
In-plane failure surfaces for masonry with joints of finite thickness
estimated by a Method of Cells-type approach
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1. Introduction
growing interest in the 
ical behavior of brick 

defining the mechanical properties of an equivalent homogeneous 
material.

Homogenization [16–24] is a fair compromise between micro-
and macro-modelling. Indeed, the mechanical properties of the 
e of the 

theoretical [1,2] and experimental studies [3] have been carried constituents (brick and mortar), which can be easily obtained 
perties 

safety assessment of masonry structures, including monuments 
and buildings of historical value.

Micro-modelling is, in principle, the most refined approach to 
analyze masonry structures [4–8], and heterogeneous bodies in 
general, as the geometry and the mechanical properties of the con-
stituent materials can be explicitly taken into account with any 
degree of accuracy. An intrinsic drawback of this approach is the 
need of modelling units and mortar joints separately. Although 
most authors assume joints to be interfaces of vanishing thickness, 
the computational effort of any micro-modelling approach is pro-
portional to the number of bricks the structure consists of, so that 
its applicability is limited to small panels.

At the other extreme is macro-modelling [9–15], which does 
not make any distinction between units and joints, and aims at
have been estimated through the analysis of a Representative Vol-
ume Element (RVE), fairly rough finite element meshes can be 
employed to analyze large masonry buildings, assumed to consist 
of a homogeneous (anisotropic) material.

The major drawback of homogenization in non-linear FE com-
putations is that a continuous interaction between meso- and 
macro-scale is needed. This dramatically increases the computa-
tional effort, as the field equations have to be numerically solved at 
each loading step, at all the integration points. For the above rea-
sons, limit analysis combined with homogenization theory seems 
to be one of the most powerful and straightforward structural anal-
ysis tools to predict the ultimate bearing capacity of masonry 
structures in a fast and reliable way.

Different homogenization models have been recently proposed 
in the technical literature for the evaluation of homogenized 
strength domains for in-plane [20–23] and out-of-plane loaded 
[24–30] masonry walls. Assuming both units and joints to consist 
of rigid plastic materials with associated flow rule, the classical
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upper and lower bound theorems of limit analysis can be applied to 
any RVE to approximate the macroscopic strength domain of 
masonry. In particular, according to the lower bound theorem, any 
divergence-free plastically admissible micro-stress field, such that 
the stress vector is anti-periodic over the boundary of the RVE, 
allows a lower bound to the actual homogenized failure domain to 
be obtained by means of a constrained maximization problem. 
Conversely, the upper bound theorem deals with kine-matically 
admissible velocity fields fulfilling suitable periodicity conditions, 
and allows upper bounds to the actual homogenized failure domain 
to be obtained by means of the constrained minimi-zation of the 
internal dissipated power. In both cases, the mechan-ical problem 
is translated into a mathematical (non-)linear programming 
problem, with a reduced number of variables.

In the present work, the upper bound theorem of limit analysis 
is employed to estimate the macroscopic strength domain of in-
plane loaded masonry walls, taking the finite thickness of the joints 
and the limited strength of both components into account. The 
advantage of this approach compared to existing proposals is the 
accuracy in the definition of the macroscopic domain, combined 
with the simplicity of the proposed velocity field, which depends 
on a very limited number of parameters.

The layout of the paper is as follows. In Section 2, the kinematic 
definition of the macroscopic strength domain of periodic hetero-
geneous media [31] is briefly recalled. The original model is pre-
sented in Section 3. In Section 3.1 a simple periodic velocity field is 
proposed, dividing any RVE into sub-cells according to the so-called 
Method of Cells (MoC) [32,33]. The ensuing limit analysis problem 
formulated over the RVE is detailed in Section 3.2. The main 
advantages of the proposed approach are summarized in Sec-tion 
3.3. The model is applied in Section 4 to estimate the uniaxial off-
axis compressive strength of wallettes, for which closed-form 
expressions are available in the literature [34,35]. In Section 5 a few 
models available in the literature to predict the macroscopic 
strength of masonry are briefly reviewed [22,26,27]: the biaxial 
strength domains given by the MoC at any orientation of the prin-
cipal stresses to the joints are compared with those predicted by 
the existing models in Section 6. The failure surfaces predicted by 
the MoC are compared in Section 7 with the experimental results of 
biaxial compression tests carried out by other authors [36] on 
masonry panels. The implementation of the proposed crite-rion in a 
finite element code is illustrated in Section 8: the code is applied in 
Section 9 to predict the limit load of a deep beam. Com-parisons 
with the predictions given by refined heterogeneous mod-els, 
which accurately take the masonry texture into account, are
(a)

Fig. 1. (a) Running or header bond brick wall; (b) r
also reported, to emphasize the accuracy of the proposed approach 
for any joint thickness. Finally, in Section 10 the main findings of 
the work are summarized and future perspectives of the research 
are outlined.

2. Homogenization for rigid-plastic periodic media: Kinematic 
definition of the macroscopic strength domain

Masonry is a composite material usually made of units bonded 
with mortar joints. In most cases of building practice, units and 
mortar are periodically arranged. Owing to periodicity, any wall 
X can be seen as the repetition of a Representative Volume 
Element Y (RVE, or unit cell). Y contains all the information 
necessary to completely describe the macroscopic behavior of 
X. If a running bond or a header bond pattern is 
considered (Fig. 1a), it is expedient to choose an elementary cell of 
rectangular shape (Fig. 1b).

To define the macroscopic (or global, or average) mechanical 
properties of masonry, homogenization techniques can be used 
both in the elastic and inelastic range, taking into account the 
micro-structure only at a cell level. This leads to a significant sim-
plification of the numerical models adopted to analyze entire 
masonry buildings, especially in the inelastic field.

The basic idea of any homogenization procedure consists in 
defining averaged quantities representing the macroscopic stress R 
and the macroscopic strain rate D as follows:

R ¼ 1
A

Z
Y
rðyÞdY ; D ¼ 1

A

Z
@Y

mðyÞ �
s

nðyÞdS ð1Þ

where A is the area of the RVE, y is any point in Y or on its boundary
oY, r is the microscopic (local) stress field, m is the local velocity
field, n is the unit outward normal vector to oY, and �

s
denotes

the symmetric part of the dyadic product m � n. Eq. (1) applies in
general to microscopic non-differentiable velocity fields.

r and m must fulfil suitable periodicity conditions to match the
periodicity of the heterogeneous medium:

v ¼ Dy þ ev ; ev periodic on Y ðaÞ
rn anti� periodic on @Y ðbÞ

�
ð2Þ

Any velocity field fulfilling Eq. (2a) is said to be ‘‘strain-rate 
periodic’’.

The kinematic definition of the homogenized strength domain 
of masonry, say Shom, is due to Suquet [31] and makes use of the 
definition of the support function of this domain, phom(D), which 
reads:
(b)

ectangular RVE and subdivision into sub-cells.
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where
� p dð Þ ¼ supr r : d;r 2 S yð Þf g is the support function of the

strength domain at y;
� Sm is any discontinuity surface for m in Y, and nm is the normal to

Sm;
� m½ �½ � is the jump in velocity across Sm;
� p m½ �½ �; nmð Þ ¼ p m½ �½ � �

s
nm

� �
:

Using Eq. (3), de Buhan and De Felice explicitly determined the 
homogenized strength domain of masonry in the space of the 
macroscopic stresses, assuming units to be infinitely resistant and 
joints to be interfaces of vanishing thickness obeying the Mohr–
Coulomb strength criterion [20]. If no approximation is made 
regarding the strength and the geometry of the components, Eq. (3) 
allows upper bounds to the macroscopic strength domain to be 
obtained by defining failure mechanisms fulfilling suitable peri-
odicity conditions over the RVE.

