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Abstract
Autorotation is a flight condition whereby the engine of a helicopter is no longer supplying power to the

main rotor system, which is driven solely by the upward flow of the air moving through the rotor. For he-

licopters, autorotation is a common emergency procedure performed by pilots to safely land the vehicle

in the event of a power failure or tail-rotor failure. In the classic analysis of dynamic stability of helicopters

in powered flight, it is common practice to neglect the effect of variation of rotor angular velocity, as the

rotorspeed is constant. However, this assumption is no longer justified in case of autorotative flight. There-

fore, the rotorspeed becomes an additional degree-of-freedom in autorotation, giving rise to a new stability

mode that couples with classical rigid-body modes. The present paper aims at understanding the role of

the rotorspeed degree-of-freedom in modifying the stability characteristics in autorotation of rotor sys-

tems with different autorotative flare indexes. Results show that the helicopter dynamics are considerably

affected in autorotation as a consequence of the fact that the rotorspeed degree of freedom couples with

the heave subsidence mode. Therefore, autorotation requires a different control strategy by the pilot and

should not be mistakenly considered only as an energy management task. Furthermore, the autorotative

flare index, used to characterize the autorotative performance during the preliminary design phase of a

new helicopter, provides only energy information. Indeed, this paper demonstrates that high values of this

index, representative of good autorotative performance in terms of available energy over required energy,

may lead to degraded stability characteristics of the helicopter in autorotation.

1. INTRODUCTION
Autorotation is a flight condition in which the rota-

tion of the rotor is sustained by the airflow, rather

than by means of engine torque applied to the

shaft. Helicopter pilots use autorotation following

partial or total power failure, in order to reach the

closest suitable landing site. In this condition, the
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energy stored in the rotor is preserved at the ex-

pense of the helicopter’s potential energy (altitude).

This means that the helicopter can sustain autoro-

tation only by means of descending flight.

It has been common practice in analyzing dynamic

stability of helicopters in powered flight, to neglect

the effect of variation of rotor angular velocity. In-

deed, the vast majority of helicopters keep a con-

stant rotorspeed (rpm) during flight. This function is

fulfilled by the governor, which measures and reg-

ulates the speed of the engine. However, this as-

sumption is no longer justified in case of autorota-

tive flight where the governor is disengaged and the

pilot takes over the task of controlling the rotor rpm

directly. Power off limits are usually between 85%
and 110% of the nominal rpm 1

, such that the ro-

tor can still produce enough thrust without the risk

of loss of control or structural damage. Therefore,

the rotorspeed becomes an additional degree-of-

freedom (DOF) in autorotation. There is little sub-

stantial literature about the analysis of the poten-
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tial impact of this additional degree-of-freedom on

helicopter flight dynamics in autorotation. Nikolsky

and Seckel
2–4
developed an analysis of the effects

of autorotation phenomena on helicopter flight dy-

namics in both vertical and forward translation. This

work dates back to the 1950s. More recent work
was carried out by Houston

5–7
, who mainly focused

on autogyros, for which autorotation is the normal

mode of operation.

The present paper aims at understanding how the

rotorspeed degree-of-freedom impacts the classical

rigid body modes, and therefore the handling quali-

ties in autorotation. This is achieved by comparing

the eigenvalues of a 3-DOF longitudinal model in
level flight with those of a 4-DOF (3-DOF longitu-
dinal + RPM) model in steady descent during au-

torotation, both representative of the Bo-105 heli-
copter. Moreover, the paper investigates the effects

of autorotative flare index variations on helicopter

stability in autorotation. There are many possible

alternatives to express the autorotative character-

istics of a helicopter
8–10
. The definition adopted in

this paper considers the autorotation index as the

ratio between the available energy (energy stored in

the rotor) and the energy required to arrest the rate

of descent of the helicopter prior to ground contact

(proportional to weight and disk loading). This in-

dex has been chosen because it has shown to be

a reasonably reliable indicator of the relative ease

of making successful autorotative landings
10
. Every

design parameter involved in the calculation of the

autorotative flare index has been varied in order to

study the sensitivity of the helicopter’s eigenmodes

to changes in the autorotation index, and therefore

understand whether any of these parameters has a

strong impact on the stability of the system.

Pilots will need to adjust their control strategy

based on the helicopter dynamics they control. As

a consequence, different handling characteristics

may put a different level of workload on the pilot

to accomplish the task. This may also have impli-

cations for autorotation training from a safety per-

spective. For instance, during in-flight training of

novice pilots it is desirable to adopt a progressive

difficulty approach, starting in a low resource de-

manding configuration and then transitioning to a

more challenging one. During simulator training in-

stead, starting the training in the highest resource

demanding setting may provide the pilot with more

robust and flexible flying skills that can then be

transferred to the actual helicopter
11
. The present

study sets the basis for future work on autorotation

training in flight simulators.

