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Abstract
Aim: The endemic seagrass Posidonia oceanica is a key component of the coastal 
seascapes of the Mediterranean Sea, where it provides crucial ecosystem services 
and promotes the assembly of diverse ecological communities. Although protec‐
tion policies exist, P. oceanica meadows have been steadily declining in the recent 
past because of human activities and climate change. Here, we quantitatively ana‐
lyse basin‐wide patterns of seagrass connectivity over a 30‐year‐long period and 
identify connectivity hotspots that may serve as priority targets for conservation 
actions.
Location: Mediterranean Sea.
Time period: 1987–2016.
Major taxa studied: The seagrass P. oceanica.
Methods: A biophysical Lagrangian approach is used to simulate dispersal of sea‐
grass fruits operated by marine currents. Connectivity metrics (self‐retention, in‐
degree and outdegree) are evaluated on top of Lagrangian simulations to identify 
the most ecologically connected areas. Time series of local connectivity scores are 
analysed to study temporal variability and possibly detect trends at different spatial 
scales.
Results: Spatio‐temporal variability is an important component of seagrass connec‐
tivity in the Mediterranean. Connectivity hotspots are unevenly distributed in all of 
its four main sub‐basins, and along both European and African coastlines. Although 
statistically significant local trends in connectivity are generally quite infrequent 
across the whole basin, they appear to be relatively more prevalent in connectivity 
hotspots. The interannual variability of average connectivity scores seems to be at 
least partially linked to meteorological fluctuations.
Main conclusions: The present study represents a step forward in the application of a 
quantitative, scalable and replicable methodological framework for the prioritization 
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1  | INTRODUC TION

Posidonia oceanica (L.) Delile is a seagrass species endemic to the 
Mediterranean Sea; it inhabits the coasts of the entire Mediterranean 
basin in a 1–45 m depth range, except for large estuaries and regions 
where extreme thermal and salinity conditions are not favourable 
for its persistence (Gobert et al., 2006; Telesca et al., 2015). P. oce‐
anica plays a pivotal ecological role as a habitat‐forming species. Its 
vast underwater meadows shape the submarine seascape in coastal 
areas (Montefalcone, Albertelli, Bianchi, Mariani, & Morri, 2006). 
They also create favourable conditions for the assembly of diverse 
and complex communities that include also many commercially im‐
portant fish species (Pergent et al., 2016). For these reasons, P. oce‐
anica can be considered an ecosystem engineer, that is a species 
providing crucial ecosystem services, such as water oxygenation, 
carbon sequestration, nutrient cycling, water purification and pro‐
tection from coastline erosion, and offering shelter or nursery to 
other species (Campagne, Salles, Boissery, & Deter, 2015; Vassallo 
et al., 2013). Despite remaining the most widespread seagrass in 
the Mediterranean Sea, P. oceanica populations have been sharply 
declining in recent decades due to multiple stressors, including the 
localized effects of climate change and human activities, with an es‐
timated 13%–50% decrease in areal extent over the past 60 years 
(de los Santos et al., 2019; Marbà, Díaz‐Almela, & Duarte, 2014; 
Telesca et al., 2015). In this respect, P. oceanica shares the same fate 
as the majority of seagrass species in coastal waters across the globe 
(Orth et al., 2006; Waycott et al., 2009). Owing to its importance in 
the context of the Mediterranean Sea coastal ecosystems, associ‐
ated with the current trends of species distribution decline, P. ocean‐
ica has been identified as a key target for conservation by European 
institutions since the 1990s (Boudouresque et al., 2012).

Posidonia oceanica can reproduce sexually, producing seed‐car‐
rying, positively buoyant fruits that may be carried by marine cur‐
rents and thus represent the main dispersal agents for this species 
(McMahon et al., 2014). Data on the dispersal distances of P. oce‐
anica fruits are scarce. As an example, Arnaud‐Haond et al. (2007) 
showed that the dispersal of P. oceanica fruits can be restricted to 
the scale of a few metres in some meadows, in spite of the appar‐
ent potential for larger‐scale seed dispersal. In the same study, the 
authors showed the existence of genetic structure within individual 
seagrass meadows and genetic differentiation among populations 
on scales ranging from tens of kilometres up to the great divergence 
between populations inhabiting the eastern and western basins of 

the Mediterranean Sea. However, evidence also exists suggesting 
that dispersal distances for P. oceanica may be significantly greater 
and more  variable than previously considered. For instance, Serra 
et al. (2010) reported dispersal distances up to 50  km. Realized 
connectivity in P.  oceanica is likely mainly limited by the episodic 
nature of flowering, sexual reproduction and the overall low pro‐
duction rate of fruits in most locations (e.g. Balestri & Cinelli, 2003; 
Balestri, Vallerini, & Lardicci, 2017; Procaccini, Orsini, Ruggiero, & 
Scardi, 2001). This implies that local management alone may not be 
enough for P. oceanica and that spatial planning should not dismiss 
connectivity out of hand. In fact, sexual reproduction and fruit dis‐
persal, even at a low rate, can play a critical role in the colonization 
of new sites, recovery after disturbance and establishment of new 
genotypes in existing seagrass populations. Because of the wide‐
spread distribution of this foundation species along Mediterranean 
coasts and the reported large‐scale trajectories of loss, conservation 
strategies should be planned at a whole‐basin scale, with priority 
being given to sites that play a key role in structuring population 
connectivity, thus supporting effective conservation and restoration 
strategies. This coordinated effort would also be coherent with habi‐
tat‐based policies that constitute the cornerstone of Europe's nature 
conservation policy (e.g. “Habitats Directive,” 92/43/EEC).