From here onwards, units will be supposed to be perfectly 
bonded to mortar joints, so that no jump in displacements occurs 
within the RVE. Note, however, that Eq. (3) allows discontinuous 
microscopic velocity fields to be taken into account.
Fig. 2. Strain-periodic kinematically admissible velocity field under horizontal or
vertical macroscopic normal stresses.
3. The proposed method: Formulation and motivations

The motivation to propose a new homogenization model in the 
rigid-plastic case is twofold. Firstly, the models available in the 
literature do not take the actual thickness of the joints into account 
and neglect the possibility of brick failure, which occurs under sev-
eral stress combinations. Secondly, it is of paramount importance 
for the effective safety assessment of large masonry buildings to 
have simple models available, which do not require any refined 
discretization of the elementary cell to estimate the macroscopic 
masonry strength, thus avoiding time-consuming elasto-plastic 
incremental FE analyses. Another advantage of approaches needing 
few variables to describe the macroscopic response of masonry is 
that they can easily accommodate the strainsoftening and crushing 
behavior of the constituents if elasto-damaging material models 
are taken into account to match experimental evidences more 
closely.

Here, an approach based on the so-called Method of Cells (MoC) 
is proposed. The MoC was originally formulated by Abo-udi [32] for 
unidirectional composites reinforced by a regular pattern of long, 
reinforcing fibers, and has been recently extended by Taliercio [33] 
to determine the macroscopic elastic and creep coefficients of 
masonry in closed form. The method, applied to in-plane loaded 
running or header bond masonry, consists in the subdivision of the 
RVE into rectangular sub-cells, as shown in Fig. 1b, where the 
velocity field is approximated using two sets of strain-rate periodic 
piecewise differentiable velocity fields: one describing the 
deformation mode under normal stresses; the other, describing a 
shear-type deformation mode.

3.1. Kinematic assumptions

Let mnðiÞ
1 and mnðiÞ

2 denote the horizontal and vertical velocity com-
ponents in the ith sub-cell when the RVE undergoes normal stres-
ses parallel to the bed and the head joints. These components are 
given the same expressions proposed by Taliercio [33] in terms 
of displacements in the elastic range, which read:
mnð2Þ
1 ¼ 2U1

y1

bb
; mnð1Þ

2 ¼�2W1
y2

hb

mnð2Þ
1 ¼U1þ
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2

� �
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where bb is the brick length, hb is the brick height, bm is the thick-
ness of the head joints, hm is the thickness of the bed joints, and 
ab = bm/bb (see Fig. 1b). The origin of the local reference frame 
Oy1y2 is located at the center of sub-cell 1 (brick).

The velocity field (4) is fully defined by four ‘degrees of free-
dom’ (DOFs), U1, U2, W1 and W2 (see Fig. 2).

When a shear deformation mode is applied on the RVE, the fol-
lowing velocity fields are assumed within each sub-cell:

mt 1ð Þ
1 ¼ 2Ut

1
y2

hb
; mt 1ð Þ

2 ¼ 0; mt 2ð Þ
1 ¼ mt 1ð Þ

1 ; mt 2ð Þ
2 ¼Wt

1
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2

bm
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1 þ
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1

hm
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2

� �
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2
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2
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2
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2
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with Wt
1 ¼ 2Wt

2. The symbols mt
1
ðiÞ and mt

2
ðiÞ denote the horizontal and 

vertical velocity components in the ith sub-cell under macro-scopic 
shear stress. This velocity field is completely defined by three DOFs, 
namely Ut

1, Ut
2 and Wt

1. Their physical meaning is depicted in Fig. 3.
Within each sub-cell, the velocity field defined by Eqs. (4) and 

(5) is either linear (sub-cells 1, 2, 3, 4) or bilinear (sub-cells 5, 6) 
under any macroscopic stress condition. Accordingly, plastic strains 
vary at most linearly within each sub-cell. This assumption is not 
supported by any empirical evidence: whereas it can be rea-
sonable for thin mortar joints, it might become questionable as the 
joint thickness increases. Note, however, that a similar assumption 
made in the linear field led to excellent predictions of the



Fig. 3. Strain-periodic kinematically admissible velocity field under macroscopic 
shear stress.
Let m1 ¼ mnðiÞ
1 þ mtðiÞ

1 and m2 ¼ mnðiÞ
2 þ mtðiÞ

2 denote the horizontal and
vertical components of the velocity field in the (i)th sub-cell. At
each point of any sub-cell, the associated flow rule translates into
three equality constrains, which can be written as

_eðiÞpl ¼
@m1
@y1

@m2
@y2

@m1
@y2
þ @m2

@y1

h i
¼ _kðiÞ @Sb;m

@r , where _eðiÞpl is the plastic strain

rate field in the (i)th sub-cell, _kðiÞ (P0) is the rate of the plastic mul-

tiplier, and Sb;m is the (non) linear failure surface of either bricks (b)
or mortar (m). Let the failure surfaces of bricks and mortar be
approximated by m planes, so that each strength criterion is
defined by a set of linear inequalities of the form

Sb;m � Ainr 6 bin. As _eðiÞpl varies at most linearly within each sub-cell,
plastic admissibility is checked only at three of the corners. Hence,
nine linear equality constraints per sub-cell are introduced in
matrix form as Aeq

UðiÞUþ Aeq
kðiÞ

_kðiÞ ¼ 0, where U is an array collecting
the 7 DOFs describing the microscopic velocity field (i.e.

U ¼ fU1;U2; W1; W2; Ut
1; Ut

2 Wt
1g

T
; _kðiÞ ¼ _kðiÞTA

_kðiÞTB
_kðiÞTC

h iT
is

an array of 3m entries, collecting the rates of the plastic multipliers
_kðiÞJ at three of the corners of the rectangular sub-cell (J = A, B, C),

and Aeq
UðiÞ, Aeq

kðiÞ are a 9 � 7 and a 9 � 3m matrix, respectively. The
plastic admissibility conditions are then assembled cell by cell into
the following global system of equality constraints:

Aeq
U Uþ Aeq

k
_k ¼ 0 ð6Þ

where Aeq
U ¼ ½A

eqT
Uð1Þ . . . AeqT

Uð6Þ�
T
, _k ¼ ½ _kð1ÞT . . . _kð6Þ

T �
T
, and Aeq

k is a block
matrix of dimension (6�9) � (6�3m), which can be expressed as:

Aeq
k ¼ Aeq

kð1Þ 	 Aeq
kð2Þ 	 � � � 	 Aeq

kð6Þ ð7Þ

where 	 denotes direct sum.

macroscopic elastic and creep coefficients of brick masonry for any 
joint thickness [33].

Assuming that both mortar and bricks behave as rigid plastic 
materials obeying an associated flow rule, an outer bound to the 
homogenized strength domain of masonry can be obtained solving 
problem (3). For non-standard materials, the domain Shom defined 
according to Eq. (3) is itself only an outer bound to the real macro-
scopic strength domain (see e.g. [37]). In any case, a linear pro-
gramming problem is obtained, where the objective function to be 
minimized is the total internal dissipated power phom.

