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within the lamina cribrosa due to the
constraints at the lamina’s boundary. Th
response to IOP elevation. Specifically, 
boundary, making it more susceptible 
appears to be located at the lamina’s ce
are predicted for increased levels of IOP
 for the coupling between biomechanics and hemodynam-ics in the lamina cribrosa, a thin porous tissue 
ought to be the site of injury in ocular neurodegenerative diseases such as glaucoma. In this exploratory 
ibrosa is modeled as a poroelastic material where blood vessels are viewed as pores in a solid elastic 
fluence on the distribu-tions of stress, blood volume fraction (or vascular porosity) and blood velocity 
tion of different levels of the intraocular pressure (IOP) and the enforcement of different mechanical 
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e damage. On the other hand, when rotations are allowed at the boundary, the most vulnerable region 
is, in proximity of the eye globe, where increased stress and reduced vascular porosity and blood velocity 
1. Introduction

Elevated intraocular pressure (IOP) is one of the major risk 
factors for the irreversible vision loss in glaucoma, which is the 
second leading cause of blindness world-wide [1]. Many studies 
have indicated that chronical IOP elevation induces significant 
structural changes in a thin porous tissue at the base of the optic 
nerve head called lamina cribrosa [2–6]. Elevated IOP may lead to 
vision loss by inducing mechanical damage on the retinal gan-glion 
cells axons passing through the lamina (mechanical hypoth-esis) 
[7,8] and/or by altering the blood flow within the lamina’s tissue 
(hemodynamical hypothesis) [9,10]. It is reasonable to expect that 
the mechanical deformations of a living tissue would affect blood 
flow within the tissue, and therefore the mechanical
and hemodynamical hypotheses should be addressed as one cou-
pled problem [5,11]. In this paper, we develop a mathematical 
framework that allows, for the first time, to theoretically investi-
gate the coupling between the mechanical and hemodynamical 
hypotheses concerning the effect of IOP elevation on the lamina’s 
tissue.

Various mathematical models have been developed to theo-
retically investigate the biomechanical hypothesis, namely the 
biomechanical response of the lamina cribrosa to IOP elevation. For 
example, linear and nonlinear elastic models for thin circular plates 
have been used to show that thickness, radius, and mechan-ical 
properties of the lamina cribrosa, along with the degree of fixity 
offered by the sclera, are among the major factors influencing the 
IOP-induced deformation of the lamina [12,13]. Elasticity mod-els 
based on finite elements have been used to simulate the biome-
chanics of the lamina cribrosa on real geometries (see e.g. [14–16] 
and in the references therein) and to study the micro-architecture 
of the collagen fibrils within the lamina (see e.g. [17,6] and the
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references therein). The biomechanical study of the ocular poster-
ior segment is a very active area of research and, without being 
exhaustive, some recent contributions can be found in [18–21] 
and the references therein.

The main goal of this paper is to propose a theoretical frame-
work to investigate the relationship between blood flow and 
mechanical deformation within the tissue of the lamina cribrosa. 
Mathematical models have been proposed to investigate this bio-
mechanics–hemodynamics relationship in the tissue of the retina 
(see e.g. [22–24]), of the heart (see e.g. [25,26]), of the brain (see e.g. 
[27,28]) and of the bones (see e.g. [29,30]), but, to the best of our 
knowledge, there are no models currently available to describe the 
biomechanics-hemodynamics relationship within the lamina 
cribrosa.

In the proposed model, the lamina cribrosa is described as a 
poroelastic material, where blood vessels are viewed as pores in a 
deformable elastic matrix. The vascular porosity of the lamina 
cribrosa, here defined as the blood volume fraction, is assumed to 
change with the local state of stress and strain, which, in turn, is 
determined by the intertwined response of the solid and blood 
phases to the fluid-mechanical environment. Because of the inter-
play between mechanical and haemodynamical effects in lamina 
cribrosa microcirculation, the vascular porosity can be considered 
as an index of the capability of the blood to perfuse the lamina and, 
for this reason, it is one of the most significant quantities 
investigated in the present analysis.