Designing prioritization strategies at the scale of the whole 
Mediterranean Sea is necessary to channel resources where inter‐
ventions are most urgently needed and/or likely to be effective. 
However, this requires a comprehensive framework able to cap‐
ture the complexity of both patterns and processes, and duly ac‐
counting for the challenges imposed by such a large spatial extent. 
This problem is further exacerbated by the trans‐boundary nature 
of the Mediterranean Sea, the complex social, cultural and political 
conditions of the countries surrounding it and its high sensitivity 
to global climate change (Lejeusne, Chevaldonné, Pergent‐Martini, 
Boudouresque, & Perez, 2010; Micheli et al., 2013). Indeed, a 
regional approach for the protection and enhancement of the 
status of the marine environment in the Mediterranean Sea re‐
quires a close cooperation among states and international organi‐
zations, which is one of the founding principles of the Barcelona 
Convention (“Convention for the Protection of the Marine 
Environment and the Coastal Region of the Mediterranean”). Also, 
the Marine Strategy Framework Directive (MFSD, 2008/56/EC) 
has established detailed criteria and methodological standards 
according to which each member state has to take the necessary 
measures to achieve or maintain “Good Environmental Status” 

of seagrass conservation actions in the Mediterranean large marine ecosystem, a 
challenging environment characterized by complex socio‐economic boundary condi‐
tions and high sensitivity to the localized effects of global climate change.
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biophysical modelling, conservation hotspots, dispersal, Lagrangian simulations, marine 
connectivity
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in the marine environment. In general, identifying areas for pro‐
tection in large marine ecosystems requires techniques involving 
multiple scales of analysis. The spatial structuring imposed by the 
interplay between local environmental conditions and basin‐wide 
circulation patterns, in particular, calls for the design of marine 
protected areas ensuring and promoting seascape connectivity 
(Planes, Jones, & Thorrold, 2009). In fact, if a protected area is not 
sufficiently connected to others, it may not effectively receive/
send propagules (such as larvae or seeds), thus possibly thwart‐
ing natural recovery (McCook et al., 2009). In other words, spatial 
planning of marine protection should be conceived as the design of 
a coherent network of protected areas ecologically connected at 
various spatial scales, in order to fulfil ecological aims more effec‐
tively than single individual sites could do (Boero, 2015; WCPA/
IUCN, 2007). Assessing the functional connectivity of species that 
are target of protection efforts, such as P. oceanica, is thus of par‐
amount importance to large‐scale conservation planning (Jahnke 
et al., 2017; Kendrick et al., 2017).

In this work, connectivity patterns of P. oceanica are evaluated at 
the scale of the whole Mediterranean Sea over a 30‐year‐long time 

span. We propose a definition of species‐specific functional connec‐
tivity (suitability‐weighted connectivity—for brevity, s‐connectivity) 
accounting for both local suitability conditions and dispersal pat‐
terns driven by marine currents. This definition aims to account not 
only for the amount of propagules potentially exchanged between 
marine sites but also for the environmental conditions that may 
influence local suitability for the species under study. To that end, 
a Lagrangian approach is used to build a biophysical model for the 
dispersal of P.  oceanica. Following the methodological framework 
proposed by Melià et al. (2016), s‐connectivity is then evaluated on 
top of the results of Lagrangian simulations to single out the stron‐
gest and most time‐persistent ecological connections for P. oceanica 
across the Mediterranean Sea, specifically in terms of the possible 
functional roles that a local population can play in the context of 
a larger metapopulation, namely retainer, sink and source. The 
multi‐decadal temporal span of the simulation exercise also allows 
the study of temporal variability in P. oceanica connectivity and the 
identification of trends, as well as the investigation of the possible 
relationships between connectivity and meteorological fluctuations. 
The ultimate goal of the analysis is to improve spatial prioritization 

F I G U R E  1  The biophysics of 
Posidonia oceanica connectivity in the 
Mediterranean Sea. (a) Species‐specific 
suitability map (Giannoulaki et al., 2013). 
Colour‐coded scores represent estimated 
probabilities of P. oceanica presence. 
(b) Example of circulation field. Colours 
represent the speed of surface currents 
for 1 January 2014, obtained through 
bilinear interpolation of data from a 
physical reanalysis of Mediterranean 
circulation (Lecci et al., 2017; Simoncelli 
et al., 2014). (c) Marine sectors for the 
analysis of P. oceanica connectivity 
(centroids, coloured dots). Colours 
represent the number of simulated 
Lagrangian trajectories starting from each 
sector in each year of the simulation time 
span (1987–2016). This variability reflects 
the small‐scale spatial heterogeneity in 
the distribution of suitable sites. Black 
dots are suitable sites that fall outside the 
spatial domain of the physical reanalysis 
and that are thus not used in the 
numerical simulations
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practice in conservation planning for an iconic foundation species at 
a Mediterranean‐wide spatial scale.

2  | METHODS

2.1 | Biophysical simulations of dispersal

Basin‐wide potential connectivity for P.  oceanica in the 
Mediterranean Sea is estimated through Lagrangian simulations 
(Van Sebille et al., 2018), with dispersing agents representing P. oce‐
anica fruits. Lagrangian particles are released at marine sites that are 
suitable for P. oceanica meadows, are transported by currents and 
may eventually settle at some suitable sites.

Release sites are determined based on a species‐specific suit‐
ability map produced by the MediSeH project (Giannoulaki et al., 
2013), in which binary observations of P. oceanica presence–absence 
(Telesca et al., 2015) and a set of 36 mapped predictor variables (en‐
compassing bathymetry and geographical features, physico‐chem‐
ical characteristics, nutrient and pollutant concentrations, as well 
as human impact indicators) were used to train a random forest 
algorithm (Breiman, 2001) estimating the probability of P. oceanica 
occurrence throughout the whole Mediterranean Sea basin. The 
predictive variables that played the most relevant roles in the final 
species distribution model by Giannoulaki et al. were nitrate and sil‐
icate concentrations, average depth, sea surface temperature and 
salinity, with distance from river mouths, phosphate concentration, 
pH, bottom salinity and photosynthetic active radiation also featur‐
ing prominently. The estimated occurrence probability of P. oceanica 
meadows (a proxy for suitability) at site A, sA, was projected as a 
high‐resolution (1/240°, around 0.5 km) raster map extending over 
the whole Mediterranean basin (Figure 1a).

Circulation fields (daily averages, Figure 1b) are obtained from 
a state‐of‐the‐art, Mediterranean‐wide physical reanalysis (Lecci, 
Fratianni, Drudi, & Grandi, 2017; Simoncelli et al., 2014) produced 
by the Istituto Nazionale di Geofisica e Vulcanologia (Italy). Because 
circulation fields have lower spatial resolution (1/16°, around 7 km) 
than the suitability map, some differences in the representation of 
the coastlines and other details of the physical domain are clearly to 
be expected. For instance, the currently available physical reanalysis 
does not cover yet areas like the Sea of Marmara in Turkey, or many 
of the Greek gulfs, including the Gulf of Corinth and the Euboean 
Gulf.