3.2. The limit analysis problem at the cell level: Homogenized failure 
surfaces

According to the kinematic theorem of limit analysis, and 
assuming the velocity field over the RVE to be approximated by 
means of the expressions provided by Eqs. (4) and (5), the associa-
tivity of the plastic flow over each sub-cell must be prescribed.
Let B and C be a couple of corners at the opposite ends of one of
the diagonals of the (i)th rectangular sub-cell. The internal power
dissipated within the sub-cell can be written as:

PðiÞin ¼
XðiÞ

2
bðiÞTin

_kðiÞB þ bðiÞTin
_kðiÞC

� �
¼ XðiÞ

2 01�m bðiÞTin bðiÞTin

h i
_kðiÞ ð8Þ

where 01�m is an array of m zero entries and XðiÞ is the area of the
(i)th sub-cell. The power dissipated inside the whole RVE is obvi-
ously the sum of the contributions of each sub-cell, i.e.:

Pin ¼
X6

i¼1

XðiÞ

2 01�m bðiÞTin bðiÞTin

h i
_kðiÞ ð9Þ

Assume the ‘external load’ applied to the RVE (i.e., the macroscopic
stress) to be a point of the homogenized failure surface. The array of
the macroscopic stress components can be expressed as
R ¼ K a b c½ �T , where K is the load multiplier and a, b, c are
director cosines defining the direction of R in the space of the
homogenized in-plane stresses. Accordingly, the power of the
external loads can be written as:

Pex ¼ K a b c½ �D ð10Þ

In limit analysis a normalization condition is usually prescribed,
physically meaning that the shape of the failure mechanism can
be identified, but its amplitude is undetermined:

a b c½ �D ¼ 1 ð11Þ

In the framework of the upper bound theorem of limit analysis, any
point of the homogenized failure surface is determined by means of
the following constrained minimization problem:

Find min Pin

subject to

a b c½ �D ¼ 1 ðaÞ
Aeq

U Uþ Aeq
k

_k ¼ 0 ðbÞ

D ¼ 1
A

R
@Y v�

s
ndS ðcÞ

_k P 0 ðdÞ

8>>>><
>>>>:

ð12Þ

_k

where (a) is the normalization condition (11), (b) is the set of equa-
tions representing the admissibility of the plastic flow, Eq. (6), and 
(c) links the homogenized strain rate with the local velocity field 
(see Eq. (1)).

It is interesting to note that the independent variables entering 
into the optimization problem (12) are the three components of 
the macroscopic strain rate D, the 6 � 3m plastic multipliers 
and the 7 DOFs defining the microscopic velocity field. Through 
the normalization condition (11), and equating the internal power 
dissipation to the power of the external loads, i.e. Pex ¼ Pin, it can be 
easily shown that K = min Pin.

Furthermore, it is worth noting that the linear programming 
problem (12) contains only equality constraints and non-negativity 
constraints of some variables, a feature which considerably 
improves the numerical efficiency, especially when sparse matri-
ces are dealt with, as, using an interior-point solution strategy, 
the recursive factorization of a square submatrix extracted from 
the set of equality constraints is basically required [38].

3.3. Motivations for the new proposal

From a practical point of view, the main advantages of the pres-
ent procedure can be summarized as follows:

(a) The actual thickness of the joints is taken into account in a
limit analysis procedure involving very few optimization
variables (only 7 velocity parameters, plus the collapse
multiplier and the plastic multipliers of the sub-cells). Also,
the procedure competes favourably – from a computational
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Fig. 4. Masonry element subjected to uniaxial vertical compression (right) and
stress components parallel to the joints (left).
point of view – with existing approaches available in the lit-
erature to determine the in-plane macroscopic strength 
domain of masonry directly (see Section 5). It is well known 
that the reduction of joints to interfaces may result in an 
overestimate of the macroscopic strength of masonry: the 
key role played by the thickness of the mortar joints was 
pointed out e.g. by Mojsilovic and Stewart [39]. This can 
be easily inferred even from the simple analysis of a 
vertically compressed wall: taking the compatibility of the 
transverse strains at the interface between units and bed 
joints into account leads to the well-known Hilsdorf’s failure 
mechanism [40]. According to Francis et al. [41], if the bed 
joint thickness increases from 10 to 25 mm, the average 
compressive strength of masonry decreases by 25% for solid 
bricks and by 55% for perforated bricks.

(b) The possibility of failure of both the units and the joints can
be taken into account. There is no conceptual difference in the
implementation of the strength domains of both constit-
uents, each one corresponding to a different sub-cell. Both
components are assumed to be in plane-stress conditions
Such assumption is consistent with the reduced thickness o
most running bond or header bond masonry walls: its
reliability was discussed by Anthoine [42] for various brick
patterns. More sophisticated models could be implemented by
modifying the failure modes of the unit cell: this will be the
object of a future work to incorporate generalized plane-strain
conditions in the cases where the plane stress assumption
does not apply [42], together with an enriched out-of-plane
kinematics [43]. Here, plane stress conditions are assumed
with the aim of showing how this simplifying assumption
leads to a strong reduction in the computational cost
improving at the same time the reliability of the solu-tion in
comparison with available limit analysis models (see Section
6). Any non-linear strength domain can be adopted for bricks
and mortar, even if it is nowadays commonly accepted that a
Mohr–Coulomb failure criterion with tension cutoff and
limited compressive strength is able to provide quite accurate
results for most stress conditions, with a good match with
experimental evidences [4]. An  extension to 3D kinematics
would require the definition of 3D failure criteria for the
constituent materials, with an obvious increase in the
computation effort, mainly due to the ensuing additiona
number of plastic multipliers. Too often failure is assumed to
be confined in the joints, and the possibility of failure of the
units is neglected. This possibility is an important feature o
the present procedure. More sophisticated models available in
the literature allow for a more precise description of the non-
linear behavior of masonry (see e.g. [44,45]): here attention is
rather focused on the simplicity and the computationa
efficiency of the procedure, which are undoubtedly much
higher than those of models based on a FE discretization of the
unit cell (FEM2 models).

4. Prediction of the compressive strength of wallettes

The uniaxial compressive strength of masonry walls for any ori-
entation # of the head joints to the applied stress (see Fig. 4) was 
predicted by Ganz [34] and, more recently, by Mojsilovic [35].

To support the theoretical investigations, several experimental 
results on masonry walls with different brick typologies were 
obtained at ETH in Zurich (CH) and are partially reported by Ganz 
[34]. According to his plane-stress failure criterion, Ganz proposed 
the following formula to evaluate the ultimate vertical load bear-
ing capacity R22 of masonry wallettes in simple compression, at 
any angle #:
R22 ¼min
c

cos2 # tan u� tan#ð Þ ; f x;
2c cos u
1� sin u

� �
ð13Þ

where c and u are the cohesion and the internal friction angle of the 
bed joints, and fx is the uniaxial strength of masonry under horizon-
tal compression.

Recently, Mojsilovic [35] proposed a modification of Ganz’s cri-
terion, based on a new failure mode characterized by slip lines 
along the head joints. Neglecting plastic dissipation in mortar, and 
assuming the units to be made of a material satisfying Cou-lomb’s 
failure criterion, the anisotropic compressive strength of masonry, 
R22, at any # angle is:

R22 ¼
cb

2 sin2
# tan ub � cot#ð Þ

ð14Þ

where cb and ub are cohesion and internal friction angle of the 
brick/block material.