The paper is structured as follows. First, in Section

2, the proposed methodology to analyze helicopter

stability in autorotation is introduced. Then the ob-

tained results are presented in Section 3. Finally a

discussion is included in Section 4 and conclusions

are drawn in Section 5.

2. METHODOLOGY
The helicopter dynamics in autorotation is analyzed

in terms of stability characteristics of its modes

of motion. Thirty-two different configurations have

been considered (Tab. 1). They were obtained by

individually varying some basic design parameters

of the baseline helicopter to get realistic values of

the autorotative flare index, a metric that helps to

size the rotor during preliminary design studies. The

baseline helicopter is the Bo-105 and its data were
taken from Padfield

12
. The procedure followed to

select these configurations is extensively explained

in Sec. 2.1.

The comparison of the dynamic behavior of the dif-

ferent configurations will provide insight into which

basic design parameters involved in the calculation

of the autorotative index affect helicopter’s stability

in autorotation the most, making it more difficult to

control.

2.1. Autorotation Index
The preliminary design phase of a new helicopter

involves a trade-off procedure between perfor-

mance in hover and in forward-flight
13
. Different

constraints should be taken into account in order to

avoid infeasible solutions. Among all the design re-

quirements, also performance in autorotation plays

a crucial role. Indeed, the ability of the pilot to land

safely after total power failure does not depend

only on his skills, but also on the physical charac-

teristics of the helicopter. This consideration leads

to the desire to quantify the autorotative character-

istics of a given helicopter tracing these back to its

basic design parameters. Since the execution of the

whole autorotation manoeuvre can be interpreted

as an energy management task, a suitable index for

measuring autorotative performance should take

into account the kinetic energy stored in the rotor.

Although several types of metrics can be defined
8,9
,

the autorotation index is basically a stored energy
factor. The index used in this paper (Eq. (1)) was

derived by Fradenburgh
10
from simple momentum

relations assuming that the helicopter is initially in

a steady descent in autorotation, so that the prob-

lem becomes reducing the rate of descent prior to

touch-down as much as possible.

AI =
IRΩ2

2WDL
(1)
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Table 1: Configuration test matrix.

Design pa-

rameter

Autorotative flare

index AI (ft3/lb)
Blade chord c (m) Main rotor radius

R (m)
Main rotor speed

Ω (rad/s)
Helicopter weight

W (kgf )

B
la
d
e
c
h
o
r
d

5 0.0578 4.91 44.4 2200
10 0.1157
15 0.1735
20 0.2313
25 0.2892
30 0.3470
35 0.4049
40 0.4627

M
a
in
r
o
to
r
r
a
d
iu
s

5 0.2700 3.61 44.4 2200
10 4.14
15 4.49
20 4.76
25 4.98
30 5.16
35 5.32
40 5.47

M
a
in
r
o
to
r
s
p
e
e
d

5 0.2700 4.91 20.6 2200
10 29.1
15 35.6
20 41.1
25 46.0
30 50.3
35 54.4
40 58.1

H
e
li
c
o
p
te
r
w
e
ig
h
t 5 0.2700 4.91 44.4 4753

10 3361
15 2744
20 2377
25 2126
30 1941
35 1797
40 1681

The autorotative flare index (Eq. (1)) can be inter-

preted as the ratio between the available energy

(rotor kinetic energy IRΩ2/2, where IR is the po-
lar moment of inertia of the rotor system and Ω
is the rotor RPM) and the energy required to stop

the rate of descent of the helicopter (proportional

to the helicopter weight W and the disk loading

DL). Thus, a high value of the index is desirable. In
order to compare the values of this index for vari-

ous helicopters, it is convenient to plot the param-

eter proportional to rotor kinetic energy per unit

gross weight IRΩ2/2/W versus disk loading DL.
This graphical form is adopted in Fig. 1, where an

overview of typical values of the autorotation in-

dex is given. Straight lines through the origin corre-

spond to constant values of the index. Several heli-

copters have been considered and all of them have

an autorotative index between 5 and 40 ft3/lb.
Some of the parameters in Eq. (1) are closely related,

hence it is not possible to isolate the contribution

of each of them to the overall autorotative perfor-
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Figure 1: Autorotative indices for several heli-

copters at standard sea level conditions (revised

from Fradenburgh
10
and Leishman

14
).
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mance. For this reason, an approximate form of the

autorotation index of Eq. (1) has been derived.