Lagrangian simulations are performed over the time interval 
1987–2016 (ny = 30 years). In each year, timing of release is set to 
match the fruit‐release season of P.  oceanica (typically, January 
throughout April, for a total of nd = 120 days; see Melià et al., 2016; 
Jahnke et al., 2017). For each day in this season, a fixed number of 
particles (np = 15) are released from each pixel of the suitability map 
that has strictly positive suitability and that lies, at least in part, inside 
the domain of the physical reanalysis. While the release of 15 par‐
ticles per site and day might seem quite a low figure, the size of the 
spatial domain of our Lagrangian exercise (the whole Mediterranean 
basin) is such that matters of computational feasibility become 

relevant. A total of nr ≈ 5.69 × 105 release sites are in fact identified 
following the selection criteria outlined above. All in all, an excess 
of nt = ny nd np nr ≈ 30 billion Lagrangian particles is tracked over the 
whole numerical assessment. The initial position of particles within 
each release site is randomly assigned to uniformly span the area of 
the pixel and a depth interval of 0–1 m (P. oceanica fruits are free‐
floating and positively buoyant; Serra et al., 2010).

The longitudinal and latitudinal components of the position of 
each particle are updated by assuming passive transport driven 
by marine circulation fields, while particle depth is not updated. 
Numerical integration is performed with a Runge–Kutta fourth‐
order scheme with adaptive step size (Dormand & Prince, 1980). 
At each time step, three‐dimensional trilinear interpolation of the 
longitudinal and latitudinal components of the velocity field is per‐
formed. Note that the spatial grain of the circulation model (1/16°) is 
much coarser than the suitability map used to identify release sites 
(1/240°). As such, the effects of releasing a large number of particles 
from each pixel of the latter, higher‐resolution grid would likely be 
dampened by the necessity of interpolating current velocities from 
the former, lower‐resolution grid. The position of each particle is 
tracked for a period of time corresponding to the duration of the 
dispersing stage of P. oceanica, after which fruits dehisce and release 
their seeds.

Duration estimates for the floating phase of the fruits of this 
seagrass species vary from one/two weeks (e.g. Aliani, Gasparini, 
Micheli, Molcard, & Peirano, 2006; Buia & Mazzella, 1991) up to 
4 weeks (Serra et al., 2010). Here, we use a value of 28 days, which is 
towards the maximum reported length of the dispersal window and 
allows an assessment of potential connectivity (an upper bound for 
realized connectivity). This value has consistently been used in all 
previous modelling studies addressing P. oceanica dispersal dynam‐
ics (Jahnke et al., 2017; Melià et al., 2016; Serra et al., 2010).

In our modelling framework, a dispersal event is considered suc‐
cessful only if a particle reaches a suitable site at the end of its dis‐
persing phase. Although this approach differs from what has been 
proposed in the literature to describe connectivity in other seagrass 
species (see Appendix S1 for details), it has consistently been used in 
previous works addressing P. oceanica fruit dispersal via Lagrangian 
simulations (see again Jahnke et al., 2017; Melià et al., 2016; Serra 
et al., 2010).

2.2 | Posidonia oceanica‐specific connectivity

The strength of P. oceanica connectivity is assumed to be propor‐
tional to the number of successful dispersal events nAB(y) that link 
(directionally) any two suitable sites (say, site A to site B) in year y. 
This quantity is clearly influenced by species‐specific traits such as 
timing of fruit release and duration of the dispersing phase, but is 
mostly concerned with the hydrodynamics of passive propagule dis‐
persal by marine currents. To account for small‐scale heterogenei‐
ties in the quality and spatial distribution of suitable sites across the 
Mediterranean Sea, we define an ecologically motivated measure 
of connectivity in which successful dispersal events are weighted 
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according to the suitability scores of both release (source) and set‐
tling (sink) sites. Suitability‐weighted connectivity (s‐connectivity, 
from here on out) between two sites A and B in year y is thus de‐
fined as CAB

s(y) = sA nAB(y) sB. In this way, not only species‐specific 
dispersal patterns but also local suitability conditions are effectively 
taken into consideration and integrated in a comprehensive measure 
of functional connectivity. For this reason, s‐connectivity can repre‐
sent an informative tool to evaluate the ecological value of marine 
sites, at least from the perspective of the potential connectivity of 
the species being studied.

For the sake of spatial robustness, instead of analysing individ‐
ual sites at the fine scale of the P. oceanica suitability map (1/240°), 
we focus on the marine sectors defined by the coarser resolution of 
the physical reanalysis of the circulation fields (1/16°). Specifically, 
a suitable marine sector is defined as a cell of the circulation model 
that includes at least one suitable site. Each suitable sector may 
thus include from one to (240/16)2 = 225 suitable sites. By con‐
struction, then, despite the release of a uniform number of parti‐
cles at the fine spatial scale of the suitability map, the number ni 
of Lagrangian trajectories starting at each marine sector i varies 
over space, reflecting the uneven spatial distribution of suitable 
sites in the seascape. In fact, upwards of three thousand particles 
are released daily from fully suitable sectors, for an excess of 400 
thousand particles/sector/year. By contrast, marine sectors for 
which ni is below a given threshold (set here to 1,000 particles per 
year) are excluded from further analysis to improve robustness. A 
set of nm ≈ 8,000 suitable marine sectors is identified in this way, 
spanning the Mediterranean shorelines (Figure 1c). The pairwise s‐
connectivity score between any two sectors (say i and j) in a given 
year (say y) is defined as.

These scores can be suitably organized in a time‐varying s‐con‐
nectivity matrix Cs(y) = [Cij

s(y)], which in turn can be characterized as 
a directed weighted graph, with nodes and edges being, respectively, 
marine sectors and time‐varying s‐connectivity scores.

