which computes both a count and the minimum

Score. The Reference dataset in a row-based format is:

sid chr start stop strand pValue
1 c1 50 70 + 0.7
1 c1 150 230 + 0.3
1 c1 250 280 + 0.1
2 c1 10 90 + 0.4
2 c1 150 230 + 0.5

The Experiment dataset in a row-based format is:

sid chr start stop strand score
3 c1 20 220 + 300
3 c1 40 80 + 500
4 c1 80 140 + 225

D. Steps

1) Transformation to array-based model: Performs a trans-
formation of reference dataset from the row-based to the array-

based model.

Example. The following array is generated from the Refer-

ence dataset:

Chr Start Stop Strand V
c1 10 90 + 〈 Ø; 0.4 〉
c1 50 70 + 〈 0.7; Ø 〉
c1 150 230 + 〈 0.3; 0.5 〉
c1 250 280 + 〈 0.1; Ø 〉

2) Extract Coordinates: Extracts the coordinates dimension
from the input array.

Example. The following coordinates are retrieved:
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Chr Start Stop Strand
c1 10 90 +
c1 50 70 +
c1 150 230 +
c1 250 280 +

3) Reference Binning: It is responsible for copying reference
regions to the bins. For every bin b intersecting with some
reference region and for every experiment samples, a copy of

the reference region is built, having as attributes the concatena-

tion of the Sid of the experiment with Chr, Bin, Start,
Stop, Strand of the reference.

Example. With bins of size 100, the following tuples are
generated:

Sid Chr Bin Start Stop Strand
3 c1 0 10 90 +
4 c1 0 10 90 +
3 c1 0 50 70 +
4 c1 0 50 70 +
3 c1 1 150 230 +
3 c1 2 150 230 +
4 c1 1 150 230 +
4 c1 2 150 230 +
3 c1 2 250 280 +
4 c1 2 250 280 +

This step is operation-specific because, in case of Genometric

Join operation, the binning is performed by translating the refer-

ence regions according to the specific genometric predicate used

in the operation; the complete binning algorithm is described in

[11].

4) Experiment Binning: is responsible for copying experi-
ment regions to the bins. For every bin b intersecting with

experiment region, it generates a copy of the region for every

bin b; only the attributes which are used by aggregate functions
are copied.

Example. With bins of size 100, the following tuples are
generated:

Sid Chr Bin Start Stop Strand V
3 c1 0 20 220 + 300
3 c1 1 20 220 + 300
3 c1 2 20 220 + 300
3 c1 0 40 80 + 500
4 c1 0 80 140 + 225
4 c1 1 80 140 + 225

5) Operation specific intersection: It is responsible for com-
puting a partial map within each bin. It joins references and

experiments by Sid, Chr and Bin; if the join succeeds, it
further selects resulting tuples by considering only the bins

where either the reference region or the experiment region starts

(note that this bin exists and is unique by construction, as

discussed in [11]).

At each selected pair of regions, a portion of the aggregate

function is computed. A new region is built, having as attributes

the concatenation of a new attribute K and Sid of the experi-
ment with Chr, Start, Stop, Strand of the reference;
V stores the experiment values to be used by the aggregate

functions; Count stores 1 if regions intersect, otherwise it

stores 0. The attribute K is obtained by hashing Chr, Start,
Stop, Strand; this attribute is later used for assembling all
copies relative to the same reference.

If the join fails, as we use the left join constructor, the

reference information is stored into the result, with null values

stored for the experiment; in this way, all reference regions with

zero intersections are correctly accounted.
Example. The following regions are generated:

K Sid Chr Start Stop Strand V Count
362 3 c1 10 90 + [300] [1]
362 3 c1 10 90 + [500] [1]
362 4 c1 10 90 + [225] [1]
613 3 c1 50 70 + [300] [1]
613 3 c1 50 70 + [500] [1]
613 4 c1 50 70 + [null] [0]
425 3 c1 150 230 + [300] [1]
425 4 c1 150 230 + [null] [0]
425 3 c1 150 230 + [null] [0]
425 4 c1 150 230 + [null] [0]
712 3 c1 250 280 + [null] [0]
712 4 c1 250 280 + [null] [0]

This step is operation-specific, therefore:

• In case of JOIN, the result includes the region values of
the experiment; for what concerns matching regions of the

reference, a copy of each matching region is produced for

each intersection with an experiment region; if a region has

no matching, then the region is dropped from the result.