For this approximation it is assumed that:

• the main rotor blade mass density ρb is uni-
form, so that its mass can be expressed as:

mb ' ρbthRc(2)

where th is the blade airfoil mean thickness,
c is the blade mean chord and R is the main
rotor radius;

• the main rotor blade flap moment of inertia Iβ
can be approximated with that of a thin rod:

Iβ ' mb
R2

3
= ρbth

cR3

3
(3)

• the polar inertia of the rotor system IR can
be approximated as the product between the

number of blades on main rotor Nb and the
main rotor blade flap moment of inertia Iβ :

IR ' NbIβ ' Nbρbth
cR3

3
(4)

With these assumptions and using the definition of

disk loadingDL:

DL =
W

πR2
(5)

the autorotation index of Eq. (1) can be approxi-

mated as:

AI '
π

6
Nbρbth

cR5Ω2

W 2
(6)

Seven independent design parameters have been

identified (Nb, ρb, th, c , R, Ω andW ). However, the
number of blades on the main rotorNb, blade mass
density ρb, and blade airfoil mean thickness th were
fixed to the baseline value, reducing by three the

number of independent design parameters.

Each of the four design parameters of Eq. (6) was

varied individually to get eight different values of

autorotation index, ranging from 5 to 40 ft3/lb, for
a total of 32 configurations, that are summarized in
Tab. 1 and shown graphically in Fig. 2. Please note

that some of the configurations are not physically

feasible. Indeed, these configurations do not cor-

respond to existing helicopters, but they are hypo-

thetical variants of the Bo-105 helicopter with dif-
ferent autorotation indexes.
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Figure 2: Autorotative indices for the helicopter’s

configurations listed in Tab. 1 at standard sea

level conditions.

2.2. Natural Modes of Motion
It is common practice in studying the stability and

control of both fixed- and rotary-wing aircraft to lin-

earize the equations of motion around an equilib-

rium point and evaluate the natural modes of mo-

tion of the equivalent linear system. Indeed, lin-

earization allows for interpreting the helicopter mo-

tion as a linear combination of natural modes, each

having its own unique frequency, damping and dis-

tribution of the response states. Thus, the stability

of the motion caused by small disturbances from a

trim condition is strictly related to the stability of the

individual modes.

The result of the linearization procedure is a state-

space model of the form of Eq. (7).

{
δẋ (t) = A δx (t) + B δu (t)

δx (t0) = δx0
(7)

According to Lagrange’s formula for linear time-

invariant systems (Eq. (8)), the motion of the state

δx is made of two different contributions: the nat-
ural response δxn (also known as free or initial re-
sponse) and the forced response δx f .

δx (t) = δxn (t) + δx f (t) =(8)

=

Natural response︷ ︸︸ ︷
exp [A (t − t0)] δx0 +

+

∫ t

t0

exp [A (t − τ)]B δu (τ)︸ ︷︷ ︸
Forced response
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The natural response is strictly related to the stabil-

ity of the system. The eigenvectors w i of the matrix
A, if arranged into columns to form a square matrix
W, satisfy Eq. (9).

WDiag (λi) = AW(9)

where Diag (λi) is a diagonal matrix whose ele-
ments are the eigenvalues of A. Thus, A can be ex-
pressed as in Eq. (10).

A =WDiag (λi)W
−1

(10)

where the columns of W are referred to as right

eigenvectors and those ofW−1
as left eigenvectors

Substituting Eq. (10) in Eq. (8), the natural response

can be obtained from Eq. (11).

δxn (t) =WDiag
[
eλi (t−t0)

]
W−1 δx0(11)

In order to isolate the contribution of each mode to

the natural response, index notation is used, lead-

ing to Eq. (12).

δxn (t) =

n∑
i=1

w iv
H

i δx0e
λi (t−t0)

(12)

where vHi represents the i -th row ofW
−1
and H in-

dicates the conjugate transpose (also known as Her-

mitian transpose). According to Eq. (12), the natural

response of the system is given by the linear combi-

nation of the individual contributions of each mode

of motion. The distribution of the response states

due to each mode is specified by the corresponding

eigenvector, while the information about the time

evolution is contained in the respective eigenvalue.

The linear approximation that allows this interpre-

tation is extremely powerful in enhancing physical

understanding of vehicle’s complex motions.

In order to apply this approach to gain insight into

the physics of the helicopter dynamic behaviour in

autorotation, it is worth to divide the autorotation

manoeuvre in three phases: steady descent, cyclic

flare and rotation and collective flare
15
(points 2, 3

and 4 of Fig. 3, respectively). Since steady descent in

autorotation is an equilibrium condition, it is possi-

ble to linearize the equations of motion around this

condition and study the stability of the linearized

system by analyzing the eigenvalues of the state

matrix. In order to understand which design param-

eters, involved in the calculation of the autorota-

tive index, mostly affect the helicopter’s stability in

steady autorotative descent, the eigenvalues of the

different rotor configurations at the typical autoro-

tative speed of 60 kn are compared.

1

2

3

4

5

Figure 3: Autorotation phases (1: level flight, 2:
steady descent, 3: cyclic flare, 4: rotation and col-
lective flare, 5: touch-down).