The mechanical parameters of the solid component of the tissue 
are described through a nonlinear function of the local effective 
stress [13,23,31], while the vascular permeability is represented by 
a quadratic function of the vascular porosity [25]. For the numerical 
solution of the whole coupled system, a fixed point iter-ation 
algorithm of staggered type between solid displacement and fluid 
pressure is proposed and implemented. At each step of the 
staggered loop, an inner fixed-point iteration is used to solve the 
nonlinear mechanical problem. The algorithm is endowed with a 
relaxation procedure for convergence acceleration, and employs 
the backward Euler method for time discretization and the Galer-
kin finite element method on a triangular grid for space 
discretization.

In this paper, we explore the feasibility of the proposed model-
ing approach on a simplified two-dimensional geometry. A com-
parison between model simulations and experimental measures
[32] is performed to assess the capability of our simplified model
to provide physiologically reasonable deformations of the lamina
cribrosa for different levels of IOP. The model is then used to esti-
mate the effect of IOP elevation on the distribution of the fluid-
mechanical variables in the case of different insertion conditions
of the sclera, which are possibly connected to individual–specific
anatomical characteristics (for example ethnicity) and, in the same
individual affected by ocular disease, to the progress of the pathol-
ogy itself.
2. Methods

In the following, we review some fundamentals of the anatomy
and physiology of the lamina cribrosa, the basic assumptions
underlying our modeling approach, the mathematical description
of the model and the numerical strategy for its solution.
2.1. Anatomy and physiology of the lamina cribrosa

The lamina cribrosa is a thin, sieve-like portion of sclera at the
base of the optic nerve head, formed by a multilayered network of
collagen fibers that insert into the scleral canal wall (see
Fig. 1(left)).
The main functions of the lamina cribrosa are (i) to act as a scaf-
fold for the retinal ganglion cell axons which relay the visual infor-
mation from the retina to the brain; (ii) to allow the central retinal 
artery (CRA) and the central retinal vein (CRV) to enter and leave 
the intraocular space; and (iii) to stabilize the pressure difference 
between the intraocular pressure (IOP, baseline value 12–15 mmHg) 
in the intraocular space and the retrolaminar tissue pressure (RLTp, 
baseline value 7–10 mmHg) in the optic nerve canal (see 
Fig. 1(right)). Blood supply to the lamina cribrosa is provided by 
branches of the posterior ciliary arteries (PCAs), and therefore 
blood enters the lamina from its outer lateral boundary, as shown 
in Fig. 1(left). Blood drainage occurs through the CRV, approxi-
mately located at the centre of the lamina. It is interesting to notice 
that, although passing through the lamina, the CRA does not con-
tribute to the blood circulation within the lamina, as it ensures 
blood supply only to the inner retinal tissue [33].

2.2. Basic assumptions

We model the lamina cribrosa as a poroelastic medium com-
posed of an elastic solid (comprising collagen, elastin, extracellular 
matrix and neural tissue) and an interconnected vascular porous 
space filled by blood. Blood is treated here as a Newtonian fluid as 
in [25,26]. Throughout the remainder of the article, we adopt the 
point of view of the classic poroelastic theory under the assumption 
of reversibility of the deformations and isothermal conditions (see 
the fundamental works of Biot [34] and the more recent reviews 
[35,36]).

We denote by X the spatial domain occupied by the poroelastic 
medium. Since the lamina cribrosa is approximately a cylindrical 
structure, the reasonable assumption of axially symmetric solu-
tions leads to consider as a simpler exploratory step the rectangu-
lar domain ð0; LÞ � ð�d=2; d=2Þ corresponding to a section of the 
cylinder (see Fig. 2).

Having fixed a point x ¼ ðx1; x2ÞT in X, we indicate by Vðx; tÞ an 
(arbitrary) representative elementary volume (REV) centered at x 
at time t. Then, denoting by V sðx; tÞ and V f ðx; tÞ the volumes occu-
pied in V by the solid and the fluid, respectively, we can define the 
quantity

Nðx; tÞ ¼ Vf ðx; tÞ
Vðx; tÞ ð1Þ

representing the volumetric fraction of the fluid component, or vas-
cular porosity, and the quantity

Vsðx; tÞ
Vðx; tÞ ¼ 1� Nðx; tÞ ð2Þ

representing the volumetric fraction of the solid component. 
Notice that Eq. (2) has been obtained under the assumption of 
fully satu-rated mixture, namely V sðx; tÞ þ  V f ðx; tÞ ¼ 1.