In order to test the capabilities of the present MoC approach 
when compared with the two failure criteria (13) and (14), a run-
ning bond masonry wall with thin mortar joints (reduced to inter-
faces for the sake of simplicity) and standard Italian bricks of 
height a = 55 mm and length b = 250 mm is considered. The 
mechanical properties of the constituent materials in the three 
models are summarized in Table 1.

In the proposed model, it is necessary to solve the optimization 
problem (12) to obtain the vertical failure load R22 for a given ori-
entation #. The coefficients a, b and c can be easily inferred from 
Fig. 4 (a ¼ � sin2 

#, b ¼ � cos2 #, c ¼ � sin # cos #).
The law of variation of the anisotropic compressive strength 

predicted by the present MoC-type model and by those available 
in the literature [34,35] is depicted in Fig. 5. The predictions of 
all the models are in good agreement with each other: in particu-
lar, the predictions of the MoC-type model closely match those 
obtained with Mojsilovic’s criterion at most orientations.

It is interesting to point out that all models are based on the 
upper bound theorem of limit analysis. Ganz’s and Mojsilovic’s for-
mulas, however, are based on prescribed failure mechanisms. It is 
therefore not surprising that the prediction provided by MoC are 
more conservative, at least at angles sufficiently lower than 90�.

Whereas the strength values provided by the present approach 
are obtained numerically (i.e. no closed form solutions are avail-
able, unlike in Ganz’s and Mojsilovic’s approaches), the procedure 
proposed here is apparently more simple to be used in practical 
applications, as the masonry strength along the material axes (fx) 
has not to be known in advance.

5. Existing homogenization approaches to predict the 
macroscopic strength domain of masonry

Three alternative homogenization approaches will be used in 
Section 6 to assess the accuracy of the results provided by the
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Table 1
Mechanical properties adopted to predict the anisotropic compressive strength of masonry with different models (brick height = 55 mm, brick length = 250 mm, joints reduced to
interfaces).

MoC model

Mortar Unit

ft (N/mm2) fc (N/mm2) U1 U2 c (N/mm2) ub cb (N/mm2)

0.10 3.0 36� 30� 0.10 40 1

Ganz (1985) and Mojsilovic (2011) models

c (N/mm2) u fy (N/mm2) cb (N/mm2) ub

0.1 36� 3.2 1 40

Fig. 5. Comparison among the uniaxial compressive strength at different orienta-
tions of the head joint to the applied stress predicted by the present model and by 
Eqs. (13) and (14).
proposed approach. In particular, two procedures based on the 
lower bound theorem of limit analysis [22,27] and one based on the 
upper bound theorem [26] are briefly recalled hereafter; their pros 
and cons are also highlighted.

The first approach is based on the lower bound theorem of limit 
analysis. The unit cell is divided into a limited number of rectangu-
lar sub-domains, see Fig. 6, and a polynomial interpolation of 
degree m of the stress field within each element is a priori 
proposed. Any stress component in the kth sub-domain Yk is 
expressed as

ðkÞ T k
rij ¼ X yð ÞSij y 2 Y ;

Fig. 6. Equilibrated approach proposed in [22]. Left: subdivision and geometrical charact
36 sub-domains.
where X yð Þ ¼ 1 y1 y2 y2
1 y1y2 y2

2 . . .
� 	

and Sij ¼
Sð1Þij Sð2Þij Sð3Þij Sð4Þij Sð5Þij Sð6Þij . . .
h i

is an array of eN ¼ 1=2

m þ 1ð Þ m þ 2ð Þ entries representing the unknown stress parame-
ters. Equilibrium within each element and at the interface between
contiguous elements, as well as anti-periodicity conditions for the
stress vector, are a priori imposed to reduce the number of optimi-
zation parameters.

In [22] four models, labeled P0, P2, P3 and P4 and corresponding
to a constant, quadratic, third- and fourth-order polynomia
approximation of the micro-stress field, respectively, have been
presented and tested. P0 was shown to be unable to capture the
material orthotropy. P2 predicts different strengths along the
material axes, but the approximation is affected by errors exceed-
ing 10%, if compared with the solution obtained by FEs. P3 fur-
nishes satisfactory results needing a relatively reduced time for the
evaluation of the failure surface. P4 is the most accurate model, but
at the same time requires a huge computational effort.

The most interesting feature of this static approach is likely to
be the possibility of taking the actual thickness of the joints into
account, the importance of which has already been emphasized
(see Section 3.3 and [39]).

The second approach, presented in [27], relies upon a subdivi-
sion of the unit cell into 24 constant stress triangular elements;
joints are reduced to interfaces (see Fig. 7). Adding suitable
constraints, the stress field within the RVE fulfils equilibrium equa-
tions (with vanishing body forces) and periodicity conditions
According to the lower bound theorem of limit analysis, and thanks
to the rough discretization adopted, a safe approximation of the
macroscopic strength domain under biaxial stress states can be
obtained without resorting to any computer. Readers are referred
to the original paper [27] for more detail.
eristics of one-fourth of the elementary cell. Right: subdivision of the entire cell into 



Fig. 7. The micro-mechanical model proposed. Subdivision of the RVE into 24 CST triangular elements (and 1/4 into 6 elements) and anti-periodicity of the micro-stress field.

Fig. 8. Deformation modes considered in the compatible identification model [26].
An intrinsic limitation of this approach is the need of reducing 
joints to interfaces. As it will be shown in the following sections, 
such assumption leads to overestimate the actual macroscopic 
strength of masonry, especially under uniaxial horizontal ten-
sion/compression.

The last approach used for validation relies upon the so-called 
‘‘compatible identification model’’ [26]. In this model, bricks are 
supposed to be infinitely strong, whereas joints are reduced to 
interfaces obeying a Mohr–Coulomb failure criterion with tension 
cut-off and limited compressive strength. A sub-class of possible 
elementary deformation modes is a priori defined for the unit cell, 
with the aim of capturing cracking of the joints. For the sake of 
illustration, Fig. 8 shows the deformation modes of the elementary 
cell undergoing macroscopic stretching along the bed joints (a), 
along the head joints (c), and in-plane shear (b). Owing to its kine-
matic nature, this approach gives an upper bound to the macro-
scopic strength domain of masonry. Again, readers are referred to 
the original paper [26] for additional information about the model.

The main advantage of the procedure proposed in [26] is its 
simplicity, which allows the macroscopic failure surface to be 
determined quite straightforwardly. The total number of optimiza-
tion variables is very limited, and basically consists of the param-
eters defining the rigid motion of the blocks and the plastic 
multipliers of the interfaces. The major limitations lie in the 
assumptions underlying the model (infinite strength of the blocks, 
negligible thickness of the joints). Finally, note that the lower 
bound [27] and the upper bound [26] coincide if the assumptions 
underlying the compatible identification model apply, meaning
that in this case the actual homogenized failure surface can be 
exactly determined.
6. Homogenized strength domain and comparisons with the 
existing literature

The kinematic limit analysis approach described in Section 3 
will be now applied to derive the macroscopic strength domain 
of masonry under in-plane macroscopic principal stresses acting 
at any orientation to the bed joints. The theoretical predictions 
given by the three approaches recalled in Section 5 and available 
in the literature will also be shown for validation purposes.