3. RESULTS
This section is split in two parts. The goal of the first

part is to show the effects of the rotorspeed de-

gree of freedom on classical rigid-body modes. This

is achieved by comparing the eigenvalues of a 3-

DOF longitudinal model in level flight with those of

a 4-DOF (3-DOF longitudinal + RPM)model in steady
descent during autorotation. Both models are rep-

resentative of the Bo-105 helicopter. The second
part focuses on the effects of some of the basic de-

sign parameters involved in the calculation of the

autorotative flare index on the helicopter’s stabil-

ity characteristics in autorotation. Details about the

flight dynamics model are summarized in Appendix

A.

3.1. Effect of RPM on Rigid-Body Modes
3.1.1. Evolution of the Eigenvalues withForward Speed
Fig. 4 shows a comparison between the root locus

in level flight (Fig. 4a, 4c and 4e) and steady descent

in autorotation (Fig. 4b, 4d and 4f) for the baseline

helicopter. The root loci are parametrized with for-

ward speed, showing the evolution of each mode

from low-speed flight to 140 kn. Steady descent in
autorotation is a condition in which the helicopter

is descending at a constant rate of descent, whose

value is such that the rotor torque is zero
15
. This

means that also the rate of descent changes with

forward speed. These values are shown in Fig. 4d

and 4f for three points (minimum speed, speed for

minimum descent rate and maximum speed).
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(b) Root locus in steady descent in autorotation.
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(c) Evolution of phugoid mode in level flight.
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(d) Evolution of phugoid mode in autorotation.
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(e) Evolution of heave subsidence mode in level

flight.
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(f) Evolution of heave/rotorspeed mode in autorota-

tion.

Figure 4: Comparison between root loci in level flight and steady descent in autorotation for the baseline

helicopter as a function of forward speed at standard sea level conditions.
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The dynamic behavior of the helicopter in the two

flight conditions is substantially different. In steady

descent in autorotation, the rotorspeed mode and

the heave subsidence are aperiodic modes at very

low and very high speeds, whereby the former is

unstable and the latter is stable. At intermediate

speeds, they couple together, giving rise to a cou-

ple of complex conjugate poles (Fig. 4f) that is un-

stable only at low forward speeds. The phugoid is

also affected by the rotorspeed mode: it becomes

unstable only at high speeds (Fig. 4d). The pitch sub-

sidence mode instead is almost unaffected by the

addition of the rotorspeed state.

Thus, the rotorspeed degree of freedom has a

strong influence on the classical rigid-body modes.

In order to gain more insight into the dynamic char-

acteristics of the baseline helicopter in steady de-

scent in autorotation, let us consider the typical au-

torotative speed of 60 kn. Tab. 2 shows a compari-
son of eigenvalues, frequency and damping charac-

teristics at 60 kn ground speed between level flight
and steady descent in autorotation. The phugoid

mode, which is unstable and lightly damped in

level flight (time to double of approximately 48 s),
becomes stable and highly damped in steady au-

torotation (time to halve of approximately 2 s). The
heave subsidence instead, which is stable and ape-

riodic in level flight (time to halve of approximately

1 s), couples with the rotorspeed degree of free-
dom, giving rise to a couple of stable and lightly

damped periodic poles in steady autorotation (time

to halve of approximately 48 s). The pitch subsi-
dence slightly moves toward the left-hand side of

the complex plane, but overall does not change sig-

nificantly.

3.1.2. Analysis of the Eigenvectors at 60 knots
Modes in steady descent in autorotation cannot

be easily matched with modes in level flight just

by looking at the corresponding eigenvalues. Their

identification is based on the analysis of the corre-

sponding eigenvectors by means of a comparison

with the eigenvectors in level flight. Indeed, we ex-

pect a similar behavior in terms of states’ partici-

pation for equivalent modes in the two flight con-

ditions. In Fig. 5a and 5b, the eigenvector of the

phugoid mode of the Bo-105 flying at 60 kn ground
speed is illustrated for level flight and steady de-

scent in autorotation, respectively. The modal con-

tent of all the state vector components has been in-

cluded. Angular quantities and angular rates in the

eigenvectors are presented in deg and deg/s, re-
spectively (except for the rotorspeed degree of free-

dom that is presented in rad/s) in order to be able
to catch their contribution with respect to transla-

tional rates, that are shown in m/s. Because the
phugoid mode is oscillatory, each component has

a magnitude and a phase, making polar plots ideal

to represent its eigenvector. In level flight (Fig. 5a),

the pitch rate is roughly in quadrature with the pitch

angle (they are not exactly in quadrature because

the mode is damped). Indeed, when the pitch rate

is zero, the pitch angle has a maximum or a mini-

mum, being the pitch rate the time derivative of the

pitch angle. Moreover, the pitch rate is roughly in

phase with the heave velocity and with the surge ve-

locity. This means that when the pitch rate is zero,

also heave and surge velocities are zero and accord-

ing to Eq. (13) and (14), when the pitch angle reaches

a maximum (δθ > 0), the helicopter is climbing
(δVvert = δθ Vf wdeq > 0) and when it reaches a
minimum (δθ < 0), the helicopter is descending
(δVvert = δθ Vf wdeq < 0).