2.3. Balance equations and constitutive assumptions

Denoting by u the solid displacement and by p the fluid 
pressure, in the assumptions of small deformations, negligible 
inertial terms, absence of body forces and volumetric fluid mass 
sources/sinks, the poroelastic equations describing the lamina 
cribrosa read:
r � r ¼ 0; ð3aÞ

r ¼ S� apI; ð3bÞ

S ¼ lðruþruTÞ þ kr � uI; ð3cÞ

@f
@t
¼ �r � v; ð3dÞ



Fig. 1. Left: anatomy of the optic nerve head region with the lamina cribrosa [33]. Right: microscale view of the lamina cribrosa with the externally applied loads.

Fig. 2. Computational domain and notation for the boundaries.

Table 1
Lamé parameters for the elastic matrix of the lamina cribrosa as in Woo et al.[31].

l (MPa) k (MPa) Range of effective stress re (kPa)

From To

0.12 5.88 0.0 8.0
0.22 10.78 8.0 15.0
0.61 29.89 15.0 –
v ¼ �Krp; ð3eÞ

f ¼ 1
M

pþ ar � u; ð3fÞ

where r is the stress tensor of the mixture (also known as total
stress), S being the elastic part of the total stress, f is the fluid con-
tent, v is the discharge velocity, and I is the identity tensor. The dis-
charge velocity is defined as

vðx; tÞ ¼ Nðx; tÞ vbloodðx; tÞ � vsolidðx; tÞð Þ; ð4Þ

where vblood and vsolid are the blood and the solid velocities, respec-
tively. The system depends on several coefficients: k and l, the 
Lamé parameters of the elastic matrix; K, the permeability tensor; 
a, the Biot coefficient; and M, the Biot modulus.

Eqs. (3a) and (3d) express the balance of linear momentum and 
mass conservation, whereas Eqs. (3b) and (3e) are the constitutive 
laws for the total stress and discharge velocity (Darcy’s law). Eq.
(3f) relates the increment in fluid content f to an increment in 
fluid pressure p and a structural volumetric deformation r � u, 
through the coefficients M and a. The solid and fluid parts of the 
model are coupled via the isotropic fluid stress �apI in Eq. (3b), 
representing the contribution to the total stress due to the fluid 
pressure within the structure, and via the time derivative of f in 
Eq. (3d), represent-ing the variation of fluid content due to 
pressure and volume changes.

We assume that the solid and fluid components are 
incompress-ible, as it happens in the majority of biological 
tissues, and so we have a ¼ 1 and M ¼ þ1  [36]. The fluid 
content f can also be expressed in terms of the vascular porosity 
as f ¼ N � N0, where N0 represents the baseline porosity value. 
Thus, here we assume that
f ¼ N � N0 ¼ r � u: ð5Þ

We assume that the Lamé parameter l, also known as shear mod-
ulus, varies with the effective stress re as originally proposed by
Woo et al. [31] and adopted, for example, in [13,23], where
re ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðS11 � S22Þ2 þ ðS22 � S33Þ2 þ ðS11 � S33Þ2 þ 6S2

12

2

s
ð6Þ

and Sij; i; j ¼ 1; 2; 3, are the components of the stress tensor 
defined in Eq. (3c). The Lamé parameter k is derived from l using 
the rela-tion k ¼ 2lm=ð1 � 2mÞ, where m is the Poisson ratio, here 
taken equal to 0:49. The values of l and k as a function of re are 
reported in Table 1.

Remark 2.1. Other more sophisticated constitutive equations 
have been recently proposed to better account for the complex 
archi-tecture of collagen, elastin, extracellular matrix and neural 
fibers in the tissue of the lamina cribrosa (see e.g. [17,6]). These 
equations could be incorporated in a further extension of the 
model by modifying Eq. (3c).