2.3 | Connectivity metrics

In the theory of complex networks, two simple yet powerful met‐
rics of connectivity are the indegree and the outdegree of network 
nodes, defined for weighted graphs as the sum of the incoming 
and outgoing links' weights, respectively (Newman, 2010). Thus, 
in the context of P.  oceanica dispersal, indegree and outdegree 
measure the tendency of the sites within a marine sector to func‐
tion as potential sinks or sources for P. oceanica fruits, that is to 
be successful at receiving/sending propagules from/to suitable 
sites lying in other sectors. In ecological applications, another 
important metric based on connectivity scores is self‐retention 
(e.g. Melià et al., 2016). For the problem at hand, self‐retention 
quantifies how many P.  oceanica fruits both are released and 
settle within a given marine sector (say  i), with the release and 

settling sites being possibly different, but both lying in sector  i. 
Technically, the diagonal elements Cii

s(y) of the s‐connectivity ma‐
trix thus represent the local self‐retention (SR) of each marine sec‐
tor (SRi(y) = Cii

s(y)), while indegree (ID) and outdegree (OD) can be 
easily evaluated as the column or the row sums of the s‐connectiv‐
ity matrix, that is IDi(y) = ∑j≠i C

s
ji(y) and ODi(y) = ∑j≠i C

s
ij(y), with the 

condition j ≠ i being imposed to avoid multiple counting of self‐re‐
tention. Because of the time‐varying nature of the s‐connectiv‐
ity matrix (as determined by the temporal variability of circulation 
fields), self‐retention, indegree and outdegree are all time‐varying 
quantities too.

2.4 | Identification of s‐connectivity hotspots

The metrics described above can be used to identify the hotspots 
of s‐connectivity for P. oceanica across the Mediterranean Sea. To 
do so, we follow the methodological framework proposed by Melià 
et al. (2016) to assign each marine sector a synthetic s‐connectivity 
score recapitulating its capacity to simultaneously act as retainer, 
sink and source.

First off, the across‐year mean (an indicator of sheer intensity) 
and coefficient of variation (standard deviation‐to‐mean ratio, an 
indicator of temporal variability) are evaluated for each s‐connec‐
tivity metric and marine sector. In this way, six different indicators 
are produced for each suitable marine sector i: SRi

Ave and SRi
CV for 

self‐retention, IDi
Ave and IDi

CV for indegree and ODi
Ave and ODi

CV for 
outdegree, with the superscripts Ave and CV indicating average and 
coefficient of variation, respectively.

Then, for each metric, two separate rankings of marine sec‐
tors are produced, respectively, according to either decreasing in‐
tensity or increasing variability. To avoid spurious results, sectors 
with an average intensity score of zero (which indicates that the 
local values of the s‐connectivity metric are null over the whole 
simulation time span) are listed as last in the variability ranking. 
For a given metric, two percentile scores can thus be assigned to 
each sector: the first defined as the percentage of sectors that 
have intensity equal to or lower than the one being considered and 
the second as the percentage of sectors that have equal or higher 
variability. Therefore, the sector endowed with highest across‐
year mean will receive an intensity score of 100 and the one with 
the lowest a score of zero; conversely, the sector with lowest co‐
efficient of variation will receive a variability score of 100 and the 
one with the highest a score of zero. This procedure leads to the 
definition of six percentile scores for each sector (say i): pSRi

Ave 
and pSRi

CV for self‐retention, pIDi
Ave and pIDi

CV for indegree and 
pODi

Ave and pODi
CV for outdegree.

Afterwards, for each sector i, we introduce summary percen‐
tile scores for self‐retention, indegree and outdegree. They are 
defined conservatively as the minimum between the two relevant 
percentile scores pertaining to the intensity and variability of each 
metric, that is pSRi  =  min (pSRi

Ave, pSRi
CV), pIDi  =  min (pIDi

Ave, 
pIDi

CV) and pODi = min (pODi
Ave, pODi

CV). A synthetic percentile 
s‐connectivity score pCSi is then assigned to each of the n

m marine 

Cs
ij
(y)=ΣA∈iΣB∈jC

s

AB
(y)=ΣA∈iΣB∈jsAnAB(y)sB.
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sectors by taking the minimum (again, conservatively) among the 
three summary scores for self‐retention, indegree and outdegree, 
that is pCSi = min (pSRi, pIDi, pODi). This final percentile value can 
thus be interpreted as an overall s‐connectivity score, and sectors 
where pCS is highest can be considered hotspots of s‐connectiv‐
ity for P. oceanica in the Mediterranean Sea and possible priority 
candidates for species protection. We stress again that the ag‐
gregation procedure used to evaluate pCS reflects a conservative 
strategy by which hotspots are marine sectors identified based 
on their ability to outperform others in the s‐connectivity metric/
indicator in which they are weakest.

Finally, the top‐k s‐connectivity hotspots (with k being the num‐
ber of target hotspots) are identified as the k sectors whose syn‐
thetic percentile s‐connectivity score exceeds the (nm − k)th order 
statistic of the score distribution.

The final results of the hotspot identification procedure do 
evidently depend upon the spatial scale of analysis, which in the 
problem at hand is defined by the size of marine sectors. Sensitivity 
analysis can be used to check whether the procedure is robust to 
variations in spatial scales, namely to changing the way local (self‐re‐
tention) versus in/outbound (in/outdegree) connections are defined 
(details in Appendix S1). Other approaches to investigate connectiv‐
ity within a network of seagrass populations, thus also possibly iden‐
tifying connectivity hotspots, have been explored in the literature, 
namely based on tools proposed in the context of complex network 
theory (Grech et al., 2018). A discussion of such approaches is also 
available in Appendix S1.

2.5 | Evaluation of s‐connectivity temporal 
variability

To evaluate temporal variability in s‐connectivity and to assess 
whether there may exist temporal trends, linear regression is per‐
formed on the local (sector‐specific), 30‐year‐long time series of 
the three metrics introduced above, that is self‐retention, inde‐
gree and outdegree. A linear trend is detected (via ordinary least 
square techniques; Draper & Smith, 1998) if the 95% confidence 
interval for the slope of the regression line does not contain zero. 
While a time span of 30 years may not be considered long with 
respect to the generation time of P. oceanica meadows, it is the 
longest currently allowed for the evaluation of current‐driven 
connectivity in the Mediterranean, as it corresponds to the length 
of the state‐of‐the‐art reanalysis of the physical parameters (in‐
cluding circulation fields) of the sea. Within this temporal window, 
relatively conservative methods to detect trends or correlations 

have been applied, as only linear patterns have been included in 
the analysis, while more general tests (e.g. Mann–Kendall and de‐
rivatives for trend detection) have not been considered.