δVf wd = δu cos Θeq + δw sin Θeq+(13)

− δθ (Ueq sin Θeq −Weq cos Θeq) =

= δu cos Θeq + δw sin Θeq − δθ Vverteq

δVvert = δu sin Θeq − δw cos Θeq+(14)

+ δθ (Ueq cos Θeq +Weq sin Θeq) =

= δu sin Θeq − δw cos Θeq + δθ Vf wdeq

The situation is highly similar in steady autorota-

tion (Fig. 5b). The main difference is given by the

presence of the rotorspeed state, which is actu-

ally roughly in phase with the pitch angle. This is

an expected result in autorotation, because pitch-

ing up allows the airflow to pass through the rotor

from below, speeding it up. Furthermore, in steady

descent in autorotation there is a non-zero verti-

cal speed (Vverteq < 0), meaning that when the
pitch angle reaches a maximum (δθ > 0), the he-
licopter is accelerating with respect to the ground

(δVf wd = −δθ Vverteq > 0) and decreasing its rate
of descent (δVvert = δθ Vf wdeq > 0) and when
it reaches a minimum (δθ < 0), the helicopter is
decelerating with respect to the ground (δVf wd =
−δθ Vverteq < 0) and increasing its rate of descent
(δVvert = δθ Vf wdeq < 0).
The same polar representation has been used to

compare the heave subsidence mode in level flight

(Fig. 5c) with the combined heave/rotorspeed mode

in steady autorotation (Fig. 5d). Although the heave

subsidence mode in level flight is non-oscillatory

and a simple bar plot would have been sufficient

to analyze its eigenvector, the change in the nature

of this mode to oscillatory when in steady autorota-

tion makes polar plots the best choice to achieve a

fair comparison.
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Table 2: Eigenvalues, frequency and damping characteristics at 60 kn for the baseline helicopter - Compar-
ison between level flight and steady descent in autorotation.

Level flight Steady descent in autorotation
Mode

λ (rad/s)
ωn (rad/s) ξ (-)

λ (rad/s)
ωn (rad/s) ξ (-)

< (λ) = (λ) < (λ) = (λ)

Phugoid
0.0212 −0.3497 0.3503 −0.0605 −0.3472 −0.4869 0.5980 0.5806
0.0212 0.3497 0.3503 −0.0605 −0.3472 0.4869 0.5980 0.5806

Heave/ −0.6197 0.0000 0.6197 1.0000 −0.0146 −0.1334 0.1342 0.1087
Rotorspeed −0.0146 0.1334 0.1342 0.1087

Pitch sub. −4.0783 0.0000 4.0783 1.0000 −4.2596 0.0000 4.2596 1.0000

In level flight (Fig. 5c), the pitch rate is in antiphase

with the pitch angle. This is explained by the fact

that the response of the system is strictly monotone

(i.e., the heave subsidence eigenvalue is real, there-

fore the response follows an exponential) and con-

vergent to zero (i.e., the heave subsidence eigen-

value is stable), hence the pitch rate, that is the time

derivative of the pitch angle, needs to be opposite

in sign with respect to the pitch angle (i.e., if one is

strictly decreasing to zero from positive values, the

other one is strictly increasing to zero from negative

values). Furthermore, the pitch rate is in phase with

the heave velocity and in antiphase with the surge

velocity. However, the magnitude of the heave ve-

locity is much higher than that of the other states,

meaning that the motion is a rapid variation of the

heave velocity.

The situation slightly changes in steady au-

torotation (Fig. 5d), whereby the combined

heave/rotorspeed mode is oscillatory. The pitch

rate is roughly in quadrature with the pitch angle

(they are not exactly in quadrature because the

mode is damped). Indeed, when the pitch rate is

zero, the pitch angle has a maximum or a mini-

mum, being the pitch rate the time derivative of the

pitch angle. Moreover, the pitch rate is roughly in

phase with the rotorspeed, meaning that when the

helicopter pitches up the rotorspeed increases and

when it pitches down the rotorspeed decreases,

as expected. The rotorspeed state is roughly in

antiphase with the heave velocity and in phase

with the surge velocity. This is also expected, since

when the rotor speeds up, it generates more thrust,

hence reducing the rate of descent and increasing

the forward speed, as long as the rotor is tilted

forward.

A bar plot has been used to compare the pitch sub-

sidence mode between level flight and steady au-

torotation (Fig. 5e). Indeed, the pitch subsidence

mode is non-oscillatory in both flight conditions.