We model the blood capillaries in the lamina cribrosa as nc iso-
tropically oriented cylindrical tubes (radius Rc , length Lc), so that 
the permeability tensor can be written as K ¼ KI; K being a (posi-
tive) scalar function. Assuming that the capillaries change their 
volume at constant length, and assuming Poiseuille’s flow in each 
capillary, it follows that the permeability varies with the square of 
the porosity, namely K ¼ bN2, where b is a positive constant [25]. 
As estimated in a recent hystological study on the optic nerve 
laminar region [37], we set N0 ¼ 0:156. The constant b is defined 
as the ratio between a geometric constant cg and the blood 
viscosity in the capillaries lb, namely b ¼ cg =lb. In the case of the 
lamina cribrosa, we choose cg ¼ 6:25 � 10�7 cm2 and lb ¼ 10:01 cP 
[22].
Thus, the balance equations reduce to the following coupled 
system in the primary variables u and p to be satisfied in the
space–time cylinder X� ð0;þ1Þ:

r � lðreÞðruþruTÞ þ kðreÞr � uI
� �

�rp ¼ 0; ð7aÞ

@r � u
@t

þr � �Kðr � uÞrpð Þ ¼ 0; ð7bÞ

where we emphasized the fact that the model parameters are not
constant, rather, l ¼ lðreÞ; k ¼ kðreÞ and K ¼ Kðr � uÞ.



2.4. Boundary and initial conditions

The left boundary R0 corresponds to the interface with the
sclera, the right boundary RL corresponds to the central axis of
the lamina cribrosa, the upper boundary Rd=2 faces the interior of
the eye globe and the lower boundary R�d=2 faces the optic nerve
canal. Blood flow is driven by the difference between the pressure
Pa in the branches of the posterior ciliary arteries located at R0 and
the pressure Pv in the central retinal vein located at RL. The bound-
aries Rd=2 and R�d=2 are assumed to be impermeable to blood flow.
On Rd=2 and R�d=2 we impose a traction due to the external pres-
sures acting on the boundaries, IOP (top) and RLTp (bottom),
respectively (see Fig. 1 (right) for notation and physical interpreta-
tion of applied loads). On RL we impose symmetry conditions for
stress and displacement. At the boundary R0 with the sclera, we
consider and compare two sets of boundary conditions:

Case 1: the lamina is clamped, resulting in a homogeneous
Dirichlet condition for the displacement.

Case 2: the lamina experiences a normal tension T due to the
inflation of the sclera, but it cannot displace vertically, resulting
in a mixed condition on stress and displacement.

The boundary conditions are summarized in Table 2. The scleral
tension T is computed via Laplace’s law as T ¼ IOP � Rs=2hs, where
Rs and hs are the radius and thickness of the sclera (modeled as a
sphere), respectively. Cases 1 and 2 correspond to the two extreme
situations in which the scleral insertion of the lamina is at its high-
est and lowest degree of fixity, respectively.

Initial conditions are required only for r � u, which reduces to

Nðx; 0Þ ¼ N0: ð8Þ
The well posedness of a poroelastic model similar to ((7)) 

was proved by Showalter in [38]. In the next section we 
describe how to solve numerically the system equations 
illustrated in Sections 2.2, 2.3, 2.4

2.5. Numerical method

The poroelastic model (7) contains two sources of nonlinearity. 
One is represented by the nonlinear coupling between solid and 
fluid parts because K ¼ Kðr � uÞ. The other is represented by the
nonlinear constitutive equation for the solid since l ¼ lðreÞ and k 
¼ kðreÞ. In order to address the solid–fluid coupling nonlinearity, 
we use a fixed point algorithm that iterates, within the same time 
step, between two separate subproblems for the fluid and solid 
part. A further inner fixed point iteration loop is then used to 
solve for material nonlinearity. The Backward Euler method is 
used for time discretization and the Galerkin finite element 
method for space discretization.
Following the classical approach of [39] used in incompressible 
linear elasticity problems, we introduce the elastic 
pressure
parameter P ¼ �kðreÞr � u. Denoting by eðuÞ ¼ ðru þ ruT Þ=2 
the infinitesimal strain tensor, the balance Eqs. (7) read:
Table 2
Summary of the boundary conditions for the solid and fluid parts in the poroelastic 
model for the lamina cribrosa. IOP is the intraocular pressure, RLTp is the 
retrolaminar tissue pressure and e1 and e2 are the unit vectors of the x1 and x2 axes. 
Notice that on Rd=2 and RL the outward unit normal vector n coincides with þe2 and 
þe1 , respectively while on R�d=2 and on R0 it coincides with �e2 and �e1 , 
respectively. This is useful for interpreting the boundary conditions in terms of 
normal stress and normal velocity flux.

