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We study analytically and numerically an optical analogue of Dirac solitons in binary waveguide
arrays in presence of Kerr nonlinearity. Pseudo-relativistic soliton solutions of the coupled-mode
equations describing dynamics in the array are analytically derived. We demonstrate that with the
found soliton solutions, the coupled mode equations can be converted into the nonlinear relativistic
1D Dirac equation. This paves the way for using binary waveguide arrays as a classical simulator
of quantum nonlinear effects arising from the Dirac equation, something that is thought to be
impossible to achieve in conventional (i.e. linear) quantum field theory.

Introduction — Waveguide arrays have been used
intensively to simulate the evolution of a nonrelativis-
tic quantum mechanical particle in a periodic potential.
Many fundamental phenomena in nonrelativistic classi-
cal and quantum mechanics such as Bloch oscillations
[1, 2], Zener tunneling [3, 4], optical dynamical localiza-
tion [5], and Anderson localization in disordered lattices
[6] have been simulated both theoretically and experi-
mentally with waveguide arrays. In a recent study it was
shown that, rather surprisingly, most of nonlinear fiber
optics features (such as resonant radiation and soliton
self-wavenumber shift) can also take place in specially
excited arrays [7]. Recently, binary waveguide arrays
(BWAs) have also been used to mimic relativistic phe-
nomena typical of quantum field theory, such as Klein
tunneling [8, 9], the Zitterbewegung (trembling motion of
a free Dirac electron) [10, 11], and fermion pair produc-
tion [12], which are all based on the properties of the
Dirac equation [13]. Although there is as yet no evi-
dence for fundamental quantum nonlinearities, nonlinear
versions of the Dirac equation have been studied since
a long time. One of the earlier extensions was provided
by Heisenberg [14] in the context of field theory and was
motivated by the question of mass. In the quantum me-
chanical context, nonlinear Dirac equations have been
used as effective theories in atomic, nuclear and gravi-
tational physics [15–18] and, more recently, in the study
of ultracold atoms [19, 20]. To this regard, BWAs can
offer a rather unique model system to simulate nonlinear
extensions of the Dirac equation when probed at high
light intensities. The discrete gap solitons in BWAs in
the classical context have been investigated both numer-
ically [21–23] and experimentally [24]. In particular, in
Ref. [22] soliton profiles with even and odd symmetry
were numerically calculated and a scheme with two Gaus-
sian beams, which are tuned to the Bragg angle with op-
posite inclinations, was proposed to efficiently generate
gap solitons. In Ref. [24] solitons were experimentally
observed when the inclination angle of an input beam is

slightly above the Bragg angle.
Inspired by the importance of BWAs as a classical sim-

ulator for relativistic quantum phenomena, and also by
past achievements in the investigation of discrete gap soli-
tons in BWAs, in this Letter we present analytical soliton
solutions of the discrete coupled-mode equations (CMEs)
for a BWA and construct Dirac solitons of a nonlinear rel-
ativistic 1D Dirac equation in the quasicontinuous limit.
This paves the way for using BWAs to simulate nonlin-
ear extensions of the Dirac equation that violate Lorentz
invariance [25], as well as other solitonic and nonsolitonic
effects of nonlinear Dirac equations.
Analytical soliton solutions — Light propagation in a

discrete, periodic binary array of Kerr nonlinear waveg-
uides can be described, in the continuous-wave regime,
by the following dimensionless CMEs [8, 21]:

i
dan(z)

dz
= −κ[an+1(z)+an−1(z)]+(−1)nσan−γ|an(z)|2an(z),

(1)
where an is the electric field amplitude in the nth waveg-
uide, z is the longitudinal spatial coordinate, 2σ and κ
are the propagation mismatch and the coupling coeffi-
cient between two adjacent waveguides of the array, re-
spectively, and γ is the nonlinear coefficient of waveg-
uides which is positive for self-focusing, but negative for
self-defocusing media. For simplicity, here we suppose all
waveguides have the same nonlinear coefficient, but even
if these nonlinear coefficients are different (provided they
are comparable), then analytical soliton solutions shown
later will not be changed, because as explained later, one
component of solitons is much weaker than both unity
and other component, and thus one can eliminate the
nonlinear term associated with this weak soliton com-
ponent. In the dimensionless form, in general, one can
normalize variables in the above equation such that γ and
κ are equal to unity. However, throughout this Letter we
will keep these parameters explicitly in Eqs. (1). Before
proceeding further, it is helpful to analyze the general
properties of the general solutions of Eqs. (1). First of
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all, let us assume that (a2n, a2n−1)T = i2n(ϕ2n, ϕ2n−1)T

is one solution of Eqs. (1) with ϕ2n and ϕ2n−1 being ap-
propriate functions. In this case, if we change the sign of
γ while keeping the other two parameters constant, one
can easily show that a new solution of Eqs. (1) will be
(a2n, a2n−1)T = i2n(ϕ∗