It can be noticed that state participation is similar

for both flight conditions. Apart from the presence

of the rotorspeed degree of freedom, which was ne-

glected in level flight, the only difference between

the two flight conditions is related to the phase of

the surge velocity. The same explanation adopted

for the heave subsidence can also be used for the

pitch subsidence. Indeed, the pitch rate is in phase

with the rotorspeed, meaning that when the he-

licopter pitches up the rotorspeed increases and

when it pitches down the rotorspeed decreases.

When the rotor speeds up, it generatesmore thrust,

hence reducing the rate of descent and increasing

the forward speed, as long as the rotor is tilted for-

ward. This is the reason why the rotorspeed state

is in antiphase with the heave velocity and in phase

with the surge velocity.

3.2. Effect of Autorotative Index DesignParameters on Helicopter StabilityCharacteristics in Autorotation
The stability characteristics of the set of helicopter

configurations defined in Sec. 2.1 have been evalu-

ated and are shown in Fig. 6. This set of configu-

rations has been divided into four subsets, each of

which is related to a specific design parameter (see

Tab. 1). Fig. 6a, 6b, 6c and 6d show the sensitivity of

themodes to changes in themain rotor blade chord

c , main rotor radius R, main rotor RPM Ω and heli-
copter weightW , respectively.
For every subset of configurations, it can be noticed

that increasing the autorotative flare index has:

• positive effects on the stability of the phugoid

mode;

• negative effects on the stability of the pitch

subsidence. However, the pitch subsidence re-

mains stable;

• negative effects on the stability of the

heave/rotorspeed mode, which even becomes

slightly unstable for high values of the index.
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Level Flight Steady Descent in Autorotation
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(a) Phugoid eigenvector in level flight.
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(b) Phugoid eigenvector in autorotation.
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(c) Heave subsidence eigenvector in level flight.
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(d) Rotorspeed eigenvector in autorotation.
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Figure 5: Comparison between eigenvectors in level flight and steady descent in autorotation for the base-

line helicopter at 60 kn forward speed at standard sea level conditions.
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Phugoid Pitch Subsidence Rotorspeed Mode
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(a) Root loci as a function of main rotor blade chord.
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(b) Root loci as a function of main rotor radius.
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(c) Root loci as a function of main rotor RPM.
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(d) Root loci as a function of helicopter weight.

Figure 6: Comparison between root loci in steady descent in autorotation for the different helicopter’s

configurations as a function of the autorotation index at standard sea level conditions.

3.2.1. Effects of Autorotative Index on thePhugoid Mode
These results are explained by the fact that the

stability characteristics of the phugoid mode are

mainly related to the speed derivativeMu . Although

positive values of this derivative have a stabiliz-

ing effect, the phugoid mode becomes more sta-

ble whenMu decreases, balancing the effects of the

pitch-damping derivative Mq . Indeed, the phugoid

oscillation is fostered by the helicopter attempts

to re-establish the equilibrium level-flight condition

from which it had been disturbed. The strong cou-

pling of u and q may lead to an unstable phugoid
mode. It can be noticed from Fig. 5a and 5b that u
and q are almost perfectly in phase in level flight
and only roughly in phase in steady autorotation,

justifying the fact that the phugoid mode becomes

stable in autorotation. Increasing the autorotative

flare index reducesMu (Fig. 7a), making the phugoid

mode more stable.

3.2.2. Effects of Autorotative Index on thePitch Subsidence Mode
The stability characteristics of the pitch subsidence

mode are mainly related to the pitch-damping

derivative Mq . Negative values of this derivative

make this mode stable. Increasing the autorotative

flare index increases Mq (Fig. 7b), which makes the

pitch subsidence mode less stable.
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Figure 7: Stability derivatives as a function of autorotative flare index.

3.2.3. Effects of Autorotative Index on theHeave/Rotorspeed Mode
The stability characteristics of the heave subsidence

in level flight are mainly related to the heave-

damping derivative Zw . Negative values of this
derivative are likely to make this mode stable. How-

ever, in autorotation, the heave subsidence cou-

ples with the rotorspeed mode, making the isolated

analysis ofZw insufficient to get insight into the sta-
bility of this mode. It can be noted from Fig. 5c and

5d that the heave velocity w is no longer the most
excited state in steady autorotation, but it has been

replaced by the surge velocity u. This means that
the surge-damping derivativeXu plays a crucial role
in the stability of the heave/rotorspeed mode in au-

torotation. Increasing the autorotative flare index

reduces Xu (Fig. 7c), making the heave/rotorspeed
mode less stable.

4. DISCUSSION
The present paper investigated the effects of the

rotor RPM degree of freedom in autorotation on

classical rigid-body modes. The proposed method-

ology relies on various assumptions (e.g., lineariza-

tion and stability analysis), that make it applicable

only to the steady descent part of the autorotation

manoeuvre, which can be considered as a trim con-

dition.