Temporal trends in spatially averaged s‐connectivity are also in‐
vestigated both at the scale of the whole Mediterranean Sea and 
for restricted sets of sectors identified as P. oceanica connectivity 
hotspots. Additionally, correlation patterns are sought between 
average self‐retention, indegree and outdegree values and lagged 
time series of standard measures of meteorological variability for 
the Mediterranean basin, namely the Mediterranean Oscillation 
Index (MOI; Conte, Giuffrida, & Tedesco, 1989), in its two vari‐
ants (MOI1, Algiers–Cairo, and MOI2, Gibraltar–Tel Aviv), and the 
Western Mediterranean Oscillation Index (WeMOI; Martin‐Vide & 
Lopez‐Bustins, 2006). All details are available in Appendix S1.

3  | RESULTS

3.1 | Spatio‐temporal patterns of Posidonia oceanica 
s‐connectivity

Posidonia oceanica dispersal patterns (Figure 2) and average dispersal 
distances (Figure 3) vary conspicuously among different regions of the 
Mediterranean Sea and fluctuate widely over time in the period 1987–
2016. As a result, the s‐connectivity scores Cs

ij (y) turn out to be quite 
heterogeneous as well, as shown in Movie M1, available as support‐
ing information. Despite the apparent spatio‐temporal variability of 
s‐connectivity patterns, some general features emerge: (a) along‐coast 
transport represents a prevailing and persistent means of dispersal for 
P. oceanica; (b) crossing of relatively short sea stretches is quite com‐
mon, yet fairly erratic; (c) large islands and archipelagos may serve as 
stepping stones to cross wider sea stretches over different reproduc‐
tion seasons; (d) some sea stretches are rarely (if at all) successfully 
crossed by dispersing P. oceanica fruits; (e) the region centred on the 
Strait of Sicily (see Figure 1a for geographical designations), that is the 
area comprised between the southern coasts of Sardinia and Sicily, to 
the north, and the coasts of Tunisia and Western Libya, to the south, 
is characterized by remarkable intercontinental s‐connectivity; and (f) 
the Aegean Sea forms a relatively disconnected subsystem.

3.2 | Connectivity metrics and s‐connectivity 
hotspots for Posidonia oceanica

Across‐year s‐connectivity indicators (mean values and coefficients 
of variation of self‐retention, indegree and outdegree for each marine 
sector; see Figures S1 and S2 in Appendix S2) represent the basis to 

F I G U R E  2  Examples of time‐varying Posidonia oceanica dispersal kernels. In each panel, colours code the relative frequency of successful 
dispersal events linking the selected marine sector (corresponding to the labelling of the black circles in the top inset) with other suitable 
sectors lying at a given distance during a specific dispersal season. The nine sample sectors (a–i) have been selected so as to span over 
different spatio‐temporal scales of dispersal, that is encompassing sectors characterized by relatively short/long dispersal distance (across‐
year average of mean dispersal distance approximately half/double the across‐sector mean value) and low/high temporal variability (across‐
year coefficient of variation of mean dispersal distance approximately half/double the across‐sector mean value). The values of the across‐
year average (Ave) and coefficient of variation (CV) of mean dispersal distance for the nine sample sectors are reported on top of the panels
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build the percentile scores for self‐retention, indegree and outdegree 
intensity and variability (Figure S3 in Appendix S2), which are then ag‐
gregated to form the summary percentile scores for each of the three 
s‐connectivity metrics (Figure S4 in Appendix S2) and, finally, the syn‐
thetic percentile s‐connectivity score, pCS (Figure 4a). The ordered 
sample distributions of the summary scores for self‐retention, inde‐
gree and outdegree and of pCS are shown in Figure S5 in Appendix 
S2. Contrasting local suitability (Figure 1a) to pCS reveals that many 
sectors (e.g. in the Ligurian Sea) are classified as highly suitable, but 
do not stand out in terms of s‐connectivity, evidently because of sub‐
optimal current‐driven dispersal; conversely, many others (e.g. along 
the coasts of Tunisia and Libya, between the Gulf of Gabès and the 
Gulf of Sidra) are characterized by average suitability, but score high 
in terms of pCS, evidently because of excellent oceanographic con‐
nectivity making up for suboptimal environmental conditions. These 
observations are generalized in Figure S6 (Appendix S2), which shows 
that the correlations between pCS and local suitability, and between 
pCS and the various s‐connectivity metrics, are typically quite noisy.

The top‐100 and top‐500 hotspots of s‐connectivity are 
displayed in Figure 4b. The top‐100 P.  oceanica s‐connectivity 
hotspots, in particular, appear to be localized along the Spanish 
coastline in the Balearic Sea, on the western coast of Sardinia, in 
the Northern Tyrrhenian Sea, along the coasts of Tunisia and Libya, 
in the North‐Eastern Adriatic Sea (mostly in Croatia), in the Ionian 
Sea, in the Aegean Sea and along the Egyptian coastline. The 
identification of P. oceanica s‐connectivity hotspots seems to be 
quite robust with respect to the spatial scale of analysis, as shown 
in Figure S7 in Appendix S2. In fact, modifying the definition of 
local versus in/outbound connections by introducing a buffer 
zone around each suitable marine sector does not fundamentally 
change the selection of s‐connectivity hotspots. Interestingly, 
some regions endowed with a high hotspot density (specifically, 
the Gulf of Gabès and the North‐Eastern Adriatic Sea) are also 
selected as central for s‐connectivity by some relevant metrics 
of node importance proposed in the context of complex network 
theory (Figure S8 in Appendix S2).