2n−1, ϕ
∗
2n)T , where ∗ denotes the

complex conjugation. Secondly, if the sign of σ is changed
while other parameters kept constant, then a new solu-
tion of Eqs. (1) will be (a2n, a2n−1)T = i2n(ϕ2n−1, ϕ2n)T .
Of course, when σ changes sign, we still have the same
physical system, but with a shift of the wavenumber po-
sition n in Eqs. (1) by one. The above simple rules allow
us to quickly find other solutions and their symmetries if
one particular solution is known, as will be shown later.

In the specific case when all three parameters γ, κ, and
σ are all kept positive, we look for analytical solutions of
motionless solitons of Eqs. (1) in the following form:[

a2n(z)
a2n−1(z)

]
=

[
i2nd 2

n0
sech( 2n

n0
)eifz

−i2n−1bsech( 2n−1
n0

)tanh( 2n−1
n0

)eifz

]
, (2)

where n0 ∈ R characterizes the beam width (i.e. the
average number of waveguides on which the beam ex-
tends), and coefficients b, d and f are still unknown. In
the system without any loss or gain of energy (i.e., when
κ, σ and γ are all real), the coefficient f must also be
real, but b and d can be complex in general. Inserting
the ansatz (2) into Eqs. (1), assuming a priori that the
component a2n−1 is much weaker than both unity and
the other component a2n, such that one can eliminate
the nonlinear term for a2n−1, and also assuming that the
quasicontinuous limit is valid (i.e. n0 is large enough),
after some lengthy algebra one gets:

fd = κbi− σd, (3)

iκb = 2γ|d|2d/n20, (4)

fb = σb+ 4dκi/n20. (5)

Extracting f and b from Eq. (3) and Eq. (4), respec-
tively, then inserting them into Eq. (5) we will get one
quadratic equation for d2, and thus can find the values
for b, d and f . Note that one needs to keep only solutions
which satisfy the above assumption that |a2n−1| � |a2n|.
The final solution in the case when γ, κ, σ > 0 is:

[
a2n(z)
a2n−1(z)

]
=

 i2n 2κ
n0
√
σγ

sech( 2n
n0

)e
iz( 2κ2

n2
0σ
−σ)

i2n 2κ2

n2
0σ
√
σγ

sech( 2n−1
n0

)tanh( 2n−1
n0

)e
iz( 2κ2

n2
0σ
−σ)

 .
(6)

It is worth mentioning that the analytical soliton solu-
tion in the form of Eqs. (6) is derived under two condi-
tions: (i) the beam must be large enough such that one
can operate in the quasicontinuous limit instead of the
discrete one; and (ii) n0|σ| � 2κ. The latter condition is
easily satisfied if (i) is held true and if σ is comparable
to κ [11]. If condition (ii) is not valid, one can still easily

get the analytical solution for b, d and f from Eqs. (3)
- (5), but they are a bit cumbersome and for brevity we
do not show it here. The solution in form of Eqs. (6)
represents a one-parameter family of discrete solitons in
BWAs where the beam width parameter n0 can be arbi-
trary, provided that n0 & 4, a surprisingly small number
for the quasi continuous approximation to be valid.

FIG. 1: (Color online) Discrete soliton profiles (a,b) for even
and odd symmetry, respectively. Full circles mark the field
amplitudes across the BWA. Parameters in (a): κ =1; γ =1;
σ = 1.2; and n0 = 5. After getting the even symmetry profile
in (a), we construct the odd profile in (b) by switching the sign
of σ and following the symmetry transformations explained in
the text.