• In case of DIFFERENCE, the step returns only those re-
gions that have no intersection with the experiment dataset.

It does not create any value.

6) Reduce by samples: It is responsible for assembling all
copies corresponding to the same reference region and exper-

iment sample at one node; the operation is performed thanks

to a reduce phase which uses the K and Sid attributes. Partial
sums are performed for computing COUNT, and lists of attribute
values are added to a Bag.

Example. In the example, the twelve regions are reduced to
eight, as some regions belong to the same sample (they have

the same hash and Sid attributes). The following regions are

generated:

K Sid Chr Start Stop Strand Bag COUNT
362 3 c1 10 90 + [300; 500] [2]
362 4 c1 10 90 + [225] [1]
613 3 c1 50 70 + [300; 500] [2]
613 4 c1 50 70 + [null] [0]
425 3 c1 150 230 + [300] [1]
425 4 c1 150 230 + [null] [0]
712 3 c1 250 280 + [null] [0]
712 4 c1 250 280 + [null] [0]

This step is operation-specific and it takes place only when the

cross-product should be performed between samples, therefore:

• in case of MAP and JOIN, the block concatenates all the
values related to the same experiment sample (see below).

• in case of DIFFERENCE, the block does not take place.
7) Aggregates Computation: is responsible for computing

aggregate functions, by applying them to the values built at

block 6.
Example. The following regions are generated after applying

the aggregate function MIN(score):

K Sid Chr Start Stop Strand MIN(score) COUNT
362 3 c1 10 90 + [300] [2]
362 4 c1 10 90 + [225] [1]
613 3 c1 50 70 + [300] [2]
613 4 c1 50 70 + [null] [0]
425 3 c1 150 230 + [300] [1]
425 4 c1 150 230 + [null] [0]
712 3 c1 250 280 + [null] [0]
712 4 c1 250 280 + [null] [0]
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This block is operation-specific, and only takes place with a

MAP operation.

8) Reduce by regions: It is responsible for assembling all
copies corresponding to the same reference coordinates; the

operation is performed thanks to a reduce phase which uses

the Chr, Start, Stop, Strand.
Example. In the example, the eight regions are reduced to

four by their Chr, Start, Stop, Strand attributes. The
following regions are generated:

Chr Start Stop Strand MIN(score) COUNT
c1 10 90 + [300; 225] [2; 1]
c1 50 70 + [300; null] [2; 0]
c1 150 230 + [300; null] [1; 0]
c1 250 280 + [null, null] [0; 0]

9) Value reconstruction: It joins by coordinates those coor-
dinates that are produced at this stage with the progressively

produced dimensions of the reference array.

Example. The obtained MIN(score) and COUNT values
are added to the initial value dimensions (compare with Step

1). The following regions are generated:

Chr Start Stop Strand V:
pValue MIN(score) COUNT

c1 10 90 + 〈[Ø; 0.4], [300; 225], [2; 1]〉
c1 50 70 + 〈[0.7; Ø], [300; null],[2; 0]〉
c1 150 230 + 〈[0.3; 0.5],[300; null],[1; 0]〉
c1 250 280 + 〈[0.1; Ø], [null, null][0; 0]〉

Note that columns of MIN(score) and COUNT were

evaluated by using the experiment samples, while columns of

pValue correspond to the reference samples.
10) Next iteration test: If the current operation is the last

operation in a chain step 11 is executed, else step 2 is executed

for the next operation in the chain.

11) Row-based data transformation: It is responsible for the
transformation from the array-based model to the row-based

model.