F I G U R E  3  Across‐year evaluation of mean dispersal distances for Posidonia oceanica fruits in the Mediterranean Sea. (a) Time‐averaged 
mean dispersal distance (colour‐coded) for the period 1987–2016. (b) Frequency distribution of the time‐averaged mean dispersal distance 
in the suitable marine sectors. The mean dispersal distance evaluated over all suitable sectors is ~31 km. (c) Coefficient of variation of mean 
dispersal distance evaluated over time (colour‐coded, non‐dimensional). (d) Frequency distribution of the across‐year variation coefficient of 
mean dispersal distance. The mean coefficient of variation evaluated over all suitable sectors is ~0.54. Sectors characterized by zero mean 
dispersal distance (pure retainers, shown as black dots in panel c), for which the coefficient of variation of mean dispersal distance over time 
cannot be computed, have been omitted from the histogram. Note that unsuccessful dispersal events (fruits that are transported by marine 
currents to unsuitable sites at the end of their dispersing phase) are not included in the evaluation of mean dispersal distances
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3.3 | Temporal trends in s‐connectivity at the 
local scale

Temporal trends in local s‐connectivity metrics are shown in 
Figure 5. As far as self‐retention is concerned, the marine sectors 
where this metric has significantly (p < .05) increased over time seem 
to be clustered in space (e.g. in the Adriatic, Ionian and Aegean Seas). 
Conversely, sectors characterized by decreased self‐retention appear 
to be quite evenly distributed along the shores of the Mediterranean 
Sea, along both the European and the African sides. As for inde‐
gree, declining scores tend to cluster along the French coastline, 
in Sardinia (west and east coasts), along the coast of Tunisia, in the 
Southern Tyrrhenian Sea, in the Strait of Messina region and the east 
coast of Sicily, in the North‐Eastern Adriatic Sea and in the Aegean 
and Levantine Seas. Increasing indegree scores are instead recorded 
in Corsica and Sardinia (north–south coasts), along the northern and 
southern coasts of Sicily, on the shores of Libya and Egypt, and in the 
Ionian and Aegean Seas. Concerning outdegree, negative trends are 
detected in clusters along the coasts of Spain and France, in Corsica 
and Sardinia, in Tunisia and Libya, along both the Tyrrhenian and the 
Adriatic coast of Italy, in the North‐Eastern Adriatic Sea and in the 
Ionian, Aegean and Levantine Seas. By contrast, positive trends in 
outdegree appear to be quite scattered, with clustered occurrences 
in the Strait of Messina region, in the Northern Adriatic Sea, along 
the coast of Libya and in the Aegean Sea.

The occurrences of statistically significant (p  <  .05) negative 
linear trends outnumber the occurrences of positive ones for both 
self‐retention and indegree (Table 1). Interestingly, the s‐connec‐
tivity hotspots identified in Figure 4 are characterized by relatively 
fewer occurrences of increased self‐retention and more instances 
of decreased self‐retention compared to the whole Mediterranean 

Sea. By contrast, positive indegree trends are more prevalent among 
s‐connectivity hotspots than in the whole Mediterranean Sea, while 
negative indegree trends are less prevalent among hotspots than in 
the whole basin. Outdegree trends appear to be less variable when 
evaluated over the whole Mediterranean Sea or restricted to s‐con‐
nectivity hotspots, yet statistically significant trends (either positive 
or negative) in outdegree time series are more frequently observed 
in s‐connectivity hotspots.

3.4 | Basin‐scale s‐connectivity trends and the 
role of meteorological fluctuations

At the whole‐basin scale, the values of self‐retention and in/outde‐
gree averaged across all suitable marine sectors in the Mediterranean 
Sea seem to have been fairly erratic during the period 1987–2016 
(Figure S9 in Appendix S2). Statistically significant trends can be 
identified (p > .05) in s‐connectivity hotspots: indegree connectivity 
shows a positive trend in both the top‐500 and the top‐100 sectors, 
while outdegree connectivity shows a negative and statistically sig‐
nificant trend in the top‐500 sectors.

Significant correlations (p <  .05) between average s‐connectiv‐
ity patterns and meteorological variability indicators (Figure S10 in 
Appendix S2) are found for several combinations of lag and time‐
window length, both at the scale of the whole Mediterranean and in 
s‐connectivity hotspots (Figures S11–S13 in Appendix S2).

4  | DISCUSSION

In this work, we have performed a basin‐wide, multi‐decadal connec‐
tivity assessment for P. oceanica, an iconic primary producer species 

F I G U R E  4  Hotspots of  
s‐connectivity for Posidonia oceanica 
in the Mediterranean Sea. (a) Synthetic 
percentile s‐connectivity score, evaluated 
for each suitable marine sector as the 
minimum among its percentile scores for 
intensity and variability of self‐retention, 
indegree and outdegree (Figure S4 in 
Appendix S2). (b) Top‐k s‐connectivity 
hotspots, with k = 100 or k = 500. The 
top‐500 sectors do obviously include the 
top‐100 as well
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endemic to the Mediterranean Sea that plays a pivotal role as both 
habitat former and ecosystem service provider. Accurate assess‐
ment of connectivity among populations is crucial to determine pos‐
sible drivers of population resilience (Jahnke et al., 2017; Kendrick 
et al., 2017). Here, connectivity patterns have been evaluated over 
a 30‐year‐long time span by using an ecologically motivated and 
species‐specific measure, s‐connectivity, that accounts not only for 
the amount of propagules potentially exchanged between marine 
sectors (estimated through computationally intensive biophysical 
Lagrangian simulations), as customary, but also for environmental 

conditions possibly influencing local suitability for the species under 
study.

Our definition of s‐connectivity should provide a reasonable 
trade‐off between the results that would be obtained by looking 
at either local suitability or current‐driven connectivity alone. This 
is in fact where our contribution diverges, the most from previous 
studies on seagrass connectivity (e.g. Grech et al., 2018; Grech et 
al., 2016; Jahnke et al., 2017; Jahnke et al., 2018). For instance, 
in the work by Jahnke et al. (2017), habitat suitability was used 
to identify the initial positions of dispersing P. oceanica fruits, but 
all metrics of potential connectivity were based on current‐driven 
dispersal alone. In that case, and in a related contribution (Jahnke 
et al., 2018) focusing on a different species (the eelgrass Zostera 
marina), potential connectivity was contrasted to realized connec‐
tivity, as quantified by genetic analyses. Management implications 
were discussed in terms of the identification of either sites char‐
acterized by high levels of potential and realized connectivity as 
targets for conservation (Jahnke et al., 2017) or barriers to disper‐
sal creating genetically diverse population clusters (Jahnke et al., 
2018). Grech et al. (2016), instead, studied current‐driven disper‐
sal to/from sites of seagrass presence in the central Great Barrier 