In Fig. 1(a) we plot the soliton profile with even sym-
metry calculated by using Eqs. (6) at z = 0 with full
circles marking the field amplitudes across BWAs, for the
parameters given in the caption. Note that soliton profile
in Fig. 1(a) consists of two components: one strong com-
ponent a2n and another much weaker component a2n−1

[see also Fig. 2(c)]. Once we get the soliton solution in
Fig. 1(a), we can construct another soliton solution of
the same physical system by changing the sign of σ and
following the rules explained in the previous section. In
that way we obtain the odd symmetry soliton profile de-
picted in Fig. 1(b). It is important to mention that in
the case of self-focusing media (γ > 0), for both even and
odd symmetries the strong component is always located
at waveguides with larger propagation constant [channels
with +|σ| in Eqs. (1)], whereas the weak component is
located at waveguides with smaller propagation constant
[channels with −|σ| in Eqs. (1)]. We are also able to con-
struct the soliton solutions for the self-defocusing media
which also possess soliton solutions with even and odd
symmetries. The only difference with the self-focusing
media is that now the strong (weak) component is lo-
cated at waveguides with smaller (larger) propagation
constant.
Soliton propagation and generation – Equation (6)

and the associated solutions obtained by the above sym-
metry transformations provide the analytical forms of the
two discrete gap soliton branches numerically found in
[22]. We note that the propagation constant f of the
two solitons, given by f = −σ + 2κ2/(n20σ), falls in the
minigap of the superlattice, near the edge of the lower
miniband (because 2κ2/(n20σ) � σ), and thus they are
expected to be stable [22]. As an example, in Fig. 2(a)
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FIG. 2: (Color online) (a,b) Soliton propagation in the (n, z)-
plane (a) and its Fourier transform in the (k, z)-plane (b) with
even symmetry profile at the input. (c) Absolute values of the
field amplitudes for intense (|a2n| with solid line and square
markers) and weak (|a2n−1| with dashed-dotted curves and
round markers) components of soliton at four different values
of z = 0 (red curves); 50 (blue curves); 140 (green curves);
and 200 (black curves). Soliton profile is so well preserved
that all these curves just stay on top of each other and one
can see only the output black curves. (d) Phase pattern δ/π
of soliton profiles at four above values of z. Colors of curves
in (d) have the same meaning as in (c). Parameters: κ =1;
γ =1; σ = 1.2; and n0 = 5. All contour plots are shown in
logarithmic scale.

we show the soliton propagation along z as obtained by
numerically solving Eqs. (1) with an input soliton taken
from Eqs. (6) at z = 0, demonstrating that the soliton
profile is well preserved during propagation. Parameters
used for Fig. 2 are the same as in Fig. 1(a). The evolu-
tion of the Fourier transform of the field an in Fig. 2(a)
along z is shown in Fig. 2(b) where the wavenumber k
represents the phase difference between adjacent waveg-
uides. Due to the periodic nature of BWAs, within the
coupled mode approximation, it suffices to investigate k
in the first Brillouin zone −π ≤ k ≤ π [26]. One very im-
portant feature of the wavenumber evolution in Fig. 2(b)
is the fact that there are two components of wavenumber
centered at k = ±π/2 which correspond to two Bragg an-
gles [11] with opposite inclinations. These two wavenum-
ber components are generated at the input and preserve
their shapes during propagation along z. This feature of
k indicates that the soliton operates in the region where
CMEs could potentially be converted into the relativistic
Dirac equations describing the evolution of a freely mov-
ing relativistic particle [10, 11]. We will come back to this
important point again later. Figure 2(c) shows the two
components of the soliton profile at odd and even waveg-
uide position n. The strong component with solid curves
and square markers represents the field profile |a2n| at
even waveguide positions, whereas the weak component
with dashed-dotted curves and round markers represents

the field profile |a2n−1| at odd waveguide positions. Field
profiles in Fig. 2(c) are taken at four values of propaga-
tion distance z = 0 (red curves); 50 (blue curves); 140
(green curves); and 200 (black curves) – only the black
curves are actually visible since the the profile is perfectly
preserved during propagation with a very high precision.
The soliton profile also perfectly preserves its phase pat-
tern across the array [Fig. 2(d)]. From Eqs. (6), one
can easily see that as the waveguide position variable n
runs, the phase pattern of the soliton must be periodic
as follows: δn = ...(ρ, ρ), (ρ + π, ρ + π), (ρ, ρ)... where ρ
also changes with z. This pattern is only broken at the
soliton center point where the function tanh in Eqs. (6)
changes its sign. This phase pattern is shown in Fig.
2(d) where different colors with meanings as in Fig. 2(c)
depict pattern at different values of z. The sequence in
the phase is important because it allows us to convert
Eqs. (1) into the nonlinear Dirac equation as we shall
show shortly. Note that the soliton whose propagation is
shown in Fig. 2 is the one with even symmetry in Fig.
1 (a). Our simulations similarly show that the profile
of soliton with odd symmetry in Fig. 1 (b) is also well
preserved during propagation, and we have checked that
this is true even in presence of quite a strong numerical
noise, demonstrating the robustness and the stability of
our solutions.