Example. The following regions are generated after trans-
forming the output to GDM model:

sid Chr Start Stop Strand pValue MIN COUNT
13 c1 50 70 + 0.7 300 2
13 c1 150 230 + 0.3 300 1
13 c1 250 280 + 0.1 null 0
14 c1 50 70 + 0.7 null 0
14 c1 150 230 + 0.3 null 0
14 c1 250 280 + 0.1 null 0
23 c1 10 90 + 0.4 300 2
23 c1 150 230 + 0.5 300 1
24 c1 10 90 + 0.4 225 1
24 c1 150 230 + 0.5 null 0

Note that MAP operation produces the cross product of

samples and thus after the transformation to the GDM model

we have 4 samples. Their ids are obtained by hashing reference

sample id with experiment sample id.

E. Structure of the result in the three examples

Fig. 17 illustrates how the result of the three operations is pro-

gressively assembled. One can note that the region-preserving

operations indeed have the effect of adding dimensions (in the

case of MAP and JOIN) and possibly dropping regions (in the

case of DIFFERENCE), as discussed in Section III.
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Fig. 17. Results of (a) MAP, (b) JOIN and (c) DIFFERENCE, showing that
dimensions are added in JOIN and MAP and that regions are dropped in
DIFFERENCE.

V. PERFORMANCE AND SCALABILITY EVALUATION

We performed our experiments on our server, an Intel® Xeon®

Processor with CPU E5-2650 at 2.00 GHz, 32 hyper-threads,

RAM of 192 GB, hard disk of 4x2 TB, and the engines Apache

Hadoop 2.7.2 and Apache Spark 2.2.0. Our experimentation

platform for the scalability test, discussed in Section V-C,

is a cluster comprised of machines containing Intel E5620

processors with 8 hyper-threads and 47GB memory.

A. Performance Analysis

1) Chains of operations: We consider chains of MAP and
JOIN operations. For the first iteration, we consider two in-

put datasets as described in Table I; REFERENCE regions

are RefSeq genes 5, EXPERIMENT regions are from Encode

BrodaPeak Datasets [9]. For the following iterations, we used

the result of the previous iteration as REFERENCE; a new

EXPERIMENT is built by selecting 10 similar samples from

ENCODE, with a similar number of regions.

TABLE I
FEATURES OF THE REAL DATASETS USED IN THE EXPERIMENTS

Reference Experiment

Size (MByte) 1.63 110.70
Regions 49052 901254
Samples 1 10

The size of generated output at each iteration is shown in

Table II; sizes are relative to the row-based format obtained after

materialization. As the number of samples grows of a factor ten

5From: https://www.ncbi.nlm.nih.gov/refseq/.
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at each iteration, sizes become soon very significant. At the fifth

iteration, we have 4 billion regions over 100 thousand samples

and about 200 Gigabytes.

TABLE II
OUTPUT SIZE AFTER EACH ITERATION

Step Size Regions (Million) Samples

1 17.3 MB 0.49 10
2 182.95 MB 4.9 100
3 1.92 GB 49.05 1000
4 20.17 GB 490.5 10000
5 211.78 GB 4905.2 100000

The fifth iteration can only be reached with the region-

preserving algorithm, as shown in Fig. 18. Execution of the

reference model becomes too expensive after three iterations

with the MAP and four iterations with the JOIN operations.

We also separately considered the cost of performing the final

transformation to the row-based model; such cost is quite small

in the MAP operation but becomes the most significant fraction

of execution time in the last iteration of the JOIN; this is

due to the number of copies of the LEFT operands that are

generated (due to the semantics of the JOIN, that keeps one

copy whenever the join predicate is true). If we omit the final

model transformation, then the execution time of joins grows

almost linearly with the number of iterations, which is expected

thanks to the behavior of region preservation.
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Fig. 18. Performance of chains of operations: (a) MAP, (b) JOIN

Table III shows the execution times in seconds after each

iteration for the MAP operation.

TABLE III
PERFORMANCE OF A CHAIN OF MAP OPERATIONS

Iteration
Array with
transformation

(sec.)

Array without
transformation

(sec.)
Row-based (sec.)

1 16.12 14.74 11.39
2 28.74 28.13 44.83
3 62.38 50.19 305.21
4 272.96 188.64 4602.88
5 2285.41 1486.44 –

B. Effect of sparsity

In order to assess how sparsity of regions influence per-

formance, we built synthetic datasets with controlled region

replication, ranging between no replication, full replication, and

TABLE IV
FEATURES OF THE SYNTHETIC DATASETS USED IN THE EXPERIMENTS

Reference Experiment

Size (MByte) 30 57
Regions 1M 2M
Samples 5 10

an intermediate value where each region is duplicated. Table IV

describes the features of the synthetic datasets used in the test.