F I G U R E  5  Directions of change in 
temporal trends of local s‐connectivity 
metrics. (a) Self‐retention. (b) Indegree. (c) 
Outdegree. Shown are the marine sectors 
for which a statistically significant (p < .05) 
linear negative (yellow) or positive 
(blue) trend is detected over the period 
1987–2016
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TA B L E  1  Temporal trends in local time series of s‐connectivity 
metrics

 

All sectors Top 500 Top 100

(+) (−) (+) (−) (+) (−)

Self‐retention 2.2 6.1 1.6 8.4 0 15

Indegree 4.6 5.4 10.8 5.0 20 0

Outdegree 4.8 4.8 6.2 7.0 6 6

Note: Per cent occurrence of statistically significant (p < .05) positive (+) 
or negative (−) linear trends over the period 1987–2016.
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Reef, Australia, to evaluate the potential of seagrass dispersal in 
the area. Based on the results of Lagrangian simulations, differ‐
ent metrics of network connectivity (node‐degree distribution, 
self‐retention and outdegree) and node centrality (betweenness 
and PageRank) were used to identify seagrass meadows acting as 
retainers, sources or stepping stones for dispersal, and that could 
serve as priority candidates for conservation (Grech et al., 2018). 
We believe that our attempt to integrate habitat suitability (also 
a proxy for the actual distribution of the species being studied) 
directly into the evaluation of connectivity metrics might be es‐
pecially promising when the size of the study area (the whole 
Mediterranean Sea basin, in our case) makes it impractical (or 
simply not possible) to compare potential connectivity patterns, 
obtained by biophysical modelling of current‐driven dispersal, 
against realized connectivity patterns, estimated, for example, 
through genetic analyses. Our network‐based approach could also 
serve as an effective starting point for the detection of commu‐
nities within the time‐varying graphs describing the dispersal pat‐
terns of P.  oceanica (Newman, 2010), which in turn could assist 
in the definition of separated management units, that is clusters 
of local seagrass meadows that should be managed separately to 
ensure their long‐term persistence (Grech et al., 2018; Jahnke et 
al., 2018).

The results of our assessment suggest that spatio‐temporal 
variability is an important component of P. oceanica s‐connectivity 
(Figures 2 and 3, Movie M1). Clearly, such variability makes the iden‐
tification of connections that are both sufficiently strong and time‐
persistent to be ecologically relevant a completely non‐trivial task. 
This difficulty has been overcome by applying a recently proposed 
methodological framework that allows to determine connectivity 
hotspots based on their potential to simultaneously function as ef‐
fective retainers, sinks and/or sources for the dispersing agents of 
the target species (Melià et al., 2016). This approach accounts for the 
different functional roles of dispersal, is based on easily interpreted 
connectivity metrics, relies on a simple and conservative aggregation 
scheme and allows to effectively take into consideration both spatial 
and temporal variability in dispersal, thus representing a balanced 
framework to quantitatively discuss spatial conservation strategies 
at a basin scale. According to this identification procedure, hotspots 
of s‐connectivity for P. oceanica (Figure 4) appear to be unevenly dis‐
tributed in all of the four principal sub‐basins of the Mediterranean 
Sea, mainly along the Spanish coastline in the Balearic Sea, on the 
western coast of Sardinia, in the Northern Tyrrhenian Sea (western 
Mediterranean region), along the coasts of Tunisia and Libya and in 
the Ionian Sea (Central Mediterranean region), in the North‐Eastern 
Adriatic Sea (Adriatic region) and in the Aegean Sea and along the 
Egyptian coastline (Eastern Mediterranean region). The localiza‐
tion of P.  oceanica s‐connectivity hotspots, which could serve as 
candidates for protection, undoubtedly is one of the most import‐
ant outcomes of the present work with regard to the potential im‐
pact on the prioritization of conservation efforts. In this respect, it 
is interesting to note that the highest ranked sectors (e.g. top‐100 
hotspots) are consistently surrounded by sectors also endowed with 

high s‐connectivity (e.g. top‐500 hotspots), which is suggestive of 
the fact that s‐connectivity analysis is robust enough to be relevant 
for policymaking.

By contrast, it is crucial to remark that the results of our 
hotspot identification procedure do not necessarily provide a com‐
plete picture of P. oceanica connectivity in the Mediterranean Sea. 
As a matter of fact, although a wide spectrum of functions related 
to the roles that a local population can play in the context of a 
larger metapopulation has been considered, in terms of both sheer 
intensity and temporal variability, other factors might as well be 
at play. For instance, indegree and outdegree s‐connectivity have 
been evaluated irrespective of the distances between donor and 
recipient marine sectors. However, the average distance at which 
successful dispersal events are predicted to occur by Lagrangian 
simulations may vary remarkably over space–time, reflecting the 
fact that marine sectors in different parts of the basin can be en‐
dowed with completely different spatio‐temporal dispersal kernels 
(Figures 2 and 3). This variability in dispersal is obviously to be ex‐
pected in a domain as large and complex as the Mediterranean Sea. 
Note that it may even represent a lower estimate of the actual het‐
erogeneity, because the relatively coarse resolution of the ocean‐
ographic reanalysis is expected to dampen small‐scale (subgrid) 
variations. Information about dispersal distances might be used 
to orient conservation priorities. In fact, a prevalence of short‐
range dispersal may signal the presence of hydrodynamical bar‐
riers, while the potential for long‐distance dispersal may identify 
marine sectors that favour effective gene flow between different 
local populations. For instance, no marine sectors along the south‐
ern coast of Sicily are identified among the top‐500 P.  oceanica 
hotspots, yet sizeable portions of that coastline are characterized 
by remarkably long (albeit quite intermittent) outgoing dispersal, 
with potential implications for both cross‐continental dispersal 
(say, between Italy and Tunisia) and propagule exchange between 
P.  oceanica populations inhabiting the western/eastern basins of 
the Mediterranean Sea. Long‐distance connectivity could also be 
realized over multiple generations via stepping‐stone dispersal. 
However, the study of this type of intergenerational dynamics will 
require the development of an integrative modelling approach in 
which the basin‐wide metapopulation dynamics of P. oceanica can 
effectively be explored by coupling the dispersal means provided 
by marine currents with local‐scale demographic processes, such 
as shoot survival, vegetative growth and sexual reproduction.