Boundary Boundary conditions (solid) Boundary conditions (fluid)

Rd=2 re2 ¼ �IOP e2 e2 � rp ¼ 0
RL u � e1 ¼ 0, e2 � re1 ¼ 0 p ¼ Pv
R�d=2 re2 ¼ �RLTp e2 e2 � rp ¼ 0
R0 Case 1: u ¼ 0 p ¼ Pa

Case 2: e1 � re1 ¼ T þ Pa , u � e2 ¼ 0
r � ð2lðreÞeðuÞ � PI� pIÞ ¼ 0; ð9aÞ

P
kðreÞ

þ r � u ¼ 0; ð9bÞ

@

@t
P

kðreÞ
þ r � ðKðPÞrpÞ ¼ 0: ð9cÞ

To describe the computational procedure, let Dt be the time
step, tn ¼ nDt; n P 0, and f n :¼ f ðx; tnÞ. The fixed point iteration
algorithm that we use to advance from tn to tnþ1 is defined as
follows:

1. let k ¼ 0; uð0Þ ¼ un, Pð0Þ ¼ Pn; pð0Þ ¼ pn and rð0Þe ¼ re n;
2. set k ¼ kþ 1;
3. find uðkÞ and PðkÞ such that
r� 2lðrðkÞe ÞeðuðkÞÞ�PðkÞI
� �

¼rpðk�1Þ in X;

PðkÞ
kðrðkÞe Þ

þr�uðkÞ ¼0 in X;

2lðrðkÞe ÞeðuðkÞÞ�PðkÞI�pðk�1ÞI
� �

e2 ¼�IOP e2 on Rd=2;

2lðrðkÞe ÞeðuðkÞÞ�PðkÞI�pðk�1ÞI
� �

e2 ¼�RLTp e2 on R�d=2;

e2 2lðrðkÞe ÞeðuðkÞÞ�PðkÞI
� �

e1 ¼0 on RL;

uðkÞ �e1 ¼0 on RL;

uðkÞ ¼0 ðCase 1Þ on R0;

e1 2lðrðkÞe ÞeðuðkÞÞ�PðkÞI�pðk�1ÞI
� �

e1 ¼ T�Pa ðCase 2Þ on R0;

uðkÞ �e2 ¼0 ðCase 2Þ on R0;

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

4. set KðkÞ ¼ b N0 � PðkÞ
kðrðkÞe Þ

� �2

¼ b NðkÞ
� �2

5. find ~pðkÞ such that
�r � ðKðkÞr~pðkÞÞ ¼ 1
Dt

PðkÞ�Pn

kðrðkÞe Þ

� �
in X;

e2 � r~pðkÞ ¼ 0 on Rd=2;

e2 � r~pðkÞ ¼ 0 on R�d=2;

~pðkÞ ¼ Pv on RL;

~pðkÞ ¼ Pa on R0;

8>>>>>>>><
>>>>>>>>:

6. set pðkÞ ¼ xðkÞ~pðkÞ þ ð1�xðkÞÞpðk�1Þ, where xðkÞ is the Aitken
acceleration parameter;

7. set vðkÞBS ¼ vðkÞ=NðkÞ; if
jjuðkÞ � uðk�1ÞjjL1ðXÞ
jjuðk�1ÞjjL1ðXÞ

< �u;
jjPðkÞ � Pðk�1ÞjjL1ðXÞ
jjPðk�1ÞjjL1ðXÞ

< �P ;

jjvðkÞBS � vðk�1Þ
BS jjL1ðXÞ

jjvðk�1Þ
BS jjL1ðXÞ

< �v ;
jjpðkÞ � pðk�1ÞjjL1ðXÞ
jjpðk�1ÞjjL1ðXÞ

< �p

are all verified for �u ¼ �P ¼ �v ¼ �p ¼ 10�4, set unþ1 ¼ uðkÞ,
Pnþ1 ¼ PðkÞ and pnþ1 ¼ pðkÞ, otherwise return to step 2.