We then considered a chain of MAP operations over synthetic

datasets, and observed its execution time as a function of region

sparsity; Table V summarizes the results. We note that the

direct execution on the row-based model has better execution

time with one iteration, but the array-based model has better

execution times with two or three iterations. Further, we note

that increased sparsity reduces the speed-up of the array-based

solution, however such speed-up is between 6x and 10x when

we perform three iterations (see Fig. 19). Thus, the performance

of array-based approach is superior to the row-based approach

also if the region matrix is sparse.

TABLE V
PERFORMANCE COMPARISON OF MAP OPERATION WITH DIFFERENT

SPARSITY LEVEL

Sparsity Iteration
Array with
transformation

(sec.)

Array
without

transformation
(sec.)

Row-
based
(sec.)

0%
1 63.67 61.83 63.65
2 171.99 126.73 280.52
3 579.38 227.93 2344.23

50%
1 79.48 76.58 70.57
2 211.04 183.03 262.03
3 641.20 308.28 2620.31

100%
1 86.88 81.02 61.91
2 222.69 184.49 251.28
3 720.14 319.59 2140.46
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Fig. 19. Speedup

C. Scalability Analysis

To show the performance in respect to the number of ma-

chines in the cluster, we perform a test with one reference

sample and fifteen experiment samples with three consecutive

map operations (see Fig. 20). As expected, by increasing the

number of machines up to 8 nodes the performance improves,

but a further increase of execution nodes produces a decrease

of performance, as the communication overhead of the map
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operations becomes more dominant than the advantage caused

by greater parallelism.
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Fig. 20. Scalability of array-based model representation with a three consiqutive
map operations and a data size of 1 reference sample and 15 experiment samples.

D. Comparison with SciDB
In this section we compare our Spark-based solution with

an equivalent implementation using SciDB, a native array-

based approach. With SciDB, we store a dataset DS using two
arrays: DSR for region coordinates and DSA for attributes. These

arrays have one common dimension - a hashed value of region

coordinates < chr, start, stop, strand > as hid. Thus, DSR
has one dimension hid and four attributes: chr, start, stop
and strand.

DSR =< chr : string, start : int64, stop : int64,

strand : string > [hid] (1)

DSA has one attribute value and three dimensions: hash id,
sample id and attribute id.

DSA =< value : string > [hid, sid, atid] (2)

Fig. 21 shows the representation of the two arrays DSR and DSA.

(a) DSR (b) DSA

Fig. 21. Reference dataset in SciDB

We implemented our optimized solution for chains of MAP

operations (without model mapping) and repeated the experi-

ment reported in Section V-A on the Amazon Web Services

(AWS) cloud, using a conguration with i3.16xlarge machine,

64 cores, 488 GB of RAM. Fig. 22 shows that both Spark

implementations outperform SciDB up to the third iteration,

then SciDB’s array-based implementation outperforms the row-

based implementation; SciDB performance is almost linear

because the array DSR, that stores region coordinates, does not

grow.
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Fig. 22. Performance of chains of operations in SciDB and Spark

E. Complete Example

We next provide a complete example that shows all the

three operations at work. The query is a classic computation

in genomics: given a set of genes, (a) find those genes which

overlap with given experimental regions (using a JOIN), (b)

then subtract those which overlap with another experiment

(using a DIFFERENCE), (c) then count over resulting genes

the mutations of patients with no clinical indication (using a

MAP). The query is:

GENES = SELECT(provider == "RefSeq") ANNOTATION;
EXP1 = SELECT(assay == "ChIP-seq" AND

output_type == "peaks" AND
experiment_target == "CTCF_human" AND
biosample == "GM12878") ENCODE_NARROW;

EXP2 = SELECT(assay == "ChIP-seq" AND
output_type == "peaks" AND
experiment_target == "H3K4me1-human" AND
biosample == "GM12878") ENCODE_NARROW;

MUT = SELECT(clinical == "NO") TCGA_SOMATIC_VAR;
JGE = JOIN(distance<0; output:left) GENES EXP1;
DIFF = DIFFERENCE() JGE EXP2;
MAPPED = MAP() DIFF MUT;
MATERIALIZE MAPPED INTO RESULT;

This query was executed on the input dataset featured in Table

VI; execution times are reported in Table VII. The array-based

method has clearly a shorter execution time. Three regions of

the result, in row-based format, are shown in Fig. 23.