According to the analysis carried out, the helicopter

dynamics change considerably in autorotation as

the rotorspeed degree of freedom couples with the

classical rigid body modes. Therefore, autorotation

requires a different stabilization strategy by the pi-

lot and should not be mistakenly considered only

as an energy management task. Indeed, the results

show that there are two main differences between

themodes in straight level flight and those in steady
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descent in autorotation for the baseline helicopter

(Bo-105) considered in this study.
The first difference is that the phugoid in autorota-
tion becomes unstable only at high speeds. The eigen-
vector analysis at the typical autorotative speed,

shows that this is due to the fact that the surge ve-

locity u and the pitch rate q are not in phase as
in straight level flight. This means that the speed

derivativeMu and the pitch-damping derivativeMq ,

whose interaction is responsible for the instability

of the phugoid in straight level flight, are not cou-

pled enough to foster the unstable phugoid oscilla-

tion.

Typically, Mu is positive (for a stabilizing contribu-

tion*) and Mq is negative (for a stabilizing contri-

bution
†
) and the combination of these two oppo-

site, yet independently stabilizing, effects causes

the phugoidmode in straight level flight to be a slow

interchange between kinetic energy (speed) and po-

tential energy (altitude). Indeed, the phugoid oscil-

lation is fostered by the helicopter attempts to re-

establish the equilibrium level-flight condition from

which it had been disturbed.

The second difference is that the heave subsidence
mode couples with the rotorspeed degree of freedom,
giving rise to a couple of complex conjugate poles.
The eigenvector analysis at the typical autorotative

speed, shows that the heave velocity w is no longer
the most excited state during autorotation (as it is

for straight level flight), but it has been replaced by

the surge velocity u.
Both Xu and Zw are typically negative (for a stabi-
lizing contribution

‡§
) and the combination of these

two effects, although independently stabilizing, is

the reason that causes the heave/rotorspeed mode

in steady autorotation to be a slow interchange be-

tween kinetic energy (speed) and rotational energy

(rotorspeed). This phenomenon is somehow simi-

lar to what happens for the phugoid mode in level

flight, even though in this case the oscillation is sta-

ble.

The present paper has also investigated whether

large variations of the autorotative flare index

*If u is positively perturbed from the equilibrium condition,
the helicopter tends to pitch-down in order to gain forward

speed. This effect is balanced by the fact that an increment in

u leads to a pitch-up moment ifMu is positive.
†
If q is positively perturbed from the equilibrium condition,

the helicopter tends to pitch-up. This effect is balanced by the

fact that an increment in q leads to a pitch-downmoment ifMq

is negative.
‡
If u is positively perturbed from the equilibrium condition,

the fuselage drag increases. Thus, X decreases balancing the
increment of u.

§
If w is positively perturbed from the equilibrium condition,

the angle of attack increases, hence rotor thrust increases as

well. Thus, Z decreases balancing the increment of w .

strongly affect helicopter dynamics in autorotation,

because this may have consequences on pilot con-

trol strategy andworkload. The autorotative flare in-

dex is used in any helicopter development program

by Sikorsky Aircraft
10
as a metric for satisfactory

autorotative characteristics and, within certain cos-

traints, it appears to be a reasonably reliable indica-

tor of the relative ease of making successful autoro-

tative landings. Four independent design parame-

ters are involved in the calculation of this index: the

main rotor blade chord, the main rotor radius, the

rotor RPM and the helicopter weight. Each of them

has been varied individually from the baseline value

to get eight different values of the autorotation in-

dex, spanning from 5 to 40 ft3/lb. This range was
chosen after comparing the index for various exist-

ing helicopters.

For each of the four sub-sets of configurations,

the sensitivity of the eigenvalues to changes in the

autorotation index shows the same results. When

the autorotative flare index increases, the stabil-

ity of the phugoid mode improves, because the

speed stability derivative Mu decreases. The oppo-

site happens for the pitch subsidence (the pitch-

damping stability derivative Mq increases) and for

the heave/rotorspeed mode (the surge-damping

stability derivative Xu increases). Thus, higher val-
ues of the autorotation index, representative of

good autorotative performance in terms of avail-

able energy over required energy, do not necessar-

ily mean better stability characteristics.