In the algorithm described above, the original problem is
divided into two subproblems, which are solved iteratively at each
time level. These subproblems correspond to the mechanical part
(step 3) and the fluid part (step 5). When we solve the mechanical
subproblem at step 3, we use the fluid pressure computed at the
previous iteration, so that its gradient can be seen as an additional
body force per unit volume of the porous medium. When we solve
the fluid subproblem at step 5, we use the elastic pressure param-
eter computed at step 3, so that the term with the approximation
of the time derivative of P can be seen as an additional fluid source
or sink. In other words, step 5 reduces to the solution of a linear
Poisson problem with the fluid pressure as unknown which we
solve using P2 finite elements, whereas step 3 entails the solution
of a nonlinear elasticity problem which we solve using the P3 � P2

finite element pair (which satisfies the discrete inf–sup condition)
and the following fixed point algorithm:



Fig. 3. A flow-chart of the computational algorithm.
1. let j ¼ 0;rð0Þe be an initial guess for the effective stress,
kð0Þ ¼ kðrð0Þe Þ; lð0Þ ¼ lðrð0Þe Þ and let pðk�1Þ be given;

2. set j ¼ jþ 1;
3. find uðjÞ and PðjÞ such that
r� 2lðj�1ÞeðuðjÞÞ�PðjÞI
� �

¼rpðk�1Þ in X;
PðjÞ

kðj�1Þ þr�uðjÞ ¼0 in X;

2lðj�1ÞeðuðjÞÞ�PðjÞI�pðk�1ÞI
� �

e2¼�IOPe2 on Rd=2;

2lðj�1ÞeðuðjÞÞ�PðjÞI�pðk�1ÞI
� �

e2¼�RLTpe2 on R�d=2;

e2 2lðj�1ÞeðuðjÞÞ�PðjÞI
� �

e1¼0 on RL;

uðjÞ �e1¼0 on RL;

uðjÞ ¼0 ðCase 1Þ on R0;

e1 2lðj�1ÞeðuðjÞÞ�PðjÞI�pðk�1ÞI
� �

e1¼ T�Pa ðCase 2Þ on R0;

uðjÞ �e2¼0 ðCase 2Þ on R0;

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

4. compute rðjÞe ¼ reðuðjÞ;PðjÞÞ
5. if jjrðjÞe � rðj�1Þ

e jjL1ðXÞ < �re is verified for �re ¼ 10�4, set uk ¼ uðjÞ

and Pk ¼ PðjÞ, otherwise return to step 2.

The time advancing procedure and the outer and inner iteration
loops constituting the computational solution map for the poro-
elastic model (7) are schematically represented in Fig. 3.

Remark 2.2. The computational algorithm described above to 
advance from time level tn to tnþ1 shares a close structural similarity 
with the Gummel fixed-point iteration used in contem-porary 
numerical solvers for the Drift–Diffusion equation system in 
semiconductor device modeling [40]. This analogy may be profit-
ably used for a theoretical analysis of existence and uniqueness of a 
fixed point ðu�; p�Þ of our proposed method, and, consequently, of a 
solution of the nonlinear boundary value problem (9).
Remark 2.3. The choice of a staggered computational method 
instead of a monolithic approach to solve the coupled problem is 
motivated by the nonlinear elastic behavior of the solid compo-
nent. The staggered scheme allows to isolate the elastic nonlinear-
ity in a separate step and to treat it with an appropriate numerical 
method. This is particularly important in the view of extending the 
model to more realistic and complex constitutive equations for the 
solid component, as mentioned in Remark 2.1.
3. Results