TABLE VI
INPUT DATA

Dataset Name # of Regions # of Samples Size (MB)

RefSeq 50653 1 7.3
EXP1(TF) 2136849 10 126.47
EXP2(HM) 328949 3 22.34
Mutations 6121 14 1.37

TABLE VII
EXECUTION TIME

Row-based Array-based

379 sec. 49 sec.

VI. COMPLEXITY

We compare memory usage and execution time of row-based

and array-based organization.
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chr, start, stop, strand, name, COUNT

chr1 197170591 197447585 + NM 001257965 4

chr11 22359666 22401046 + NM 020346 4

chr2 215276460 215440653 + NM 001080500 3

Fig. 23. Regions of the query result

A. Memory
We focus on the memory required for storing a dataset,

consisting of multiple samples. Let I denote sample identifiers
C denote coordinate attributes, V denote the signal attributes;

let n denote the number of regions, nD the number of distinct

regions, with replication factor β = n/nD. In the row-based

organization, the memory usage is simply the storage used by

each row:

Memrow = n× (size(I) + size(C) + size(V ))

In the array model, every distinct region is used as a key; for

each such key, we store two arrays. The former one contains the

identifiers of the samples that include that region, the latter is the

array of values that are associated to that region. Although keys

depend on the number of distinct regions, samples and values

reflect the real region replication, hence their cost includes the

replication factor β. We use an indexing scheme from keys to

arrays that can be regarded as a fixed overhead F , for a given
array implementation. Hence the memory usage is given by:

Memarray = nD×(size(C)+β×size(I)+β×size(V )+2×F )

The difference between the two memory usages is simply:

Delta = Memrow −Memarray

= n× size(I) + n× size(C) + n× size(V )
−nD × size(C)− nD × β × size(I)
−nD × β × size(V )− 2× nD × F

= (n− nD)× size(C)− 2× nD × F

In GDM, coordinates require 57 bytes, while the fixed over-
head F in the Java implementation requires 12 bytes, hence
Delta = 57× n− 81× nD; when Delta is positive, the array
model requires less memory. In terms of the replication factor,

Delta is positive when β > 1.4; replication factor of datasets
is typically higher, especially after the evaluation of operations.

B. Computational complexity
The dominant operation for complexity is step 5 of Figure

16, where the two datasets are intersected; this operation has

a complexity which grows quadratically with the size of data,

whereas the complexity of the other operations grows linearly.

In the original row implementation, after binning both the

reference and experiment datasets, the complexity of this step

is O((n/Bin) × (m/Bin)) = O((n × m)/Bin2)), where
n,m respectively denote the number of regions of the reference

and experiment dataset, and where Bin is the average number
regions in each bin (assuming uniform distribution of regions

to bins). In the array representation, which also uses binning,

the regions in the reference do not have duplicates, hence

the complexity of this step is O((nD/Bin) × (m/Bin)) =
O((n ×m)/(β × Bin2))). Thus, the array-based solution has
lower complexity when β is greater than 1.

In summary, with high replication factors, the array-based

solution is superior to the row-based solution both for the

memory usage and computational complexity. Note that β grows
very fast as effect of a chain of operations, e.g. in the example

of section V-A β grows from 1.5 in the first iteration to 10 for
the second iteration and 100 for the third iteration.