Although the soliton solutions given by Eqs. (6) are
exact, it is important to consider the possibility to gener-
ate the new gap solitons by an input beam with a simpler
(and more experimentally accessible) profile. Due to the
wavenumber structure shown in Fig. 2(b), one can inter-
pret the soliton as a combination of two beams launched
under two Bragg angles with opposite tilts k = ±π/2,
similarly to what was suggested in Ref. [22]. Here we
propose to generate the soliton by an input with a simple
phase pattern where the phase difference between adja-
cent waveguides is equal to π/2 across the array. The
input condition is taken to be An = anexp(inπ/2) where
an is given by Eqs. (6) at z = 0, but without the term
i2n. Note that, since |a2n−1| � |a2n|, this input condi-
tion can be approximately achieved by exciting the BWA
with a broad beam tilted at the Bragg angle, with the odd
waveguides in the structure being realized at some spatial
delay ∆z inside the sample (so as they are not excited at
the input plane); see the scheme shown in Fig. 3(f). In
the linear regime, the beam broadens and undergoes Zit-
terbewegung [10, 11], whereas in the nonlinear regime soli-
ton formation is expected to take place with suppression
of both beam broadening and Zitterbewegung. This is
clearly shown in Fig. 3, which indicates the formation of
the soliton during propagation with parameters as in Fig.
2. The evolution of field profiles |a2n| and |a2n−1| at even
and odd waveguide positions is depicted in Fig. 3(a) and
3(b), respectively. The evolution of the Fourier trans-
form of the field an of Fig. 3(a,b) along z is shown in Fig.
3(c). One can see that the strong component a2n in Fig.
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3(a) does not change much during propagation, whereas
the weak component a2n−1 in Fig. 3(b) is dramatically
altered during propagation. As seen from Fig. 3(b), at
the beginning of the propagation the beam undergoes the
Zitterbewegung. After reaching z ' 70, the profile |a2n−1|
becomes stable. Figure 3(d) shows the strong component
|a2n| of the soliton profile with solid curves and the weak
component |a2n−1| with dashed-dotted curves. As in Fig.
2(c,d) field profiles are taken at four values of propaga-
tion distance z = 0 (red curves); 50 (blue curves); 140
(green curves); and 200 (black curves). One can also see
that the strong component |a2n| is stable, whereas the
weak component first gets distorted (see blue and green
curves), but eventually the output curve (black color) re-
laxes to the input curve (red color). Figure 3(e) depicts
the phase pattern of the field amplitudes across the ar-
ray calculated at different z with corresponding colors
as in Fig. 3(d). At the input (red curve) we have the
phase difference equal to π/2 between adjacent waveg-
uides, but this phase pattern quickly transforms into the
phase pattern of the soliton solution given by Eqs. (6),
i.e., δn = ...(ρ, ρ), (ρ + π, ρ + π), (ρ, ρ)... [see blue, green
and black curves in Fig. 3(e)]. Therefore, here one can
make a local conclusion: a beam with the intensity pro-
files of soliton solution given by Eqs. (6), but with phase
difference equal to π/2 between adjacent waveguides will
first undergo Zitterbewegung, but eventually its intensity
profile and phase pattern will relax to the ones of the
soliton solution given by Eqs. (6).

Dirac solitons — As mentioned in the introduction,
BWAs have been used to mimic phenomena in both non-
relativistic and relativistic quantum mechanics. To the
best of our knowledge so far all these phenomena which
have been simulated by BWAs are linear. In this section
we will report on the simulation of nonlinear relativis-
tic Dirac solitons in BWAs. As shown in [10, 11] linear
CMEs [Eqs. (1)] for a beam with phase difference equal
to π/2 can be converted into the linear one-dimensional
relativistic Dirac equation (DE). Note that Eqs. (1) can
be converted into the DE only for beams with special
phase patterns; for instance, at normal beam incidence
Eqs. (1) can not be converted into the DE. It turns out
that with the soliton solution given by Eqs. (6), one
can also successfully convert Eqs. (1) into the nonlin-
ear relativistic Dirac equation (NDE). Thus, one can use
BWAs to mimic the relativistic Dirac solitons, and soli-
ton solutions in BWAs given by Eqs. (6) can be used
to construct directly the Dirac soliton. Although the so-
lution of Eqs. (6) does not possess the phase difference
equal to π/2 between adjacent waveguides [see Fig. 2(d)],
the fact that it exhibits two wavenumbers k = ±π/2 [see
Fig. 2(b)] gives us some hope that the NDE can also be
obtained in this case. Indeed, this is the case as shown
below. In general, suppose that [a2n(z), a2n−1(z)]T =
i2n[g(2n, z), q(2n − 1, z)]T , where the two functions g
and q are smooth and their derivatives ∂ng and ∂nq ex-