All these considerations highlight the importance of cross‐val‐
idating measures of potential connectivity, albeit corrected for 
local suitability conditions like in the present study, with measures 
of realized connectivity, as obtained through analysis of effective 
gene flow. In the case of P. oceanica, in fact, the former is often 
found to be possibly quite overestimated with respect to the latter 
(Jahnke et al., 2017; Serra et al., 2010), which in turn is thought to 
be relatively low overall (e.g. Arnaud‐Haond et al., 2014; Procaccini 
et al., 2001). Comparing the findings presented in published stud‐
ies of genetic connectivity for P.  oceanica in the Mediterranean 
Sea with our assessment of basin‐wide potential connectivity 
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may not be a trivial task. Some of those studies were in fact con‐
ducted over relatively small spatial domains, spanning from single 
meadow (e.g. Migliaccio, Martino, Silvestre, & Procaccini, 2005) 
to regional scales (e.g. Jahnke et al., 2017; Procaccini et al., 2001). 
Mediterranean‐wide analyses of P. oceanica genetic connectivity 
exist (Arnaud‐Haond et al., 2007; Rozenfeld et al., 2008; Serra et 
al., 2010), but in all those cases the number of sampled meadows 
was understandably limited to a few dozen at most. In general, 
whenever genetic connectivity was evaluated at a whole‐basin 
scale, the Strait of Sicily was identified as a contact zone between 
the genetically partitioned seagrass populations inhabiting the 
western and eastern basins of the Mediterranean Sea. This region 
(the coast of Tunisia, in particular) is also highlighted as one of 
the richest in s‐connectivity hotspots by our modelling approach 
(Figure 4), as well as one endowed with relatively long potential 
dispersal distances (see again Figure 3).

The multi‐decadal temporal span of this study has allowed to as‐
certain the existence of recent trends in P. oceanica s‐connectivity 
across the Mediterranean Sea (Figure 5). Statistically significant tem‐
poral trends in self‐retention, indegree and outdegree seem to be 
quite infrequent among all suitable sectors (they have been detected 
in less than 6% of marine sectors), but relatively more frequent in s‐
connectivity hotspots (with frequencies ranging up to 20%; Table 1). 
Here, contrasting directions of change are actually found: for in‐
stance, decreasing self‐retention and increasing in/outdegree are all 
more frequently observed in the top‐100  s‐connectivity hotspots 
than in non‐hotspot sectors, possibly a sign that somewhat small 
changes in circulation patterns around key strategic sites may have 
important consequences for P. oceanica dispersal dynamics at large 
spatial scales. Also, while basin‐averaged connectivity values do not 
show any statistically significant trends, in/outdegree in, for exam‐
ple, the top‐500 s‐connectivity hotspots do (Figure S9 in Appendix 
S2). All these findings suggest that the role played by s‐connectiv‐
ity hotspots in structuring P. oceanica dispersal dynamics might be 
changing over time, with implications for the future of its large‐scale 
spatio‐temporal dynamics. Furthermore, the observation that me‐
teorological fluctuations may also influence s‐connectivity patterns 
(Figures S11–S13 in Appendix S2), together with the prediction that 
the Mediterranean basin will be one of the regions, most affected 
by global climate change (Lejeusne et al., 2010), suggests that deci‐
sions regarding marine protection and maritime spatial planning in 
general should also aim to enforce resilience against climate change 
impacts (McLeod, Salm, Green, & Almany, 2009). In this respect, re‐
liable oceanographic projections forced with future climate scenar‐
ios (Coleman et al., 2017) would represent an invaluable instrument 
to anticipate changes to future connectivity patterns within the 
Mediterranean Sea.

Like all modelling studies, ours is not devoid of limitations. One 
such source of possible inaccuracies in our analysis is perhaps the 
use of a static suitability map to both initialize Lagrangian sim‐
ulations and evaluate s‐connectivity scores. As a matter of fact, 
P. oceanica meadows have declined rapidly in several areas of the 
Mediterranean basin, possibly also as a result of decreased habitat 

suitability in response to the localized effects of climate change, 
water quality degradation, coastal modification and other sources 
of human pressure (Chefaoui, Duarte, & Serrão, 2018; de los 
Santos et al., 2019; Marbà et al., 2014; Telesca et al., 2015). In this 
respect, airborne and satellite imagery could provide a depend‐
able, deployable and cost‐effective tool to produce updated dis‐
tribution maps for P. oceanica, as testified by the growing number 
of related applications (Borfecchia et al., 2013; Fornes et al., 2006; 
Matta et al., 2014; Pasqualini et al., 2005; Traganos et al., 2018). 
Although most of these studies refer to relatively small areas 
within the Mediterranean Sea, the most recent one (Traganos et 
al., 2018) proposes a workflow for regional‐scale mapping of sea‐
grasses powered by remote sensing, machine learning and cloud‐
based technologies that could be potentially scaled up to even 
larger (possibly global) spatial scales. Indeed, Earth observations 
(both remote and in situ), species distribution modelling (Elith & 
Leathwick, 2009; see Chefaoui, Duarte, & Serrão, 2017; Chefaoui 
et al., 2018 for recent applications of niche modelling to P. ocean‐
ica) and ecological modelling should be considered complementary 
pillars for the elaboration of future large‐scale conservation pro‐
grammes (Pasetto et al., 2018).

We finally remark that conservation planning may require to look 
beyond purely ecological considerations. From a socio‐economic 
point of view, the complex boundary conditions imposed by the 
heavily human‐impacted coastal ecosystems of the Mediterranean 
Sea, further challenged by the “Blue Growth” framework, imply that 
not all the locations that are potential candidates for protection are 
equally suitable to devote portions of their seascape to conservation 
programmes. In fact, the Mediterranean Sea is an area of interest 
for a series of activities, ranging from maritime traffic to industrial 
fishing or tourism, for human populations of different nationalities 
and cultures—all of which makes the problem of setting priorities for 
regional conservation planning a highly non‐trivial task (Micheli et 
al., 2013). This caveat notwithstanding, we believe that the present 
study may represent a step forward in the application of a quan‐
titative, scalable and replicable methodological framework for the 
prioritization of conservation actions, with the overarching goal of 
saving more with less.
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