In this section we compare the model simulations with experi-
mental data [32] and then we use the model to simulate two differ-
ent mechanical configurations of the lamina, corresponding to
Cases 1 and 2 of Table 2, for various IOP levels. The time step used
in the numerical experiments is Dt ¼ 10�4 s, while the horizontal
and vertical dimensions of the lamina are L ¼ 0:075 cm and
d ¼ 0:02 cm, respectively. The average spatial grid size h in the
finite element triangulation of X is 3 � 10�3 cm. The retrolaminar
tissue pressure has always been set to RLTp = 7 mmHg [23]. Given
the stationary boundary conditions we have imposed, we let our
staggered method run until a stationary solution, with a constant
solid displacement field, is obtained. In this case, from Eq. (4), we
obtain

vðxÞ ¼ NðxÞvbloodðxÞ: ð10Þ
3.1. Comparison with experimental data

Even though our study has to be considered preliminary with 
respect to the more rigorous description of the physical problem by 
means of cylindrical coordinates, it is still useful to make a com-
parison between model predictions and experimental data, in order 
to understand the degree of significance of our analysis.

We consider the work by Yan et al. [32], who mounted three 
enucleated human eyes on a specially designed experimental 
apparatus, which allowed to sequentially increase the IOP from 5 
mmHg to 15, 30 and 50 mmHg. Topographic images of the optic 
nerve head were taken at each pressure using a scanning laser 
tomographer (Heidelberg Retina Tomograph – HRT). These images 
were analysed using selected standard parameters computed by 
the HRT software. One of the most significant stereometric param-
eters is the volume below reference (VBR), defined as the volume 
between the cupped (with respect to the eye globe) inner surface of 
the lamina cribrosa and the reference plane (line y ¼ þd=2). VBR 
gives a volumetric measure of the cupping of the lamina crib-rosa 
and has been recommended as one of the most useful clinical 
measures of the optic nerve head [41].

Fig. 4 reports the comparison between the values of the IOP-
induced increments of VBR, DVBR, measured experimentally for the 
three eyes and predicted by our mathematical model in Cases 1 and 
2. More precisely, for a given IOP, the corresponding VBR increment 
is defined as the difference between the value of VBR for that given 
IOP and the value of VBR obtained for IOP equal to 5 mmHg. The 
values of DVBR predicted by the model fall within the range of 
values measured experimentally. In particular, we notice that the 
slope of the segments connecting simulated data for increasing IOP 
values is not constant. This is a consequence of the nonlinear 
constitutive equation adopted for the solid compo-nent, where the 
Lamé parameters vary with the local effective stress. The 
experimental data exhibit a similar change in slope with increasing 
IOP, even though the data show significant variability between 
eyes. Despite the many simplifying assumptions embed-ded in the 
model, most importantly the choice of a two-dimensional 
geometry, the qualitative agreement between experimental data 
and numerical simulations is satisfactory. This suggests that our 
model for the lamina cribrosa provides physiologically reasonable 
results when comparing the response to different levels of IOP.
3.2. Simulations of Cases 1 and 2 for various IOP values

The poroelastic model for the lamina cribrosa is used here to 
estimate the effect of IOP elevation on the distributions of the fluid-
mechanical variables in the case of clamped boundary (Case
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Fig. 4. Comparison between the values of the IOP-induced increments of volume 
below reference (DVBR) measured experimentally for the three enucleated eyes 
[32] and predicted by our mathematical model using the boundary conditions 
pertaining to Case 1 and Case 2 reported in Table 2.
1) and in the case of imposed scleral tension and allowed rotations 
(Case 2).

Fig. 5 shows the deformed configuration of the lamina (red grid) 
in the two considered cases for IOP = 15, 25 and 35 mmHg. For ease 
of reference, the undeformed rectangular configuration has been 
included as a green grid. In both conditions, computed deforma-
tions appear to be overestimated with respect to the values 
reported in [13], but this effect is probably to be ascribed to the 
combined use of a 2D geometrical model with material parameters 
and boundary conditions pertaining to a 3D situation. In any event,
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results indicate that the lamina central deflections induced by IOP 
elevation are larger in Case 2 than in Case 1, despite the fact that 
the scleral tension also increases with IOP. This difference is also 
reflected in the distributions of stress, porosity and blood velocity, 
as shown below. Blood velocity has been computed from Eq. (10). 
Fig. 6 compares the numerically predicted distributions of effec-
tive stress obtained in Cases 1 and 2 for IOP = 15, 25 and 35 mmHg. 
Results are plotted on the undeformed rectangular configuration.
In the case of clamped boundary, the regions at highest re are 
located in proximity of the constraint boundary corresponding to 
the scleral insertion of the lamina cribrosa, namely x1 close to 0. 
When a scleral tension is imposed and rotations are allowed at 
the boundary, the regions at highest re are located in proximity 
of the lamina central axis, namely x1 close to L ¼ 0:075, and extend 
further into the domain as IOP increases.