VII. RELATED WORK

A. Background

In the Spark implementation of GMQL, described in [11],

we developed reference algorithms for join and map (with

an optimized, three-step approach to join evaluation) and we

developed a theory of binning strategies as a generic approach

to their parallel execution (which allows a simplication of the

parallel processing). In [8], we compared the evaluation of our

reference algorithm with an alternative implementation using

SciDB [2], array-based scientific database, as database engine;

we focused on few but representative operations (filter, aggre-

gate, map, join). The paper showed that SciDB performs better

when it directly uses filtering and aggregation over an array-

based physical data organization, but Spark performs better on

massive region mapping operations (maps and joins). This work

convinced us that the array-based approach has virtues but also

limitations, and inspired us in our current work, which is using

the array-based paradigm on top of a strong row-based data

engine.

B. Array Databases

Our work is indebted to several contributions given to join

algorithm optimization on the context of distributed database

systems ( [4], [21], [22]) and of parallel dataflow systems like

Hadoop [1] and Spark [26] ( [3], [16], [20], [25], [27]). We next

review the work focused on array-based implementations.

1) BlockJoin [13]: It is an optimized join algorithm which

fuses relational joins with blocked matrix partitioning, with the

objective of building suitable data partitioning for later use in

machine learning algorithms. It nicely support linear algebra

programs in the context of relational algebra; although we focus

on data extraction, we borrow from this approach the idea of

using array-based data representation for machine learning.

2) SciSpark [17]: It extends Spark for scaling scientific

computations. It introduces the Scientific Resilient Distributed

Dataset (sRDD), a distributed-computing array structure which

supports iterative scientific algorithms for multi-dimensional

data. SciSpark converts structured files (e.g. NetCDF) into a

collection of Spark-readable data frames named sciTensors,
each including key/value pairs and array data. Therefore, Spark

can repetitively manipulate multiple array datasets at runtime.

SciSpark requires users to provide partitioning and file-loader

functions.

3) SparkArray [24]: It extends Spark with a multi-

dimensional array data model and a set of common used array

operations (e.g., filter, subarray, smooth and join).

Comment: The focus of these papers is only on the array
model, while we propose switching between relational and array

models on-the-fly based on the optimal data representation for

each operation. Both SciSpark and SparkArray do not provide

an optimized solution for a chain of operations like the ones

mentioned in this work.
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4) RasDaMan [6]: It is one of the earliest next-generation
array DBMS for multi-dimensional discrete data, supporting

an extended SQL query language. It stores its data as tiles,

i.e., possibly non-aligned sub arrays, and resorts to blobs in

an external DBMS. While their optimizer provides a rich

set of heuristic-based rewrites, to the best of our knowledge,

RasDaMan does not perform joint optimization over relational

and array data.

5) SciDB [2]: It is an array database that, in contrast to
RasDaMan, provides its own shared-nothing storage layer. This

allows SciDB to store and query tiles more efficiently. It pro-

vides a variety of optimizations, like dealing with overlapping

chunks and data compression. However, as it was shown in [8],

it does not efficiently perform massive operations like mapping

and joins.

6) TileDB [18]: It is a system that stores multi-dimensional
array data in fixed size data tiles, which is optimized for both

dense and sparse multi-dimensional arrays. GenomicsDB [10]

is built on TileDB and it is used by the Broad Institute to store

genomic variant data in 2D arrays, where columns and rows

correspond to genome positions and samples, respectively.

Comment: All the aforementioned technologies provide a

general solution for array databases; they build indexes for the

dimensions to facilitate fast access which in turn speed up range

queries and equi-joins on the dimensions. However, domain-

specific join operations in Genomics are similar to theta-join

which are not optimized by a dimensional organization. Coding

genomic operations using SQL or SQL-like languages that are

provided in RasDaMan and SciDB is rather difficult.

VIII. CONCLUSIONS

In this paper, we introduce a scalable algorithm for region-

preserving genomic operations; we showed that our approach

has a strong potential for performance improvement. Our ap-

proach is applicable to other interval-based domains; in our

research work, we used the GDM model to represent twitter ac-

counts, meteorological measures, and github commits. Region-

preservation occurs when no new coordinate regions are created

by the query; such situation is common in these interval-based

domains.

Our future work will focus on evaluating the extension of the

array-based model to arbitrary operations, by looking for classes

of array-based optimization beyond region-preservation; we will

also consider a stronger integration of the array-based approach

with machine learning, by investigating the direct application of

machine learning methods to the array-based model.
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