Since the first approach (based on a polynomial expansion of the 
microscopic stress field [22]) has the advantage of explicitly taking 
the real thickness of the joints into account, similarly to the 
approach proposed in this work, it can be conveniently employed 
to estimate the discrepancy with the predictions of the MoC-type 
approach (which gives an upper bound to the macro-scopic 
strength domain) for joints of finite thickness. According to the 
authors’ experience, the proposed model always requires a little 
fraction of the time required by [22] to provide good estimates of 
the homogenized failure surface, owing to the very limited number 
of unknowns involved. Since the MoC-type approach gives an 
upper bound to the real macroscopic strength domain and the 
polynomial expansion of the micro-stress field gives a lower bound, 
the classic theorems of limit analyses ensure that the real 
macroscopic failure surface lies somewhere between the
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two predictions. As it will be shown hereafter, these predictions do 
not differ significantly from an engineering point of view, so that 
the estimation given by the MoC can be used for practical purposes.

The second approach (based on a rough discretization of the RVE 
into CST elements [27]) and the third one (or compatible iden-
tification approach [26]) predict the same failure surface when 
bricks are assumed to be infinitely strong, and can be useful to 
assess (1) the applicability of the MoC-type approach to extremely 
thin joints and (2) the role played by the joint thickness on the 
masonry homogenized strength domain. Incidentally note that, as 
the equilibrated CST model is based on the lower bound theo-rem 
and the compatible identification model on the upper bound 
theorem, the homogenized failure surface is exactly determined in 
case of joints reduced to interfaces and infinitely resistant units.

The upper bound to the macroscopic failure surface given by the 
MoC for brickwork with sufficiently thin joints and units much 
stronger than mortar is expected to match that given by both 
approaches.
 
 
 
 
 

 

Table 2
Mechanical properties adopted for mortar in the numerical prediction of the 
homogenized failure surface.

Friction angle (U) Cohesion (c)

36� 0.1 MPa

f t ¼
2c cosðUÞ
1þsinðUÞ f c ¼

2c cosðUÞ
1�sinðUÞ
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Fig. 9. Comparison among the results given by the different homogenization models unde
stress field, P3 approach. (b) Equilibrated CST discretization and ‘‘compatible identificatio
In the applications shown in this section, running bond masonry
consisting of standard Italian bricks (250 � 120 � 55 mm3 in size
and 10 mm thick joints is considered. Bricks are assumed to be
infinitely strong, whereas mortar is supposed to obey a Mohr–
Coulomb failure criterion, defined by the parameters summarized in
Table 2. Accordingly, the tensile and compressive strengths of the
joints, ft and fc, are given by the relations reported in Table 2
Therefore, to make the analysis with joints of finite thickness
consistent with those carried out with joints of vanishing thickness
(e.g. [24,26]), the Mohr–Coulomb strength criterion of the interfaces
is complemented by a compression cap and a tension cut-off, with
values equal to fc and ft, respectively.

In Fig. 9, a comparison is made among the failure surfaces
obtained in biaxial tension using the MoC-type approach, and the
homogenization models recalled above. In particular, Fig. 9a refers
to the polynomial expansion model proposed in [22], Fig. 9b to
both the equilibrated CST model presented in [24] and the upper
bound compatible identification model proposed in [28], and Fig. 9c
to the present model. Rxx and Ryy (= Rxx tgw) denote the two
nonvanishing macroscopic principal stresses. Rxx is supposed to act
at h = 0�, 22.5� or 45� to the bed joints (i.e. to y1, see Fig. 1a). When
dealing with the polynomial expansion approach, a cubic
interpolation of the stress field (P3 model) is adopted, as it is a good
compromise between computational efficiency and accuracy (which
both increase with the degree of the polynomial interpolation).

The dependence of the homogenized failure surfaces from the
joint thickness can also be inferred from Fig. 9, by comparing, for
-a

-b
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r biaxial tension for the masonry material of Table 2. (a) Polynomial expansion of the 
n model’’. (c) MoC-based model.



(a) θ =0°, ψ =0° (b) θ =0°, ψ =45°

(c) θ =0°, ψ =90° (d) θ =22.5°, ψ =0°

(e) θ =22.5°, ψ =45° (f) θ =22.5°, ψ =90°

(g) θ =45°, ψ =0° (h) θ =45°, ψ =90°

Fig. 10. RVE failure modes corresponding to the points indicated in Fig. 9c (tgw = Ryy/Rxx).
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Fig. 12. Comparison between homogenized failure surfaces predicted by the lower 
bound polynomial approximations (a–c) and by the MoC-type upper bound (d) 
under biaxial tension, using the mechanical properties of Table 2.
instance, subfigures c and b. Thick joints correspond to smoother 
failure surfaces (Fig. 9c). Conversely, in case of joints reduced to 
interfaces the failure surface coincides with the boundary of the 
multi-plane strength domain proposed by de Felice and de Buhan 
[20].

According to all of the models, the highest strength under hor-
izontal tension is attained at h = 0�, and is much lower in the case of 
thick joints (0.26 MPa) than in presence of infinitely thin joints 
(0.31 MPa), with a percent difference of about 15%.

Fig. 10 shows the failure modes of the RVE predicted by the 
MoC, corresponding to the points denoted by the same symbol in 
Fig. 9c. For the sake of illustration, the deformed shape of the RVE at 
h = 0� and w ¼ 0


 
(simple horizontal tension, Fig. 10a) shows that, in 

agreement with the results provided by alternative homog-
enization models, head joints are subjected to simple tension, 
whereas bed joints undergo pure shear. Cross joints, conversely, 
exhibit a mixed mode failure, which however has little influence on 
the value of the homogenized strength as their size is small. It is 
interesting to notice how, in most cases, bed joints fail in shear or 
for a mixed mode: accordingly, the macroscopic tensile strength 
along the horizontal direction (h = 0� and w ¼ 0


 
) is sensibly higher 

than that under vertical tension (h = 0� and w ¼ 90

 
), when the bed 

joint fails in simple tension (Fig. 10c).
Finally, when joints are reduced to interfaces, the MoC model 

gives results in perfect agreement with the compatible identifica-
tion model and the CST equilibrated model (see Fig. 11). This shows 
the good predictive capabilities of the MoC-type approach even for 
extremely thin joints.

In order to closely bracket the actual homogenized failure sur-
face in case of joints of finite thickness, it is possible to compare the 
results obtained with the MoC-type approach (upper bound to the 
real macroscopic strength domain) with those provided by the 
polynomial expansions of the micro-stress field (lower bounds), at 
increasing degrees of the polynomials (P2 to P4). In Fig. 12, three 
sections of the failure surface under biaxial tension (at h = 0�, 22.5� 
or 45�) are shown. Comparing Fig. 12c and d, the MoC and the P4 
model are found to provide very similar results, the maximum 
difference being obtained at h = 0� under horizontal tension (about 
7%).

The same type of comparison is repeated under biaxial com-
pression: the results, normalized to the compressive strength of 
the mortar joints fc, are reported in Fig. 13. Again, the agreement 
between P4 and MoC models appears to be rather satisfactory, 
with negligible differences from an engineering viewpoint.
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Fig. 11. Comparison between the results of the MoC-type approach and those of the 
static [27] or kinematic [26] approaches available in the literature for the masonry 
material of Table 2 under biaxial tension.
7. Comparison with experimental data in biaxial compression

To assess the predictive capabilities of numerical and analytical 
homogenization models for masonry under biaxial stress at failure, 
most authors refer to the experimental data set of Page [46].