The numerically predicted distribution of the vascular porosity 
reported in Fig. 7 shows a similar behavior as the effective stress. 
IOP elevations seem to affect the lamina porosity in Case 2 more 
than in Case 1. In the former case, wide regions of decreased and 
increased porosity are apparent along the upper and lower bound-
aries of the lamina around its central axis.

Fig. 8 shows remarkable differences between Cases 1 and 2 also 
in the distribution of blood velocity. In Case 1, IOP elevation does 
not cause substantial variations in the velocity distribution. In Case 
2, the region of maximum velocity is always located at the lower 
surface of the lamina, and IOP elevation induces a velocity reduc-
tion in the top central area of the lamina.
4. Discussion

The main goal of this work is to develop a poroelastic model to
describe the relationship between mechanical deformations and
blood flow in the lamina cribrosa for increasing values of IOP, since
Case 2
(scleral tension and rotations)

075

x1 [cm]

d configuration

0 0.075

5, 25 and 35 mmHg, in the case of clamped boundary (Case 1) and in the case of
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this relationship is thought to play a crucial role in onset and pro-
gression of glaucoma. The model predicts that the same IOP eleva-
tion, for example from 15 to 35 mmHg, may have remarkably
different biomechanical and hemodynamical consequences in the
lamina cribrosa of individuals experiencing different degrees of
fixity at the boundary between sclera and lamina.

In the extreme situation of clamped boundary (Case 1), the
region close to the sclera is subject to higher stress and lower blood
velocity than the rest of the lamina, making it more susceptible to
tissue damage. On the other hand, when rotations are allowed and
a scleral tension is imposed at the boundary between lamina and
sclera (Case 2), the most vulnerable region is located at the upper
surface close to the central axis of the lamina, whereas the lower
surface experiences increased blood velocity. These findings sug-
gest that the relationship between the mechanical deformations
and the blood flow in the lamina cribrosa is far from trivial and that
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the use of mathematical modeling could help identifying the main
factors that influence such relationship.

It is important to remind once again that the model simulations
have been obtained under many simplifying assumptions, most
importantly we have considered a simplified two-dimensional
geometry and a trilinear constitutive equation for the laminar
tissue. Despite the many limitations of the model, it is interesting
to notice how the model predicts different biomechanical and
hemodynamic responses to IOP elevation depending on the region
within the lamina and the degree of fixity of the scleral insertion.
Many clinical and experimental observations suggest that the
response of the laminar tissue to changes in IOP is not uniform.
For example, loss of collagen fibers was reported in the top-centre
of the lamina and recruitment of new collagen was detected at the
lower surface, causing cupping in the lamina of animals suffering
from prolonged IOP elevation [5]. It would be interesting to further
develop the model to investigate whether and to what extent this
non-uniform growth and remodeling of the collagen within the
lamina is mediated by blood perfusion and availability of nutrients.

Many factors influence the properties of the scleral insertion of
the lamina cribrosa, such as ethnicity [42] and age 43]. In addition,
these properties have observed to change within the same individ-
ual as glaucoma progresses [44]. It would be interesting to further
extend the model to investigate other types of boundary conditions
at the scleral insertion, such as, for example, compliant conditions
by means of combinations of springs and supports. Moreover, IOP
and arterial blood pressure Pa are known to vary over a cardiac
cycle as well as during the day. The influence of time variations
in IOP and Pa on the blood flow through the lamina would be
another very interesting direction of research that could be inves-
tigated using our model.
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