In order to gain insight into how pilots adapt their

control strategy to the variation of the helicopter

dynamics in autorotation and to the changes in the

autorotative flare index, as a next step, a pilot-in-

the-loop experiment will be conducted on the SI-

MONA Research Simulator at Delft University of

Technology. Test pilots will be invited to perform

the autorotation manoeuvre with the different he-

licopter’s configurations analyzed in the present pa-

per. Pilot ratings, pilot commentary and some ob-

jective performance metrics will be collected in or-

der to validate the proposed methodology and to

isolate two flyable configurations characterized by

different workloads required by the pilot. The se-

lected configurations will be then used in a quasi-

transfer-of-training experiment to test whether the

group of participants that starts the training in the

most challenging setting develops more robust and

flexible flying skills than the group that starts the

training in the least demanding setting, as previous

experimental evidence has shown
11
.
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5. CONCLUSION
The present paper applied linear dynamics system

theory to assess helicopter stability characteristics

in autorotation. In order to achieve this goal, the

classical system of equations describing the heli-

copter flight dynamics, which comprises the rigid-

body degrees of freedom of the fuselage, has been

augmented by the rotor torque equation. Indeed,

themain difference with respect to powered flight is

that in autorotation the rotor RPM becomes a true

degree of freedom, because the governor is disen-

gaged and no longer fulfils the task of keeping the

rotorspeed constant. The validity of this analysis is

restricted to the steady descent phase of the au-

torotation manoeuvre, that can be considered as a

trim condition.

The results show that the helicopter dynamics are

considerably affected in autorotation as a conse-

quence of the fact that the rotorspeed degree

of freedom couples with the classical rigid-body

modes. Therefore, autorotation requires a different

control strategy by the pilot and should not be con-

sidered only as an energy management task, as it

is qualified by the autorotative flare index. Indeed,

high values of the index may lead to degraded sta-

bility characteristics and hence a possibly more dif-

ficult autorotation.

Future work is necessary to validate the proposed

methodology and to understand whether it can be

applied to predict autorotation training outcomes in

flight simulators.
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A. MATHEMATICAL MODEL OF THE HELICOPTER
A four-degrees-of-freedom analytical model, which

consists of 3-DOFs longitudinal rigid-body dynamics

and 1-DOF main-rotor angular velocity, was devel-

oped explicitly for a centre-spring equivalent main-

rotor system
12
(see Eq. (15) and (16)).


m (u̇ + qw) = −mg sin θ +X

m (ẇ − qu) = mg cos θ + Z

Iy q̇ = M

IRΩ̇ = Q

(15)


X = Xmr +Xf us
Z = Zmr + Zf us + Ztp
M = Mh + Zmrxh −Xmrhh +Mf us +Mtp

Q = Qe −Qmr

(16)

Many simplifications and assumptions were made

in deriving this model. The rotor blade was as-

sumed to be rigid with linear twist only. Uniform in-

flow and steady-state tip-path plane dynamics were

considered
16
. Both flapping and inflow angle were

assumed to be small. Simple strip theory
17
was

used. The reversed-flow region was ignored, and

compressibility and stall effects were not consid-

ered. The main-rotor force and moment expres-

sions match those developed by Chen et al.
18,19

if

flapping hinge offset (ε = 0), pitch-flap coupling
(δ3 = 0) and tip-path plane dynamics (ȧ0, ȧ1, ḃ1 = 0
and ä0, ä1, b̈1 = 0) are neglected.

NOMENCLATURE
δ3 Pitch-flap coupling (° or rad)

ε Non-dimensional flapping hinge offset (-)

λi i -th eigenvalue (rad/s)

Ω Main-rotor angular velocity (rad/s)

ρb Main rotor blade mass density (kg/m3
)

θ Fuselage pitch angle (° or rad)

δu Perturbation of the input vector

δx Perturbation of the state vector

A State matrix

B Control matrix

W Right eigenvectors matrix

v i i -th left eigenvector

w i i -th right eigenvector

a0 Coning angle (° or rad)

a1 Longitudinal tilt angle (° or rad)

AI Autorotative flare index (ft3/lb)

b1 Lateral tilt angle (° or rad)

c Main rotor blade chord (m)

DL Disk loading (lb/ft2
)

g Average gravitational field at sea level (m/s2)

hh Height of the rotor hub above helicopter center

of gravity (m)

IR Polar inertia of the rotor system (kg m2
)

Iy Helicopter pitch inertia (kg m2
)

Iβ Main rotor blade flap moment of inertia (kgm2
)

Kβ Flapping hinge restraint (N m/rad)

M Pitch moment (N m)

m Helicopter mass (kg)

mb Main rotor blade mass (kg)

Mq Pitch-damping stability derivative (N m s/rad)

Mu Speed stability derivative (N s)

Nb Number of blades on main rotor (-)

Q Torque (N m)

q Pitch rate (rad/s)

t Time (s)

th Blade airfoil mean thickness (m)

u Body longitudinal speed (m/s)

Vf wd Forward speed (m/s)

Vvert Vertical speed (m/s)

W Helicopter weight (kgf or N)

w Body vertical speed (m/s)

X Body longitudinal force (N)

xh Longitudinal position of the rotor hub behind

helicopter center of gravity (m)

Xu Surge-damping stability derivative (N s/m)

Z Body vertical force (N)

Zw Heave-damping stability derivative (N s/m)

Subscripts
e Engine

eq Trim condition

f us Fuselage

h Hub

mr Main-rotor

tp Horizontal tailplane
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