Here, reference is made to similar biaxial compression tests, 
conducted by Papa and Nappi [36] at the Technical University 
(Politecnico) of Milan, Italy. The authors preferred to compare their 
predictions with these tests, as they had full access to the experi-
mental results. Papa and Nappi [36] tested 180 panels of 1:4 scale 
solid clay brick masonry with dimensions 200 � 200 � 30 mm3

(cut from 275 � 235 � 30 mm3 miniaturized panels previously 
built by means of convenient moulds). The dimensions of the units 
were 65 � 30 � 25 mm3 and the joint thickness was 5 mm. The 
panels were loaded increasing the principal stresses Rxx and Ryy 

proportionally, at different orientations h with respect to the mate-
rial axes (see Fig. 9a).

The material properties of mortar and units adopted are given 
in Table 3. For both components a Mohr–Coulomb failure criterion 
with tension cut-off and a multi-linearized elliptic cap in
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Fig. 13. Comparison between polynomial lower bounds and MoC upper bound to the macroscopic failure surface under biaxial compression; mechanical properties of 
Table 2. (a) MoC. (b) P2. (c) P3. (d) P4.

Table 3
Strength parameters used to fit the experimental data of Papa and Nappi [36].

ft (N/mm2) fc (N/mm2) U1 (�) U2 (�) c (N/mm2)

Mortar
1.1 21.2 37 30 1.0ft

Units
2.0 23.0 60 45 1.5ft
compression is assumed. It is worth noting that in [36] no detailed 
information on the mechanical properties of the constituent mate-
rials (such as cohesion, friction angle and tensile strength) is pro-
vided. Only brick and mortar compressive strengths are reported, 
which are not sufficient to fully identify all the strength parame-
ters. Accordingly, the values of some of these parameters were 
simply determined by best fitting the experimental data.

In Table 3, for each constituent ft denotes the uniaxial tensile 
strength, fc the compressive strength, c the cohesion, U1 is the fric-
tion angle and U2 the angle between the tangent to the elliptic cap 
at zero shear stress and the r-axis in Mohr’s plane.

In Fig. 14 the homogenized failure surfaces at h = 0�, 30� and 45� 
are reported and compared with the experimental data. On account 
of the experimental scatter, the numerically obtained failure 
surfaces fit the experimental data reasonably well.

In Fig. 15, a comparison between numerically determined and 
experimentally observed failure modes is provided for some mean-
ingful stress conditions. The deformed shape of the elementary cell 
is suitably replicated several times, in order to clearly represent the 
behavior at failure of a small quasi-square wallette constituted by 
3.5 and by 10 bricks along the horizontal and the vertical direction, 
respectively. Each failure mode is identified by a geometric symbol,
reported also on the failure surfaces in Fig. 14. In simple vertical 
compression, the wallette is experimentally found to fail due to 
the formation of vertical cracks crossing both joints and bricks: this 
failure mode is matched by the straight yield line observed in the 
numerical simulations (Fig. 15a). A similar behavior is experienced 
in the numerical model under horizontal compression (Fig. 15b), 
although also the bricks are found to fail in compression unlike 
the experimental evidences. Shear failure is also visible in the 
bed joints both numerically and experimentally under off-axis 
compression at h = 30� (Fig. 15c), whereas a yield line involving 
both mortar and bricks characterizes the failure mechanism at 
h = 45� (Fig. 15d), with a good agreement between experiments 
and numerical simulations.

8. The limit analysis problem at the structural level

The upper bound FE heterogeneous and homogenized limit 
analysis approach adopted at a structural level bases on a triangu-
lar discretization with linear interpolation of the velocity field 
inside each element. Possible velocity jumps can occur at the inter-
faces between contiguous elements, in agreement with the FE code 
originally proposed by Sloan and Kleeman [47]. Indeed, whereas in 
the present work the microscopic velocity field is continuous 
within each RVE (Section 3), discontinuities in the macroscopic 
velocity field over any structure are allowed. This is required to 
capture the failure mechanisms of most structural elements con-
sisting of masonry-like materials, which area characterized by 
cracks or slip surfaces.

Two different approaches are proposed hereafter to estimate the 
limit load of masonry structures. In the heterogeneous approach, 
assuming a finite thickness of the joints, triangular elements
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Fig. 14. Comparison between theoretical predictions (MoC-type model) and 
experimental data [36] under biaxial compression.
represent either mortar or bricks, and the interfaces between bricks
and mortar are assumed to have the mechanical properties of mor-
tar for the sake of simplicity. In the homogenized approach, the
body is subdivided into triangles without any reference to the real
pattern, with jumps in velocity allowed along the interfaces, having
the mechanical properties of the homogenized material.

The finite element implementation of the upper bound theorem
of limit analysis leads to a linear programming problem in which
the total dissipated internal power has to be minimized subject
to equality and inequality constraints. Equality constraints include
compatibility, plastic flow within the elements and at the inter-
faces, and boundary conditions. In more detail, for any pair of
nodes (labeled 1 and 2 hereafter – see Fig. 16b) on the interface 
between two adjacent triangles M and N, the jump in tangential 
and normal velocity, Dv, can be written in terms of the Cartesian 
nodal velocities of the elements (see Fig. 16 and [23,47] for details). 
Four linear equations of the form:

Aeq
11v

M þ Aeq
12v

N þ Aeq
13Dv ¼ 0 ð15Þ

can be written for each interface, where vM and vN are the 6 � 1
arrays collecting the Cartesian nodal velocities of element M and
N, respectively, Aeq

11 and Aeq
12 are 4 � 9 matrices depending on the

nodal coordinates of the elements, and Aeq
13 is a 4 � 4 matrix

depending only on the coordinates of nodes 1 and 2.
Within each element, three equality constraints representing

the plastic flow in continuum (obeying an associated flow rule)
are introduced, of the form:

_eE
pl ¼ @mx

@x
@my

@y
@my

@x þ
@mx
@y

h i
¼ _kE @SC

@RC
ð16Þ

where _eE
pl is the array gathering the plastic strain rate components

of element E, _kE P 0 is the plastic multiplier rate, SC denotes the
continuum failure surface, and RC ¼ rx ry s½ �T collects the
non-vanishing Cartesian stress components in plane stress condi-
tions within the continuum.

The failure surface is, in general, nonlinear, both in the homog-
enized and in the heterogeneous case. Assume that a linearization
with p planes of the failure domain, of the form SC � AinRC

6 bin, is
available, where Ain is a p � 3 matrix and bin a p � 1 array: each
row of the matrix inequality defines a half-space in the stress space
containing the origin. Three linear equality constraints per element
can be written in the form:

Aeq
21v

E þ Ain
� �T

_kE ¼ 0 ð17Þ

where vE is the 3 � 1 array of the element velocities, _kE is the p � 1
array of the plastic multiplier rates of the element (one for each
plane of the linearized failure surface), and Aeq

21 is a 3 � 6 matrix
depending only on the nodal coordinates of the element.