FIG. 3: (Color online) (a,b) Propagation in the (n, z)-plane
of the even and odd components of the beam with initial
phase difference equal to π/2 between adjacent waveguides.
(c) Fourier transform of field amplitudes in the (k, z)-plane.
(d) Absolute values of the field amplitudes for intense com-
ponent |a2n| with solid curves and weak component |a2n−1|
with dashed-dotted curves at four different values of z = 0
(red curves); 50 (blue curves); 140 (green curves); and 200
(black curves). (e) Phase pattern δ/π of field amplitudes for
the same values of z as in (d). Colors of curves in (e) have
the same meaning as in (d). (f) Scheme of the BWA structure
for generating discrete solitons. Parameters: κ =1; γ =1; σ
= 1.2; and n0 = 5.

ist in the quasicontinuous limit [Eqs. (6) satisfy these
requirements]. After setting Ψ1(n) = (−1)na2n and
Ψ2(n) = i(−1)na2n−1, and following the standard ap-
proach developed in [10, 11] we can introduce the continu-
ous transverse coordinate ξ ↔ n and the two-component
spinor Ψ(ξ, z) = (Ψ1,Ψ2)T which satisfies the 1D NDE:

i∂zΨ = −iκα∂ξΨ + σβΨ− γG, (7)

where the nonlinear terms G ≡ (|Ψ1|2Ψ1, |Ψ2|2Ψ2)T ;
β = diag(1,−1) is the Pauli matrix σz; and α is the
Pauli matrix σx with diagonal elements equal to zero,
but off-diagonal elements equal to unity. Note that Eq.
(7) is identical to the DE obtained in [10, 11] with the
only difference that now we have the nonlinear term G
in Eq. (7). Similar soliton solutions have been found for
the NDE in Ref. [27], but with different and more com-
plicated kind of nonlinearity, in the context of quantum
field theory. Note that the nonlinearity that we have in
Eq. (7) violates Lorentz invariance [25], and is similar to
that of the Dirac equations in Bose-Einstein condensates
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[19]. Using the soliton solution given by Eqs. (6) and the
above relation between an and Ψ one can easily obtain
the Dirac soliton solution of Eq. (7) as follows:

[
Ψ1(ξ, z)
Ψ2(ξ, z)

]
=

 2κ
n0
√
σγ

sech( 2ξ
n0

)e
iz( 2κ2

n2
0σ
−σ)

i 2κ2

n2
0σ
√
σγ

sech( 2ξ−1
n0

)tanh( 2ξ−1
n0

)e
iz( 2κ2

n2
0σ
−σ)

 .
(8)

The above solution is obtained for σ > 0 and γ > 0. One
can use the symmetry properties of Eqs. (1) to construct
other Dirac soliton solutions of Eq. (7), with different
sign combinations between σ and γ. The expressions
given by Eq. (8) give the main result of this Letter, and
the only physically realizable way that we are aware of
to produce and observe Dirac solitons with a table-top
experiment. In future investigations we are planning to
carefully study the dynamics and the stability of Dirac
solitons in BWAs, on which we will report in a separate
publication.

Conclusions — In this Letter we have provided an-
alytical expressions for the non-moving gap solitons in
BWAs and shown their connection to Dirac solitons in a
nonlinear extension of the relativistic 1D Dirac equation
describing the dynamics of a freely moving relativistic
particle. Our results suggest that BWAs can be used
as a classical simulator to investigate relativistic Dirac
solitons, enabling to realize an experimentally accessi-
ble model system of quantum nonlinearities that have
been so far a subject of speculation in the foundation
of quantum field theories. The analysis of analogue of
quantum field theory effects as those ones described in
this Letter is applicable to virtually any nonlinear dis-
crete periodic system supporting solitons, either classical
or quantum, therefore making our results very general
and of relevance to different systems beyond optics, such
as ultracold atoms in optical lattices and trapped ions
where analogs of linear relativistic effects, such as Zitter-
bewegung, have been studied and observed [28–30]
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