Similarly to the continuum case, the linearized failure domain
for the interfaces (i.e., brick-to-brick, mortar-to-mortar or mortar-
to-brick interfaces when a heterogeneous approach is adopted;
interfaces between adjacent elements in the homogenized
approach) can be cast in the form SI � Ain

I R 6 bin
I . Here

R ¼ r s½ �T collects the normal stress and the shear stress acting
on the interface, whereas Ain

I and bin
I define any linearization

plane.
Once the interface failure surfaces are linearized, the jump in

velocity across the discontinuities is computed introducing the
rates of the plastic multipliers for each interface I as follows:

Dv nð Þ ¼
Dmn nð Þ
Dmt nð Þ


 �
¼
Xm

i¼1

_kðiÞI nð Þrf ðiÞr ð18Þ

where
– n is a local coordinate defined along the interface, ranging

between 0 and 1;
– rf ðiÞr are constant gradients for the failure surface (f ðiÞ being the

ith segment the 2D multi-linear failure surface consists of);
– _kðiÞI are the interface plastic multiplier rates, evaluated at n and

associated with the ith segment of the multi-linear failure
surface;

– Dmn and Dmt are the normal and tangential components of the
velocity jump across the discontinuities, respectively.

In the classic kinematic approach of limit analysis a normaliza-
tion condition for the external power is needed, providing a further
equality constraint of the form:



Fig. 15. Comparison between numerical and experimentally observed failure modes for some meaningful points of the strength domain of Fig. 14.
Aeq
n m ¼ 1 ð19Þ

where Aeq
n is a 1 � 6nel (nel: number of elements) matrix and m is the

array of the assembled element nodal velocities.
After some elementary assemblage operations, a simple linear 

programming problem is obtained (analogous to that reported in 
[23,47]) in which the objective function to be minimized is the 
total internal dissipated power P:
min P ¼ bin
a

� �T
_ka

E þ bin
I;a

� �T
_ka

I

such that
AeqU ¼ beq

_ka
E P 0

_ka
I P 0
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Fig. 16. Triangular element used in the upper bound FE limit analysis problem (a) and jump in velocity across any interface between adjacent triangles (b).

Fig. 17. Geometry and boundary conditions for the deep beam tested by Page [54]: 
L = 754 mm, H = 457 mm, Ls = 188 mm.
– bin
a and bin

I;a are the assembled right-hand sides of the inequali-
ties, which define the linearized failure domain of the contin-
uum material and of the interfaces, respectively;

– U ¼ m _ka
E Dma _ka

I

� 	
is the array of the assembled unknown

variables, which collects the element nodal velocities (m), the
plastic multiplier rates of all the elements ( _ka

E), the velocity
jumps across all the interfaces (Dma), and the plastic multiplier
rates of all the interfaces ( _ka

I );
– Aeq is the matrix gathering the coefficients of the overall con-

straints, and collects velocity boundary conditions, relations 
between velocity jumps across interfaces and elements veloci-
ties, Eq. (15), constraints for plastic flow in continuum, Eq.(17), 
constraints for plastic flow in velocity discontinuities, Eq.(18), 
and normalization condition, Eq. (19).

It is worth noting that the objective function P consists of two
contributions, representing the total power dissipated within the

continuum, PE = bin
a

� �T
_ka

E, and that dissipated at the interfaces,

PI = bin
I;a

� �T
_ka

I . Within each triangle E of area AE, writing the expres-

sion of each of the p planes linearizing the failure surface as

Ain q;1ð Þrx þ Ain q;2ð Þry þ Ain q;3ð Þs ¼ bin qð Þ, q = 1, . . . , p, it can be
shown that the dissipated power is:

PE ¼ AE

Xp

q¼1

bin qð Þ _kðqÞE ð21Þ

where _kðqÞE is the plastic multiplier rate of triangle E associated with
the qth plane.

Similarly, within each interface I of length CI, supposing that
the linearized strength domain is bounded by pI straight lines of
the form Ain
I q;1ð Þrþ Ain

I q;2ð Þs ¼ bin
I qð Þ, q = 1 ,. . . , pI, the dissipated

power reads:

PI ¼ CI=2
XmI

qI¼1

bin
I

_kðqÞI;1 þ _kðqÞI;2

� �
ð22Þ

where _kðqÞI;1 and _kðqÞI;2 are the plastic multiplier rates associated with
the qth line computed at the extremes of the interface, as the plastic 
multiplier rates vary linearly along the interfaces.

From a numerical point of view, it is worth noting that the over-
all constraint matrix of the optimization problem given by Eq. (20) 
reduced to standard form has always fewer rows than columns. For 
refined meshes, the ratio of columns to rows in the overall con-
straint matrix basically depends on the number of planes used in 
the linearization of the failure surface (for both the continuum and 
the interfaces). Furthermore, for refined meshes, the density of the 
overall constraint matrix is very low, and its sparsity increases as 
the number of elements increases. This suggests the usage of either 
interior-point algorithms [48,49] or the steepest edge active set 
algorithm [50] to solve the dual problem of Eq.(20). The steepest 
edge active set algorithm was found to be very efficient for the 
solution of the upper bound problem, but recent trends in limit 
analysis tend to avoid the utilization of linear pro-gramming, since 
the efficiency of nonlinear programming (espe-cially conic 
programming, see Makrodimopoulos and Martin [51] or 
Krabbenhoft et al. [52,53]) seems nowadays to be definitely higher. 
This notwithstanding, as the aim of the present paper is essentially 
devoted to technical applications of limit analysis to masonry 
structures, a consolidated interior-point algorithm is used for the 
sake of simplicity.
9. Effect of joint thickness on a deep beam

A structural example is analyzed in this section with the aim of
showing the predictive capabilities of the proposed model as far as
the bearing capacity of masonry walls is concerned. The example is
a traditional benchmark for in-plane loaded brickwork, namely a
masonry panel acting as a deep beam. The wall was tested by Page
[54], and is 754 mm long, 457 mm high, 54 mm thick, and is sup-
ported at both sides over a length of to 188 mm, see Fig. 17. An
evenly distributed load p is applied at the top of the wall through
a stiff steel beam. The wall is made of half-scale pressed solid clay
bricks, with dimensions 122 � 37 � 54 mm3 (length � height �
depth), and 5 mm thick mortar joints.

The same test was previously numerically analyzed both by
Lourenço [55] through an incremental elasto-plastic procedure
by Sutcliffe et al. [56] through a heterogeneous limit analysis
approach, and by Milani et al. [23] using homogenization. In the
numerical model proposed by Page [54] and by many other



Fig. 18. FE meshes used in the analysis of a deep beam: a–c: heterogeneous models 
(a: joint thickness = 2.5 mm, no. of elements = 2304; b: 5 mm, 3864; c: 10 mm, 
3864); d: homogenized model (no. of elements = 504).

(a)

(b)

Fig. 19. Multi-linear failure surface adopted for joints. (a) Continuum (units/joints);
(b) interfaces.

Table 4
Strength parameters used in the analysis of the deep beam tested by Page [54].

ft (N/mm2) fc (N/mm2) U1 U2 c (N/mm2)

Mortar
0.29 8.6 37� 30� 1.4ft

u c (N/mm2)

Units
45� 2
authors, the joint thickness is neglected and units are supposed to 
be separated by interfaces.

To assess the effectiveness of the proposed model in predicting 
the bearing capacity of masonry structures with joints of different 
thickness, here the deep beam is assumed to have joints either of 
vanishing thickness, or 2.5, 5 and 10 mm thick. The accuracy of 
the predictions given by the homogenized model (Fig. 18d) is 
checked through comparisons with the results obtained with three 
heterogeneous FE meshes, shown in Fig. 18a–c, in addition to a 
mesh with units separated by interfaces. Note that the homoge-
nized mesh is much coarser than the heterogeneous meshes.
In the heterogeneous models, joints and units are meshed sep-
arately, taking into account their different strength properties in 
the structural analysis. For mortar, a Mohr–Coulomb failure crite-
rion with tension cutoff and multi-linear cap in compression is 
adopted (see Fig. 19b) with a linearization of the failure surface 
by means of 73 planes. For units, a Mohr–Coulomb failure criterion 
in plane stress is assumed (see Fig. 19a); a linearization with 48 
planes of the failure surface is adopted. The strength parameters 
of both constituents are reported in Table 4. In the heterogeneous 
models, jumps in velocity are allowed within the units, within the 
joints, and at the interface between mortar and units; this interface 
is assumed to have the mechanical properties of mortar.

In the MoC-based homogenized model, the macroscopic 
mechanical properties are derived according to the values reported 
in Table 4. In Fig. 20 a few sections of the homogenized in-plane 
failure surfaces under biaxial tension are shown, at different orien-
tations of the bed joint to the maximum principal stress (h = 0�, 
22.5�, 45�), for joints of increasing thickness. As can be observed 
from the homogenized failures surfaces for h = 0�, an increase in 
joint thickness tends to reduce the orthotropy ratio, defined as the 
ratio of the horizontal to the vertical tensile strength. Accordingly, 
it can be expected that the reduction of joints to interfaces results 
into a slight overestimation of the collapse load, especially when 
failure is due to the formation of tension cracks for masonry 
working along the horizontal direction. In the applications, the 
homogenized failure surface is linearized at two different levels of 
refinement (with 24 or 160 planes). In the homogeneous model, 
jumps in velocity are also allowed at the interfaces between
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Fig. 20. Deep beam test: sections of the homogenized failure surfaces in biaxial 
tension at different orientations of the bed-joint to the maximum macroscopic 
principal stress. (a) Joint reduced to interface. (b) Joint thickness equal to 2.5 mm.
(c) 5 mm. (d) 10 mm.

Fig. 21. Comparison among deformed shapes provided by the upper bound limit
analysis FE code. From a to c, heterogeneous approach (a: joint thickness equal to
2.5 mm, b: 5 mm, c: 10 mm). d: MoC-type homogenized approach.
adjoining finite elements, consistently with the kinematics of the 
heterogeneous models.

Fig. 21 from a to d shows the deformed shapes at collapse for 
the models analyzed. In particular, Fig. 21 from a to c refers to 
the heterogeneous models (with joint thickness equal to 2.5, 5 
and 10 mm respectively), whereas Fig. 21d shows the results of 
the homogenized approach. The numerical results obtained in 
terms of collapse load using both the discrete and the homoge-
nized models are reported in Fig. 22.
Both models predict a difference between the limit load com-
puted at the two extreme values of the considered joint thickness
of the order of 20%, which might be considered to fall within the
engineering acceptability limits of the results, but which is not
negligible in any case: this makes the reliability of models consist-
ing of units separated by interfaces questionable. For a given thick-
ness, the difference among the various numerical predictions is of a
few percent: the most conservative estimates of the limit load are
given by the homogenized approach, provided that a refined line-
arization of the failure surface is adopted. Finally, it is interesting to
underline that the MoC-type homogenized model is capable of
capturing the ‘exact’ collapse load predicted by the heterogeneous
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Fig. 22. Deep beam test. Failure load obtained with the heterogeneous mesh and
the homogenized MoC approach at different values of the mortar joint thickness.
models for all the values of thickness inspected, even for extremely
thin joints. This means that the proposed model can be adopted in
engineering practice for a fast evaluation of collapse loads and fail-
ure mechanisms of real scale masonry structures, without the need
of discretizing joints and units at a structural level separately.

10. Conclusions

Following an approach similar to the so-called Method of Cells, 
a homogenized failure criterion for periodic brickwork based on 
the upper bound theorem of limit analysis was derived, by formu-
lating a piecewise differentiable strain-rate periodic velocity field 
over a Representative Volume Element, depending on a very lim-
ited number of degrees of freedom. The MoC-type criterion com-
bines numerical accuracy and low computational cost. Indeed, 
comparisons with homogenized criteria based on the lower bound 
theorem of limit analysis and relying upon a refined modelling of 
the stress field within the RVE (Section 4) showed that the gap 
between the theoretical bounds is, in most cases, negligible.

Here, it is worth noting that the main points of innovation of the 
present approach – when compared with existing literature – are 
the following:

(1) The assumed discretization into rectangular sub-cells allows 
taking into account the actual thickness of the mortar joints 
and its influence in the determination of the homogenized 
strength domain. The majority of the models, exception 
made for a few attempts mainly based on the static theorem 
of limit analysis (see e.g. [22]), usually disregard joints thick-
ness, adopting the concept of interface and consequently 
adopting for mortar a failure criterion in terms of normal and 
tangential stresses only. Here, a fully 2D (and hence more 
realistic) approach is utilized, that allows the adoption of any 
bi-dimensional failure criterion for the joints. Results found 
are in agreement with intuition and codes of practice 
recommendations, i.e. thick joints tend to reduce masonry 
strength.

(2) Conceptually, bricks and mortar are modelled in the same 
way, because similar rectangular sub-cells are adopted. In 
addition, it can be imposed that mortar and brick obey any 
failure criterion. As a consequence, at least in principle, it is 
possible to reproduce failure inside brick. Despite the well 
know limitations of classic limit analysis (i.e. infinite 
ductility, perfectly-plastic behavior of the materials and 
associated flow rule) and the impossibility of the model to
reproduce 3D effects (particularly important for crushing
in compression) as a consequence of its native 2D character-
ization, a satisfactory performance in reproducing experi-
mental bi-axial tests on miniaturized panels is experienced.
In particular, the approach proposed proved good ability in
fitting both crack patterns and homogenized strength.

(3) When compared with alternative lower bound procedures
accounting for the actual thickness of the joints, the number
of inequality and equality constraints entering into the opti-
mization problem to determine the homogenized strength is
always reduced. Such numerical property allows (i) an
impressive stability of the interior point algorithm and (ii)
the strong reduction of the optimization time needed to
achieve a converged solution, which usually required less
than 5 s on PCs with standard RAM (4 Gb).

In the computation of the bearing capacity of masonry struc-
tures the use of the MoC-type homogenized criterion is particularly 
expedient, as finite element meshes much coarser than those 
needed if the heterogeneous nature of masonry is taken into 
account can be used, without any significant loss in accuracy (Sec-
tion 9). In conclusion, it is suggested to estimate the limit load of 
masonry structures disregarding the presence of joints and units, 
and adopting the proposed macroscopic strength criterion. The case 
study of Section 9 showed that the ‘exact’ analysis of the het-
erogeneous structure gives a difference of only a few percent com-
pared to that of the homogenized structure, even if the macroscopic 
failure surface is linearized with a limited number of planes.

In the continuation of the research, the formulation of MoC-type 
macroscopic strength criteria will be extended to masonry 
structures undergoing transverse loads. The possibility of taking 
more complex brick patterns (e.g. Flemish or English bond) into 
account will also be provided. Finally, as the brick-to-mortar inter-
face is the weakest link in some types of masonry, especially in his-
toric structures, failure mechanisms for the RVE defined by 
discontinuous velocity fields, including the possibility of dissipat-
ing power at the interfaces, will also be formulated.
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